1
|
Pinter D, Milošević N, Milanović M, Vidović D, Kvrgić J, Kojić V, Jakimov D, Drljača Lero J, Milić N, Božić B, Banjac N. 1-Aryl-3-Ethyl-3-Methyl- and 1-Aryl-3-Methylsuccinimides as Drug Candidates for Cancer: Toxicity Prediction, Molecular Docking, and In Vitro Assessment. J Biochem Mol Toxicol 2025; 39:e70313. [PMID: 40400309 DOI: 10.1002/jbt.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Twenty-four succinimide derivatives were tested for their antiproliferative effect toward steroid hormone-responsive carcinoma cell lines: estrogen positive human breast carcinoma (MCF-7), lung carcinoma (A549), colon carcinoma (HT-29), and cervix carcinoma (HeLa). In addition, their antiproliferative effect was analyzed against late-stage estrogen and progesterone negative breast carcinoma (MDA-MB-231) and for safety were also investigated against normal fetal lung (MRC-5) cell lines. Molecular docking studies were conducted to observe their binding affinity for steroid hormone receptors and BCRP/ABCG2 transporter. All analyzed succinimides exhibited antiproliferative effects on at least one carcinoma cell line and were safe toward normal fetal lung cells. Their safety was confirmed based on in silico predictions. The succinimides were binding through the same π-stock interactions for the same Phe-778 of the progesterone receptor as the proven ligand and the same Phe-439 of the BCRP as the proven substrate and inhibitor. In addition, interactions with crucial amino acid residues for ligand antagonistic effects on estrogen receptors were observed. The QSAR analysis revealed that the succinimides' binding affinity for sex hormone receptors was governed by their flatness, polarity, size, and polarizability, while the affinity to bind for BCRP was lipophilicity dependent. The succinimides antiproliferative effect on A549 cell line given as IC50 was statistically significant associated with their molar refractivity (p = 0.033), and lipophilicity (XlogP3, p = 0.043), respectively. Finally, the most promising drug candidate with the most pronounced anticancer activity was compound D11 against lung carcinoma (A549) cell lines with an IC50 comparable to doxorubicin.
Collapse
Affiliation(s)
- Damir Pinter
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dunja Vidović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Kvrgić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Novi Sad, Serbia
| | - Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Sremska Kamenica, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Sremska Kamenica, Serbia
| | - Jovana Drljača Lero
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Božić
- Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", University of Belgrade, Belgrade, Serbia
| | - Nebojša Banjac
- Faculty of Agriculture, University of Belgrade, Belgrade-Zemun, Serbia
| |
Collapse
|
2
|
I P R, T A B, A M S, A N G, E A B, A B R, V S K. Prognostic value of progesterone receptor expression in non-small cell lung cancer tissue. Ir J Med Sci 2025:10.1007/s11845-025-03917-4. [PMID: 40117033 DOI: 10.1007/s11845-025-03917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Progesterone receptors (PRs) play a role in the regulation of cell proliferation and are expressed in non-small cell lung cancer (NSCLC) tissue. Therefore, they represent a potential target for novel antitumor therapies. A survival analysis of NSCLC patients based on PR expression in tumor tissue may help assess the feasibility of using PR modulators in the treatment of this disease. AIM This study aims to evaluate the prognostic significance of PR expression in NSCLC to determine the potential utility of PR modulators as a therapeutic strategy. METHODS PR expression was assessed in 130 surgically resected NSCLC samples using immunofluorescence analysis combined with flow cytometry. Primary antibodies against PR (NBP2-4638, Novus Biologicals, USA) and secondary antibodies conjugated with DyLight650 (ab98729, Abcam, UK) were used. The percentage of PR-expressing cells was quantified using FlowJo software. Statistical analyses were conducted in GraphPad Prism and RStudio using the "survival" package. The prognostic impact of PR expression in NSCLC tissue was evaluated in the overall patient cohort and after excluding censored events (n = 56) to minimize the influence of confounding factors on survival analysis. RESULTS After excluding censored events and stratifying patients based on the median PR expression level (57%), survival analysis revealed that high PR expression in NSCLC tissue is associated with a poorer prognosis (p = 0.05). Patients with high PR expression (≥ 57%) had a median survival of 12.8 months, whereas those with low PR expression (< 57%) had a median survival of 25.8 months (HR = 1.7). CONCLUSIONS Elevated PR expression in NSCLC tumors is associated with reduced patient survival. These findings suggest that PR modulators may have potential therapeutic value for NSCLC patients with PR-positive tumors.
Collapse
Affiliation(s)
- Romanov I P
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia.
| | - Bogush T A
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Scherbakov A M
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Gause Institute of New Antibiotics, Moscow, Russia
| | - Grishanina A N
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Bogush E A
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ravcheeva A B
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Kosorukov V S
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
3
|
Wendler A, Wehling M. Many or too many progesterone membrane receptors? Clinical implications. Trends Endocrinol Metab 2022; 33:850-868. [PMID: 36384863 DOI: 10.1016/j.tem.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
Abstract
Several receptors for nongenomically initiated actions of progesterone (P4) exist, namely membrane-associated P4 receptors (MAPRs), membrane progestin receptors (mPRs), receptors for neurosteroids [GABAA receptor (GABAAR), NMDA receptor, sigma-1 and -2 receptors (S1R/S2R)], the classical genomic P4 receptor (PGR), and α/β hydrolase domain-containing protein 2 (ABHD2). Two drugs related to this field have been approved: brexanolone (Zulresso™) for the treatment of postpartum depression, and ganaxolone (Ztalmy™) for the treatment of CDKL5 deficiency disorder. Both are derivatives of P4 and target the GABAAR. Several other indications are in clinical testing. CT1812 (Elayta™) is also being tested for the treatment of Alzheimer's disease (AD) in Phase 2 clinical trials, targeting the P4 receptor membrane component 1 (PGRMC1)/S2R complex. In this Review, we highlight emerging knowledge on the mechanisms of nongenomically initiated actions of P4 and its derivatives.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Martin Wehling
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| |
Collapse
|
4
|
Sarkar M, Sharma H, Singh P, Ranu R, Sharma RD, Agrawal U, Pal R. Progesterone limits the tumor-promoting effects of the beta-subunit of human chorionic gonadotropin via non-nuclear receptors. iScience 2022; 25:104527. [PMID: 35754725 PMCID: PMC9218381 DOI: 10.1016/j.isci.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
The post-menopausal state in women is associated with increased cancer incidence, the reasons for which remain obscure. Curiously, increased circulating levels of beta-hCG (human chorionic gonadotropin) (a hormonal subunit linked with tumors of several lineages) are also often observed post-menopause. This study describes a previously unidentified interplay between beta-hCG and progesterone in tumorigenesis. Progesterone mediated apoptosis in beta-hCG responsive tumor cells via non-nuclear receptors. The transgenic expression of beta-hCG, particularly in the absence of the ovaries (a mimic of the post-menopausal state) constituted a potent pro-tumorigenic signal. Significantly, the administration of progesterone had significant anti-tumor effects. RNA-seq profiling identified molecular signatures associated with these processes. TCGA analysis revealed correlates between the expression of several newly identified genes and poor prognosis in post-menopausal patients of lung adenocarcinoma, colon adenocarcinoma, and glioblastoma. Specifically in these women, the detection of intra-tumoral/extra-tumoral beta-hCG may serve as a useful prognostic indicator, and treatment with progesterone on its detection may prove beneficial.
Collapse
Affiliation(s)
- Moumita Sarkar
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, Haryana 122413, India
| | - Parminder Singh
- Larry L. Hillblom Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ranbala Ranu
- Cancer Research Imaging and Biobanking Lab, National Institute of Pathology, New Delhi, Delhi 110029, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, Haryana 122413, India
| | - Usha Agrawal
- Cancer Research Imaging and Biobanking Lab, National Institute of Pathology, New Delhi, Delhi 110029, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, Delhi 110067, India
| |
Collapse
|
5
|
Xia Z, Xiao J, Dai Z, Chen Q. Membrane progesterone receptor α (mPRα) enhances hypoxia-induced vascular endothelial growth factor secretion and angiogenesis in lung adenocarcinoma through STAT3 signaling. J Transl Med 2022; 20:72. [PMID: 35123491 PMCID: PMC8817580 DOI: 10.1186/s12967-022-03270-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer remains a huge challenge to public health because of its high incidence and mortality, and lung adenocarcinoma (LUAD) is the main subtype of lung cancer. Hypoxia-induced vascular endothelial growth factor (VEGF) release and angiogenesis have been regarded as critical events in LUAD carcinogenesis. In the present study, membrane progesterone receptor α (mPRα) is deregulated within LUAD tissue samples; increased mPRα contributes to a higher microvessel density (MVD) in LUAD tissues. mPRα knockdown in A549 and PC-9 cells significantly inhibited STAT3 phosphorylation, as well as HIF1α and VEGF protein levels, decreasing cancer cell migration and invasion. The in vivo xenograft model further confirmed that mPRα enhanced the aggressiveness of LUAD cells. Furthermore, mPRα knockdown significantly inhibited hypoxia-induced upregulation in HIF1α and VEGF levels, as well as LUAD cell migration and invasion. Under the hypoxic condition, conditioned medium (CM) derived from mPRα knockdown A549 cells, namely si-mPRα-CM, significantly inhibited HUVEC migration and tube formation and decreased VEGF level in the culture medium. In contrast, CM derived from mPRα-overexpressing A549 cells, namely mPRα-CM, further enhanced HUVEC migration and tube formation and increased VEGF level under hypoxia, which was partially reversed by STAT3 inhibitor Stattic. In conclusion, in LUAD cells, highly expressed mPRα enhances the activation of cAMP/JAK/STAT3 signaling and increases HIF1α-induced VEGF secretion into the tumor microenvironment, promoting HUVEC migration and tube formation under hypoxia.
Collapse
|
6
|
Vafashoar F, Mousavizadeh K, Poormoghim H, Haghighi A, Pashangzadeh S, Mojtabavi N. Progesterone Aggravates Lung Fibrosis in a Mouse Model of Systemic Sclerosis. Front Immunol 2021; 12:742227. [PMID: 34912332 PMCID: PMC8667310 DOI: 10.3389/fimmu.2021.742227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background Gender-related factors have explained the higher prevalence of autoimmune diseases in women. Sex hormones play a key role in the immune system and parenchymal cells function; therefore, these hormones can be important in the pathogenesis of autoimmune diseases as a risk or beneficial factor. Lung fibrosis is the main cause of mortality in systemic sclerosis, a female predominant autoimmune disease. The objective of this study was to examine the effect of progesterone on lung fibrosis in a mouse model of systemic sclerosis. Methods Mice with bleomycin-induced lung fibrosis treated with progesterone subcutaneously for 21 and 28 days. Blood was collected for hormone and cytokine measurement at the end of treatment then, skin and lung tissues were harvested for histological assessment, gene expression, cytokine, hydroxyproline, and gelatinase measurement. Results Trichrome staining and hydroxyproline measurements showed that progesterone treatment increased the content of collagen in fibrotic and normal lung tissues. Progesterone increased α-SMA (P < 0.01), TGF- β (P < 0.05) and decreased MMP9 (P < 0.05) in fibrotic lung tissues. Also progesterone treatment decreased the gene expression of Col1a2 (P <0.05), Ctgf (P <01), End1 (0.001) in bleomycin- injured lung tissues. The serum level of TNF-α was decreased, but the serum level of cortisol was increased by progesterone treatment in fibrotic mice (P< 0.05). Conclusion Our results showed that progesterone aggravates lung fibrosis in a mouse model of systemic sclerosis.
Collapse
Affiliation(s)
- Fatemeh Vafashoar
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Poormoghim
- Scleroderma Study Group, Firuzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Haghighi
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Salar Pashangzadeh
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Hýžďalová M, Procházková J, Strapáčová S, Svržková L, Vacek O, Fedr R, Andrysík Z, Hrubá E, Líbalová H, Kléma J, Topinka J, Mašek J, Souček K, Vondráček J, Machala M. A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype. CHEMOSPHERE 2021; 263:128126. [PMID: 33297115 DOI: 10.1016/j.chemosphere.2020.128126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Andrysík
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
9
|
Xiao J, Chen X, Lu X, Xie M, He B, He S, You S, Chen Q. Progesterone/Org inhibits lung adenocarcinoma cell growth via membrane progesterone receptor alpha. Thorac Cancer 2020; 11:2209-2223. [PMID: 32529777 PMCID: PMC7396388 DOI: 10.1111/1759-7714.13528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this study was to determine whether progesterone could inhibit the growth of lung adenocarcinoma cells via membrane progesterone receptor alpha (mPRα) and elucidate its potential mechanism. The relationship between mPRα expression and the survival prognosis of lung adenocarcinoma patients was studied. METHODS A mPRα knockdown lung adenocarcinoma cell line was constructed and treated with P4 and Org (a derivative of P4 and specific agonist of mPRα). Cell proliferation was assessed using CCK-8 and plate colony formation assays. Protein expression was detected by western blotting. A nude mouse model of lung adenocarcinoma was established to assess the antitumor effect of P4/Org in vivo. RESULTS We initially determined that mPRα could promote the development of lung adenocarcinoma through the following lines of evidence. High expression of mPRα both at the mRNA and protein level was significantly associated with the poor prognosis of lung adenocarcinoma patients. The downregulation of mPRα inhibited the proliferation of lung adenocarcinoma cells. We further showed that mPRα mediates the ability of P4 to inhibit the growth of lung adenocarcinoma cells through the following lines of evidence: P4/Org inhibited the proliferation of lung adenocarcinoma cells; mPRα mediated the ability of P4/Org to inhibit lung adenocarcinoma cell proliferation; mPRα mediated the ability of P4/Org to inhibit the PKA (cAMP-dependent protein kinase)/CREB (cAMP responsive element binding protein) and PKA/β-catenin signaling pathways; and P4/Org inhibited the growth of a lung adenocarcinoma tumor model in vivo. CONCLUSIONS In summary, the results of our study show that progesterone can inhibit lung adenocarcinoma cell growth via mPRα.
Collapse
Affiliation(s)
- Jian Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.,Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Mingxuan Xie
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.,Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bixiu He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.,Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Shuya He
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, China
| | - Shaojin You
- Laboratory of Cancer Experimental Therapy, Histopathology Core, Atlanta Research & Educational Foundation (151F), Atlanta VA Medical Center , Emory University, Decatur, Georgia, USA
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China.,Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Xie M, Lu X, Chen Q. Microarray expression profiling of long noncoding RNAs in the progesterone-treated lung cancer cells. J Gene Med 2020; 22:e3215. [PMID: 32391956 DOI: 10.1002/jgm.3215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The increasing incidence and unique biological features of lung cancer in women has prompted renewed interest in the role of sex hormones in this disease. We previously showed that progesterone (P4) inhibited lung cancer tumorigenesis and progression. Here, we investigated the effects of P4 on expression of long noncoding RNAs (lncRNAs) and target mRNAs in lung cancer cells. METHODS We performed high-throughput microarray and bioinformatics analysis to identify differentially expressed lncRNAs and mRNAs in the untreated and the P4-treated A549 human lung cancer cells. RESULTS In total, 692 lncRNAs and 268 mRNAs were significantly differentially expressed in the P4-treated A549 cells compared to the untreated A549 cells (> 2-fold change, p < 0.05). Of the lncRNAs, 82 and 610 were up-regulated and down-regulated, respectively. Gene ontology, pathway and network analyses showed that many of the mRNAs were involved in the regulation of classical pathways, including Notch signaling. Differential expression of a lncRNA signature composed of NONHSAT000264, FR075921, FR324124, linc-TRIM58, RP1-93H18.7, RP11-120 K9.2, RP11-134F2.2 and NONHSAG024980 was validated by quantitatuve reverse transcriptase-polymerase chain reaction analysis. CONCLUSIONS This is the first report of differentially expressed lncRNAs in the P4-treated lung cancer cells. The results suggest that lncRNAs could serve as potential therapeutic targets for P4-sensitive lung cancer.
Collapse
Affiliation(s)
- Mingxuan Xie
- Department of Geriatrics/Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Lu
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Chen
- Department of Geriatrics/Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Lu X, Guan A, Chen X, Xiao J, Xie M, Yang B, He S, You S, Li W, Chen Q. mPRα mediates P4/Org OD02-0 to improve the sensitivity of lung adenocarcinoma to EGFR-TKIs via the EGFR-SRC-ERK1/2 pathway. Mol Carcinog 2019; 59:179-192. [PMID: 31777985 DOI: 10.1002/mc.23139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations has made EGFR tyrosine kinase inhibitors (EGFR-TKIs) a milestone in the treatment for advanced non-small cell lung cancer (NSCLC). However, patients lacking EGFR mutations are not sensitive to EGFR-TKI treatment and the emergence of secondary resistance poses new challenges for the targeted therapy of lung cancer. In this study, we identified that the expression of membrane progesterone receptor α (mPRα) was associated with EGFR mutations in lung adenocarcinoma patients and subsequently affected the efficacy of EGFR-TKIs. Progesterone (P4) or its derivative Org OD02-0 (Org), which is mediated by mPRα, increases the function of EGFR-TKIs to suppress the proliferation, migration, and invasion of lung adenocarcinoma cells in vitro and in vivo. In addition, the mPRα pathway triggers delayed resistance to EGFR-TKIs. Mechanistic investigations demonstrated that the mPRα pathway can crosstalk with the EGFR pathway by activating nongenomic effects to inhibit the EGFR-SRC-ERK1/2 pathway, thereby promoting antitumorigenic effects. In conclusion, our data describe an essential role for mPRα in improving sensitivity to EGFR-TKIs, thus rationalizing its potential as a therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingxuan Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baishuang Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Shaojin You
- Laboratory of Cancer Experimental Therapy, Histopathology Core, Atlanta Research & Educational Foundation (151F), Atlanta VA Medical Center, Emory University, Decatur, Georgia
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Asavasupreechar T, Chan MSM, Saito R, Miki Y, Boonyaratanakornkit V, Sasano H. Sex steroid metabolism and actions in non-small cell lung carcinoma. J Steroid Biochem Mol Biol 2019; 193:105440. [PMID: 31386890 DOI: 10.1016/j.jsbmb.2019.105440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Despite recent development in targeted therapies, lung cancer still remains the leading cause of cancer death. Therefore, a better understanding of its pathogenesis and progression could contribute to improving the eventual clinical outcome of the patients. Results of recently published several in vitro and clinical studies indicated the possible involvement of sex steroids in both development and progression of non-small cell lung carcinoma (NSCLC). Therefore we summarized the reported clinical relevant information of the sex steroids, their receptors and steroid metabolizing enzymes related to NSCLC in this mini-review. In addition, we also reviewed the potential "endocrine therapy", targeting sex steroid actions and/or metabolism in NSCLC patients.
Collapse
Affiliation(s)
| | - Monica S M Chan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Saito
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
13
|
González-Orozco JC, Hansberg-Pastor V, Valadez-Cosmes P, Nicolas-Ortega W, Bastida-Beristain Y, Fuente-Granada MDL, González-Arenas A, Camacho-Arroyo I. Activation of membrane progesterone receptor-alpha increases proliferation, migration, and invasion of human glioblastoma cells. Mol Cell Endocrinol 2018; 477:81-89. [PMID: 29894708 DOI: 10.1016/j.mce.2018.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Glioblastoma is the most frequent and aggressive brain tumor due to its high capacity to migrate and invade normal brain tissue. The steroid hormone progesterone (P4) contributes to the progression of glioblastoma by promoting proliferation, migration, and cellular invasion through the activation of its intracellular receptor (PR). However, the use of PR antagonist RU486 partially blocks the effects of P4, suggesting the participation of signaling pathways such as those mediated by membrane receptors to P4 (mPRs). Therefore, this study aimed to investigate the effects of mPRα subtype activation on proliferation, migration, and invasion of human glioblastoma cells. METHODS We treated human glioblastoma cell lines U87 and U251 with the specific mPRα agonist Org OD 02-0, and evaluated its effects on cell number, proliferation, migration, and invasion. Additionally, we measured the phosphorylation of the kinases Src and Akt in both cell lines upon Org OD 02-0 treatment. RESULTS Org OD 02-0 (100 nM) augmented the number of U87 and U251 cells by increasing cell proliferation. The treatment with this agonist also increased U87 and U251 cell migration and invasion. Both proliferation and cell invasion decreased when mPRα expression was silenced. Finally, we observed that Org OD 02-0 increased the content of p-Src and p-Akt in both cell lines. CONCLUSION Our data suggest that P4 produces its effects in human glioblastoma progression not only by PR interaction but also through cell signaling pathways activated by mPRα.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México
| | | | - Paulina Valadez-Cosmes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México
| | - Walter Nicolas-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México
| | - Yenifer Bastida-Beristain
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México
| | - Marisol De La Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México.
| |
Collapse
|
14
|
Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells. PLoS One 2018; 13:e0200661. [PMID: 30001393 PMCID: PMC6042760 DOI: 10.1371/journal.pone.0200661] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
The effect of endogenous progesterone and/or exogenous pre- or postnatal progesterone application on lung function of preterm infants is poorly defined. While prenatal progesterone substitution may prevent preterm birth, in vitro and in vivo data suggest a benefit of postnatal progesterone replacement on the incidence and severity of bronchopulmonary dysplasia (BPD). However, the molecular mechanisms responsible for progesterone's effects are undefined. Numerous factors are involved in lung development, airway inflammation, and airway remodeling: the transforming growth factor beta (TGF-β)/mothers against decapentaplegic homolog (Smad) signaling pathway and TGF-β-regulated genes, such as connective tissue growth factor (CTGF), transgelin (TAGLN), and plasminogen activator inhibitor-1 (PAI-1). These processes contribute to the development of BPD. The aim of the present study was to clarify whether progesterone could affect TGF-β1-activated Smad signaling and CTGF/transgelin/PAI-1 expression in lung epithelial cells. The pharmacological effect of progesterone on Smad signaling was investigated using a TGF-β1-inducible luciferase reporter and western blotting analysis of phosphorylated Smad2/3 in A549 lung epithelial cells. The regulation of CTGF, transgelin, and PAI-1 expression by progesterone was studied using a promoter-based luciferase reporter, quantitative real-time PCR, and western blotting in the same cell line. While progesterone alone had no direct effect on Smad signaling in lung epithelial cells, it dose-dependently inhibited TGF-β1-induced Smad3 phosphorylation, as shown by luciferase assays and western blotting analysis. Progesterone also antagonized the TGF-β1/Smad-induced upregulation of CTGF, transgelin, and PAI-1 at the promoter, mRNA, and/or protein levels. The present study highlights possible new molecular mechanisms involving progesterone, including inhibition of TGF-β1-activated Smad signaling and TGF-β1-regulated genes involved in BPD pathogenesis, which are likely to attenuate the development of BPD by inhibiting TGF-β1-mediated airway remodeling. Understanding these mechanisms might help to explain the effects of pre- or postnatal application of progesterone on lung diseases of preterm infants.
Collapse
|
15
|
Sinreih M, Knific T, Thomas P, Frković Grazio S, Rižner TL. Membrane progesterone receptors β and γ have potential as prognostic biomarkers of endometrial cancer. J Steroid Biochem Mol Biol 2018; 178:303-311. [PMID: 29353001 DOI: 10.1016/j.jsbmb.2018.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
Endometrial cancer (EC) is one of the most common malignancies in women worldwide. EC is linked to chronic exposure to estrogens that is unopposed by protective effects of progesterone. Progesterone modulates gene expression via classical nuclear receptors, and has rapid effects via the less characterized membrane-bound progesterone receptors (mPRs) of the progestin and adipoQ receptor (PAQR) family. The presence of mPRs in EC has not been investigated to date. The aims of this study were to examine PAQR7, PAQR8 and PAQR5, which encode for mPRα, mPRβ and mPRγ, respectively, for their expression and localization in EC tissue and adjacent control endometrium. Our results reveal decreased expression of PAQR7 and PAQR8, and unaltered expression of PAQR5 in EC versus control tissue. Expression of PAQR5 was decreased in EC with higher FIGO stage versus stage IA. Immunohistochemistry revealed lower levels of mPRα and mPRβ, but higher levels of mPRγ, in EC versus control tissue. There was greater decrease in mPRβ levels in tumors with lymphovascular invasion. The analysis of the expression data associates higher PAQR5 mRNA and mPRβ protein levels with favorable patient prognosis. Immunohistochemistry showed diverse localizations of mPRs in control and cancer endometrium. In control endometrium, mPRα and mPRβ were localized mostly at the cell membranes, while mPRγ was localized in the cytoplasm and/or nucleus. In cancer endometrium, mPRα and mPRβ were detected at the cell membrane or in the cytoplasm, or both, while mPRγ was only localized in the cytoplasm. Taken together, these results imply that mPRs are involved in EC pathogenesis through effects on the development or progression of cancer. The potential role of mPRβ and mPRγ as prognostic biomarkers needs to be further assessed on a larger number of samples.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Membrane/metabolism
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Humans
- Middle Aged
- Neoplasm Invasiveness
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Austin, USA
| | - Snježana Frković Grazio
- Division of Obstetrics and Gynaecology, Department of Pathology, University Medical Centre, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
16
|
Balassa T, Berta G, Jakab L, Bohonyi N, Szekeres-Bartho J. The effect of the Progesterone-Induced Blocking Factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines. J Reprod Immunol 2017; 125:8-15. [PMID: 29107859 DOI: 10.1016/j.jri.2017.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
In addition to being immunomodulatory, Progesterone-Induced Blocking Factor (PIBF) plays a role in cell cycle regulation and invasion. The full length protein is associated with the pericentriolar satellites and as such, it is crucial for maintaining the integrity of spindle poles during mitosis. Another suggestive evidence for the involvement of PIBF in tumour progression is the fact that the PIBF gene has been identified on chromosome 13 in the region associated with breast cancer susceptibility. Earlier we showed that PIBF differentially regulates the invasiveness of trophoblast and tumour cell lines. The aim of the present study was to further investigate the role of PIBF in tumour development, using primary ovarian- (OC) and primary lung carcinoma (LC) cell cultures, and JEG-3 choriocarcinoma cell line. In the cultured cells PIBF was knocked down by siRNA treatment, and the impact of PIBF deficiency on MMP-9 activity and E-cadherin expression as well as on invasive and migratory capacity of the cells was tested. In conditioned media of PIBF-deficient JEG-3 cells, LC cells and OC cells MMP-9 activity was reduced to 36% 35%, and 65% respectively compared to controls. Though PIBF knock down did not affect migration, in JEG-3 cells, LC primary cells and OC primary cells PIBF deficiency resulted 20%, 50% and 50% decrease of invasion respectively. PIBF silencing resulted in increased E-cadherin expression, suggesting that by down regulating E-cadherin expression, PIBF might interfere with the cell-cell adhesion mechanisms and by increasing MMP activity induced extracellular matrix degradation, facilitates the invasion of tumour cells.
Collapse
Affiliation(s)
- Tímea Balassa
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary; János Szentagothai Research Centre, Pecs, Hungary; Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary; János Szentagothai Research Centre, Pecs, Hungary
| | - László Jakab
- Department of Surgery, Medical School, Pecs University, Pecs, Hungary
| | - Noémi Bohonyi
- Department of Obstetrics and Gynaecology, Pecs University, Pecs, Hungary
| | - Júlia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary; János Szentagothai Research Centre, Pecs, Hungary; MTA-PTE Human Reproduction Research Group, Pecs, Hungary; Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary.
| |
Collapse
|
17
|
Godbole M, Chandrani P, Gardi N, Dhamne H, Patel K, Yadav N, Gupta S, Badwe R, Dutt A. miR-129-2 mediates down-regulation of progesterone receptor in response to progesterone in breast cancer cells. Cancer Biol Ther 2017; 18:801-805. [PMID: 28876975 PMCID: PMC5678702 DOI: 10.1080/15384047.2017.1373216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Hormonal therapy is an important component of first line of treatment for breast cancer. Response to hormonal therapy is influenced by the progesterone receptor (PR)-status of breast cancer patients. However as an early effect, exposure to progesterone decreases expression of PR in breast cancer cells. An understanding of the mechanism underlying down-regulation of PR could help improve response to hormonal therapy. METHODS We performed small RNA sequencing of breast cancer cells for identification of microRNAs targeting PR in response to progesterone treatment. Biochemical approaches were used to validate the findings in breast cancer cells. RESULTS Analysis of small RNA sequencing of four breast cancer cell lines treated with progesterone revealed an up-regulation of miR-129-2 independent of the PR status of the cells. We show that miR-129-2 targets 3'UTR of PR to down-regulate its expression. Furthermore, inhibition of miR-129-2 expression rescues the down-regulation of PR in breast cancer cells. Also, the expression levels of miR-129-2 was observed to be elevated in patients with low expression of PR in the TCGA cohort (n = 359). CONCLUSION miR-129-2 mediates down-regulation of PR in breast cancer cells in response to progesterone, while anti-miR-129-2 could potentiate PR expression levels among patients with inadequate PR levels. Thus, modulation of activity of miR-129-2 could stabilize PR expression and potentially improve response to hormonal therapy under adjuvant or neo-adjuvant settings.
Collapse
Affiliation(s)
- Mukul Godbole
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
- Integrated Cancer Genomics Laboratory, Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Maharashtra, Mumbai, India
| | - Pratik Chandrani
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
- Integrated Cancer Genomics Laboratory, Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Maharashtra, Mumbai, India
| | - Nilesh Gardi
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
- Integrated Cancer Genomics Laboratory, Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Maharashtra, Mumbai, India
| | - Hemant Dhamne
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
| | - Kuldeep Patel
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
| | - Neelima Yadav
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
- Integrated Cancer Genomics Laboratory, Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Maharashtra, Mumbai, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Maharashtra, Mumbai, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Maharashtra, Mumbai, India
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Maharashtra, Navi Mumbai, India
- Integrated Cancer Genomics Laboratory, Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Maharashtra, Mumbai, India
| |
Collapse
|
18
|
Jo SJ, Park PG, Cha HR, Ahn SG, Kim MJ, Kim H, Koo JS, Jeong J, Park JH, Dong SM, Lee JM. Cellular inhibitor of apoptosis protein 2 promotes the epithelial-mesenchymal transition in triple-negative breast cancer cells through activation of the AKT signaling pathway. Oncotarget 2017; 8:78781-78795. [PMID: 29108265 PMCID: PMC5667998 DOI: 10.18632/oncotarget.20227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents approximately 10–17% of all breast cancers, and patients with TNBC show a poorer short-term prognosis than patients with other types of breast cancer. TNBCs also have a higher tendency for early distant metastasis and cancer recurrence due to induction of the epithelial-mesenchymal transition (EMT). Several recent reports have suggested that inhibitor of apoptosis (IAP) proteins function as regulators of the EMT. However, the roles of these proteins in TNBC are not clear. Accordingly, we investigated the roles of cIAP2 in TNBC. Among eight IAP genes, only cIAP2 was upregulated in TNBC cells compared with that in other breast cancer subtypes. Analysis of TMAs revealed that expression of cIAP2 was upregulated in TNBCs. In vitro studies showed that cIAP2 was highly expressed in TNBC cells compared with that in other types of breast cancer cells. Furthermore, silencing of cIAP2 in TNBC cells induced mesenchymal-epithelial transition (MET)-like processes and subsequently suppressed the migratory ability and invasion capacity of the cells by regulation of Snail through the AKT signaling pathway. In contrast, ectopic expression of cIAP2 in luminal-type breast cancer cells induced activation of the AKT signaling pathway. These results collectively indicated that cIAP2 regulated the EMT in TNBC via activation of the AKT signaling pathway, contributing to metastasis in TNBC. Our study proposes a novel mechanism through which cIAP2 regulates the EMT involving AKT signaling in TNBC cells. We suggest that cIAP2 may be an attractive candidate molecule for the development of targeted therapeutics in the future.
Collapse
Affiliation(s)
- Su Ji Jo
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyemi Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Jeong
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,IMK Bio-Convergence R&D Center, International Vaccine Institute, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Godbole M, Tiwary K, Badwe R, Gupta S, Dutt A. Progesterone suppresses the invasion and migration of breast cancer cells irrespective of their progesterone receptor status - a short report. Cell Oncol (Dordr) 2017; 40:411-417. [PMID: 28653288 PMCID: PMC5537311 DOI: 10.1007/s13402-017-0330-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Pre-operative progesterone treatment of breast cancer has been shown to confer survival benefits to patients independent of their progesterone receptor (PR) status. The underlying mechanism and the question whether such an effect can also be observed in PR negative breast cancer cells remain to be resolved. METHODS We performed proteome profiling of PR-positive and PR-negative breast cancer cells in response to progesterone using a phospho-kinase array platform. Western blotting was used to validate the results. Cell-based phenotypic assays were conducted using PR-positive and PR-negative breast cancer cells to assess the effect of progesterone. RESULTS We found that progesterone induces de-phosphorylation of 12 out of 43 kinases tested, which are mostly involved in cellular invasion and migration regulation. Consistent with this observation, we found through cell-based phenotypic assays that progesterone inhibits the invasion and migration of breast cancer cells independent of their PR status. CONCLUSION Our results indicate that progesterone can inhibit breast cancer cell invasion and migration mediated by the de-phosphorylation of kinases. This inhibition appears to be independent of the PR status of the breast cancer cells. In a broader context, our study may provide a basis for an association between progesterone treatment and recurrence reduction in breast cancer patients, thereby providing a lead for modelling a randomized in vitro study.
Collapse
Affiliation(s)
- Mukul Godbole
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Kanishka Tiwary
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Centre, Tata Memorial Hospital, Mumbai, 400012, India.
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, 400012, India.
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education In Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India.
| |
Collapse
|
20
|
Goncharov AI, Maslakova AA, Polikarpova AV, Bulanova EA, Guseva AA, Morozov IA, Rubtsov PM, Smirnova OV, Shchelkunova TA. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells. J Steroid Biochem Mol Biol 2017; 165:293-304. [PMID: 27449817 DOI: 10.1016/j.jsbmb.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/03/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Aitsana A Maslakova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Anna V Polikarpova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Elena A Bulanova
- ChemRar High-Tech Center, 2a-1 Rabochaya St., Khimki, Moscow Oblast 141400 Russia
| | - Alexandra A Guseva
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991 Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991 Russia
| | - Olga V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Tatiana A Shchelkunova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia.
| |
Collapse
|
21
|
|
22
|
Abstract
Experimental and population-based evidence has been steadily accumulating that steroid hormones are fundamentally involved in the biology of the lung. Both estrogen and progesterone receptors are present in normal and malignant lung tissue, and the reproductive hormones that bind these receptors have a role in lung development, lung inflammation, and lung cancer. The estrogen receptor-β (ER-β) was discovered in the 1990s as a novel form of ER that is transcribed from a gene distinct from ER-α, the receptor previously isolated from breast tissue. Interestingly, ER-β is the predominate ER expressed in normal and malignant lung tissue, whereas inflammatory cells that infiltrate the lung are known to express both ER-α and ER-β. Although there is evidence from animal models for the preferential effects of ER-β in the lungs of females, human lung tumors from males often contain comparable numbers of ER-β-positive cells and male-derived lung cancer cell lines respond to estrogens. Lung tumors from both males and females also express CYP19 (aromatase), the rate-limiting enzyme in estrogen synthesis that converts testosterone to estrone and β-estradiol. Thus, testosterone acts as a precursor for local estrogen production within lung tumors, independent of reproductive organs. This review discusses the recent literature findings about the biology of the ERs, aromatase, and the progesterone receptor in lung cancer and highlights the ongoing clinical trials and future therapeutic implications of these findings.
Collapse
Affiliation(s)
- Jill M Siegfried
- University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455-0217.
| |
Collapse
|
23
|
Abstract
It is becoming increasingly clear that steroid hormones are involved in the biology of many organs outside the reproductive system. Evidence has been accumulating since the mid 1990s that the lung contains receptors for both estrogen and progesterone and that these hormones have some role in lung development, pulmonary inflammation, and lung cancer. The estrogen receptor β (ERβ) is the major ER expressed in lung tissues, while inflammatory cells capable of infiltrating the lung are reported to express both ERα and ERβ. Although there is evidence in animals of preferential effects of ERβ in the lungs of females, human lung tumors from males also contain ERβ-positive cells and express aromatase, the enzyme that converts testosterone to estrogens. This review will discuss current literature findings on the role of the ERs and the progesterone receptor (PR), as well CYP19 (aromatase), the rate-limiting enzyme in the synthesis of estrogen, in lung cancer.
Collapse
Affiliation(s)
- Jill M Siegfried
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA; Current address: Department of Pharmacology, University of Minnesota, Minneapolis, MN.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|