1
|
Saha G, Ghosh MK. The key vulnerabilities and therapeutic opportunities in the USP7-p53/MDM2 axis in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119908. [PMID: 39880128 DOI: 10.1016/j.bbamcr.2025.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The MDM2/MDMX-p53 circuitry is essential for controlling the development, apoptosis, immune response, angiogenesis, senescence, cell cycle progression, and proliferation of cancer cells. Research has demonstrated that USP7 exerts strong control over p53, MDM2, and MDMX stability, with multiple mediator proteins influencing the USP7-p53-MDM2/MDMX axis to modify p53 expression level and function. In cases where p53 is of the wild type (Wt-p53) in tumors, inhibiting USP7 promotes the degradation of MDM2/MDMX, leading to the activation of p53 signaling. This, in turn, results in cell cycle arrest and apoptosis. Hence, targeting USP7 presents a promising avenue for cancer therapy. Targeting USP7 in tumors that harbor mutant p53 (Mut-p53) is unlikely and remains largely unexplored due to the existence of numerous USP7 targets that function independently of p53. Considering that Mut-p53 exhibits resistance to degradation by MDM2 and other E3 ligases and also shares the same signaling pathways as Wt-p53, it is reasonable to suggest that USP7 may play a role in stabilizing Mut-p53. However, there is still much to be done in this area. If the hypothesis is correct, USP7 may be a potent target in cancers containing both Wt-p53 and Mut-p53.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
3
|
Liu X, Lu R, Yang Q, He J, Huang C, Cao Y, Zhou Z, Huang J, Li L, Chen R, Wang Y, Huang J, Xie R, Zhao X, Yu J. USP7 reduces the level of nuclear DICER, impairing DNA damage response and promoting cancer progression. Mol Oncol 2024; 18:170-189. [PMID: 37867415 PMCID: PMC10766207 DOI: 10.1002/1878-0261.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Endoribonuclease DICER is an RNase III enzyme that mainly processes microRNAs in the cytoplasm but also participates in nuclear functions such as chromatin remodelling, epigenetic modification and DNA damage repair. The expression of nuclear DICER is low in most human cancers, suggesting a tight regulation mechanism that is not well understood. Here, we found that ubiquitin carboxyl-terminal hydrolase 7 (USP7), a deubiquitinase, bounded to DICER and reduced its nuclear protein level by promoting its ubiquitination and degradation through MDM2, a newly identified E3 ubiquitin-protein ligase for DICER. This USP7-MDM2-DICER axis impaired histone γ-H2AX signalling and the recruitment of DNA damage response (DDR) factors, possibly by influencing the processing of small DDR noncoding RNAs. We also showed that this negative regulation of DICER by USP7 via MDM2 was relevant to human tumours using cellular and clinical data. Our findings revealed a new way to understand the role of DICER in malignant tumour development and may offer new insights into the diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Qianqian Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jianfeng He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Ruiyu Xie
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauChina
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
4
|
Carreira LD, Oliveira RI, Moreira VM, Salvador JAR. Ubiquitin-specific protease 7 (USP7): an emerging drug target for cancer treatment. Expert Opin Ther Targets 2023; 27:1043-1058. [PMID: 37789645 DOI: 10.1080/14728222.2023.2266571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Ubiquitin-specific protease 7 (USP7) also known as herpesvirus-associated ubiquitin-specific protease (HAUSP) is a well-characterized cysteine protease that belongs to the largest subfamily of deubiquitinating enzymes (DUBs). It is involved in multiple signaling pathways, some of them dysregulated in malignant tumors. USP7 inhibition can lead to cell growth arrest and apoptosis through inhibition of tumor promoters and stabilization of tumor suppressors, making it a promising druggable target for cancer therapy. AREAS COVERED This review covers the structure of USP7, its function in multiple signaling pathways and relevance in cancer, as well as recent advances and future perspectives in the development of USP7 inhibitors for cancer therapy. EXPERT OPINION Literature reports display the multiple antitumor activities of USP7 inhibitors, both in vitro and in vivo. Nonetheless, none have entered clinical trials so far, highlighting the need to delve into a deeper understanding of USP7 binding sites and the development of more accurate compound screening methods. Despite these challenges, further development of USP7 inhibitors is promising as a valuable new approach for cancer treatment, including the ability to address chemoresistance.
Collapse
Affiliation(s)
- Laura D Carreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rita I Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vânia M Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Morretta E, Brullo C, Belvedere R, Petrella A, Spallarossa A, Monti MC. Targeting USP-7 by a Novel Fluorinated 5-Pyrazolyl-Urea Derivative. Int J Mol Sci 2023; 24:ijms24119200. [PMID: 37298148 DOI: 10.3390/ijms24119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The impact of innovative technologies on the target discovery has been employed here to characterize the interactome of STIRUR 41, a promising 3-fluoro-phenyl-5-pyrazolyl-urea derivative endowed with anti-cancer activity, on neuroblastoma-related cells. A drug affinity responsive target stability-based proteomic platform has been optimized to elucidate the molecular mechanism at the basis of STIRUR 41 action, together with immunoblotting analysis and in silico molecular docking. Ubiquitin Specific Protease 7 (USP-7), one of the deubiquitinating enzymes which protect substrate proteins from proteasomal degradation, has been identified as the most affine STIRUR 41 target. As further demonstrated by in vitro and in-cell assays, STIRUR 41 was able to inhibit both the enzymatic activity of USP-7 and its expression levels in neuroblastoma-related cells, thus laying an encouraging base for the blockade of USP-7 downstream signaling.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy
| | - Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
6
|
Chen P, Tang S, Li M, Wang D, Chen C, Qiu Y, Fang Z, Zhang H, Gao H, Weng H, Hu K, Lin J, Lin Q, Tan Y, Li S, Chen J, Chen L, Chen X. Single-Cell and Spatial Transcriptomics Decodes Wharton's Jelly-Derived Mesenchymal Stem Cells Heterogeneity and a Subpopulation with Wound Repair Signatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204786. [PMID: 36504438 PMCID: PMC9896049 DOI: 10.1002/advs.202204786] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The highly heterogeneous characteristics of Wharton's jelly mesenchymal stem cells (WJ-MSCs) may be responsible for the poor clinical outcomes and poor reproducibility of treatments based on WJ-MSCs. Exploration of WJ-MSC heterogeneity with multimodal single-cell technologies will aid in establishing accurate MSC subtyping and developing screening protocols for dominant functional subpopulations. Here, the characteristics of WJ-MSCs are systematically analyzed by single cell and spatial transcriptome sequencing. Single-cell transcriptomics analysis identifies four WJ-MSC subpopulations, namely proliferative_MSCs, niche-supporting_MSCs, metabolism-related_MSCs and biofunctional-type_MSCs. Furthermore, the transcriptome, cellular heterogeneity, and cell-state trajectories of these subpopulations are characterized. Intriguingly, the biofunctional-type MSCs (marked by S100A9, CD29, and CD142) selected in this study exhibit promising wound repair properties in vitro and in vivo. Finally, by integrating omics data, it has been found that the S100A9+ CD29+ CD142+ subpopulation is more enriched in the fetal segment of the umbilical cord, suggesting that this subpopulation deriving from the fetal segment may have potential for developing into an ideal therapeutic agent for wound healing. Overall, the presented study comprehensively maps the heterogeneity of WJ-MSCs and provides an essential resource for future development of WJ-MSC-based drugs.
Collapse
|
7
|
Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. iScience 2022; 26:105885. [PMID: 36654858 PMCID: PMC9840934 DOI: 10.1016/j.isci.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The limited intrinsic regrowth capacity of corticospinal axons impedes functional recovery after cortical stroke. Although the mammalian target of rapamycin (mTOR) and p53 pathways have been identified as the key intrinsic pathways regulating CNS axon regrowth, little is known about the key upstream regulatory mechanism by which these two major pathways control CNS axon regrowth. By screening genes that regulate ubiquitin-mediated degradation of the p53 proteins in mice, we found that ubiquitination factor E4B (UBE4B) represses axonal regrowth in retinal ganglion cells and corticospinal neurons. We found that axonal regrowth induced by UBE4B depletion depended on the cooperative activation of p53 and mTOR. Importantly, overexpression of UbV.E4B, a competitive inhibitor of UBE4B, in corticospinal neurons promoted corticospinal axon sprouting and facilitated the recovery of corticospinal axon-dependent function in a cortical stroke model. Thus, our findings provide a translatable strategy for restoring corticospinal tract-dependent functions after cortical stroke.
Collapse
|
8
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
9
|
Saha G, Sarkar S, Mohanta PS, Kumar K, Chakrabarti S, Basu M, Ghosh MK. USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma. Oncogene 2022; 41:5061-5075. [PMID: 36243803 DOI: 10.1038/s41388-022-02486-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the 'USP7-Mdm2-p53' axis. However, in cancers without functional p53, USP7-dependent apoptosis is induced through many other alternative pathways. Here, we have identified another critical p53 independent path active under USP7 to regulate apoptosis. Proteomics analysis identifies XIAP as a potential target of USP7-dependent deubiquitination. GSEA analysis revealed up-regulation of apoptosis signalling upon USP7 inhibition associated with XIAP down-regulation. Modulation of USP7 expression and activity in multiple cancer cell lines showed that USP7 deubiquitinates XIAP to inhibit apoptosis in a caspase-dependent pathway, and the combinatorial inhibition of USP7 and XIAP induces apoptosis in vitro and in vivo. Immunohistochemical staining revealed that grade-wise accumulation of USP7 correlated with an elevated level of XIAP in glioma tissue. This is the first report on the identification and validation of XIAP as a novel substrate of USP7 and together, they involve in the empowerment of the tumorigenic potential of cancer cells by inhibiting apoptosis.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sibani Sarkar
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Partha S Mohanta
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Krishna Kumar
- Structural Biology & Bioinformatics Division, CSIR-IICB, TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Saikat Chakrabarti
- Structural Biology & Bioinformatics Division, CSIR-IICB, TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, South 24 Paraganas, PIN -743372, Dakshin Barasat, West Bengal, India
| | - Mrinal K Ghosh
- Cancer Biology & Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
10
|
Nie L, Wang C, Liu X, Teng H, Li S, Huang M, Feng X, Pei G, Hang Q, Zhao Z, Gan B, Ma L, Chen J. USP7 substrates identified by proteomics analysis reveal the specificity of USP7. Genes Dev 2022; 36:1016-1030. [PMID: 36302555 PMCID: PMC9732911 DOI: 10.1101/gad.349848.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;,Human Genetics Center, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Zhou F, Lu J, Jin W, Li Z, Xu D, Gu L. The role of USP51 in attenuating chemosensitivity of lung cancer cells to cisplatin by regulating DNA damage response. Biotechnol Appl Biochem 2022; 70:634-644. [PMID: 35856403 DOI: 10.1002/bab.2386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Lung cancer is the most frequent type of cancer affecting both men and women globally, and it is associated with a high mortality rate. It is clinically treated with cisplatin, a platinum-based drug that works by generating DNA lesions, which activates DNA damage response and induces cell death. However, chemoresistance by cancer cells limits the clinical usefulness of cisplatin as an anticancer drug. Here, we uncovered a role of ubiquitin-specific protease USP51 in the chemosensitivity of lung cancer cells to cisplatin by regulating DNA damage response. USP51 was more upregulated in lung cancer tissues of chemotherapy-resistant patients than those of chemotherapy-sensitive patients with adjacent, non-tumor tissues. USP51 overexpression in lung cancer cells in vitro reduced γ-H2AX formation and promoted CHK1 phosphorylation, whereas USP51 knockdown showed opposite effects, indicating that USP51 played an important role in promoting DNA damage repair. Finally, USP51 knockdown weakened cisplatin resistance in A549/DDP cells and significantly suppressed tumor growth in vivo, suggesting that a USP51 inhibitor combined with cisplatin may be considered as an effective treatment strategy to eliminate drug-resistant lung cancer cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Respiratory and Critical Care Medicine, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| | - Jinchang Lu
- Department of Respiratory and Critical Care Medicine, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| | - Wei Jin
- Department of Thoracic Surgery, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| | - Zhanbo Li
- Department of Respiratory and Critical Care Medicine, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| | - Donghui Xu
- Department of Respiratory and Critical Care Medicine, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| | - Liang Gu
- Department of Respiratory and Critical Care Medicine, Qingpu Branch of Zhongshan Hospital affiliated to Fudan University, Shanghai, 201700, China
| |
Collapse
|
12
|
Li B, Wang B. USP7 Enables Immune Escape of Glioma Cells by Regulating PD-L1 Expression. Immunol Invest 2022; 51:1921-1937. [PMID: 35852892 DOI: 10.1080/08820139.2022.2083972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Bin Wang
- Department of Interventional Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, P.R. China
| |
Collapse
|
13
|
Ubiquitin and Ubiquitin-like Proteins in Cancer, Neurodegenerative Disorders, and Heart Diseases. Int J Mol Sci 2022; 23:ijms23095053. [PMID: 35563444 PMCID: PMC9105348 DOI: 10.3390/ijms23095053] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023] Open
Abstract
Post-translational modification (PTM) is an essential mechanism for enhancing the functional diversity of proteins and adjusting their signaling networks. The reversible conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins is among the most prevalent PTM, which modulates various cellular and physiological processes by altering the activity, stability, localization, trafficking, or interaction networks of its target molecules. The Ub/Ubl modification is tightly regulated as a multi-step enzymatic process by enzymes specific to this family. There is growing evidence that the dysregulation of Ub/Ubl modifications is associated with various diseases, providing new targets for drug development. In this review, we summarize the recent progress in understanding the roles and therapeutic targets of the Ub and Ubl systems in the onset and progression of human diseases, including cancer, neurodegenerative disorders, and heart diseases.
Collapse
|
14
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
15
|
Kisaï K, Koji S. Prognostic role of USP7 expression in cancer patients: A systematic review and meta-analysis. Pathol Res Pract 2021; 227:153621. [PMID: 34562828 DOI: 10.1016/j.prp.2021.153621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Numerous studies have examined the prognostic value of ubiquitin-specific protease 7 (USP7) in cancer, but the results remain controversial. Differences in assessment assays (mRNA/protein) used could be a potential confounding factor. Thus, we extracted studies that measured the protein expression and performed a meta-analysis to assess the prognostic role of USP7 expression in cancer and to identify clinicopathological features associated with USP7 expression. METHODS PubMed, Scopus, Web of Science Core Collection, Wiley Online Library, and Google Scholar were searched from inception to July 2020. Pooled hazard ratios were calculated to evaluate the association between USP7 expression and overall survival (OS). In addition, pooled odds ratios were calculated to identify clinicopathological features associated with USP7 expression. RESULTS Eight studies in China were included in our meta-analysis, which had a total of 1192 patients and assessed five types of cancer. The pooled results revealed that a high expression of USP7 was associated with poor OS, especially in epithelial ovarian cancer (EOC). Moreover, USP7 expression was increased in patients with tumour-node-metastasis (TNM) stages III-IV, poor pathological grade, and positive lymph node metastasis. For patients with EOC, a high USP7 expression positively correlated with lymph node metastasis. CONCLUSION A high USP7 expression may promote cancer progression and predict unfavourable prognosis of cancer patients, especially those with EOC. Our findings suggest that USP7 inhibitors might be promising therapeutics for cancer patients with such characteristics.
Collapse
Affiliation(s)
- Kenta Kisaï
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shinsaku Koji
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
16
|
Pan T, Li X, Li Y, Tao Z, Yao H, Wu Y, Chen G, Zhang K, Zhou Y, Huang Y. USP7 inhibition induces apoptosis in glioblastoma by enhancing ubiquitination of ARF4. Cancer Cell Int 2021; 21:508. [PMID: 34556124 PMCID: PMC8461901 DOI: 10.1186/s12935-021-02208-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastomas (GBMs) are grade IV central nervous system tumors characterized by a poor prognosis and a short median overall survival. Effective induction of GBM cell death is difficult because the GBM cell population is genetically unstable, resistant to chemotherapy and highly angiogenic. In recent studies, ubiquitin-specific protease 7 (USP7) is shown to scavenge ubiquitin from oncogenic protein substrates, so effective inhibition of USP7 may be a potential key treatment for GBM. Methods Immunohistochemistry and western blotting were used to detect the expression of USP7 in GBM tissues. In vitro apoptosis assay of USP7 inhibition was performed by western blotting, immunofluorescence, and flow cytometry. Anti-apoptotic substrates of USP7 were defined by Co-IP and TMT proteomics. Western blotting and IP were used to verify the relationship between USP7 and its substrate. In an in vivo experiment using an intracranial xenograft model in nude mice was constructed to assess the therapeutic effect of target USP7. Results Immunohistochemistry and western blotting confirmed that USP7 was significantly upregulated in glioblastoma samples. In in vitro experiments, inhibition of USP7 in GBM induced significant apoptosis. Co-IP and TMT proteomics identified a key anti-apoptotic substrate of USP7, ADP-ribosylation factor 4 (ARF4). Western blotting and IP confirmed that USP7 interacted directly with ARF4 and catalyzed the removal of the K48-linked polyubiquitinated chain that binded to ARF4. In addition, in vivo experiments revealed that USP7 inhibition significantly suppressed tumor growth and promoted the expression of apoptotic genes. Conclusions Targeted inhibition of USP7 enhances the ubiquitination of ARF4 and ultimately mediates the apoptosis of GBM cells. In a clinical sense, P5091 as a novel specific inhibitor of USP7 may be an effective approach for the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02208-z.
Collapse
Affiliation(s)
- Tingzheng Pan
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Yanyan Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Zhennan Tao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Hui Yao
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China.
| | - Yulun Huang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, People's Republic of China. .,Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Jiangsu, Suzhou, People's Republic of China.
| |
Collapse
|
17
|
Harakandi C, Nininahazwe L, Xu H, Liu B, He C, Zheng YC, Zhang H. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy. Bioorg Chem 2021; 116:105273. [PMID: 34474304 DOI: 10.1016/j.bioorg.2021.105273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/29/2023]
Abstract
The ubiquitin-specific protease 7 (USP7)-murine double minute 2 (MDM2)-p53 network plays an important role in the regulation of p53, a tumor suppressor which plays critical roles in regulating cell growth, proliferation, cell cycle progression, apoptosis and immune response. The overexpression of USP7 and MDM2 in human cancers contributes to cancer initiation and progression, and their inhibition reactivates p53 signalings and causes cell cycle arrest and apoptosis. Herein, the current state of pharmacological characterization, potential applications in cancer treatment and mechanism of action of small molecules used to target and inhibit MDM2 and USP7 proteins are highlighted, along with the outcomes in clinical and preclinical settings. Moreover, challenges and advantages of these strategies, as well as perspectives in USP7-MDM2-p53 field are analyzed in detail. The investigation and application of MDM2 and USP7 inhibitors will deepen our understanding of the function of USP7-MDM2-p53 network, and feed in the development of effective and safe cancer therapies where USP7-MDM2-p53 network is implicated.
Collapse
Affiliation(s)
- Chrisanta Harakandi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lauraine Nininahazwe
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bingrui Liu
- College of Public Health, North China University of Science and Technology, Tangshan 063503, China
| | - Chenghua He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
18
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Lu J, Zhao H, Yu C, Kang Y, Yang X. Targeting Ubiquitin-Specific Protease 7 (USP7) in Cancer: A New Insight to Overcome Drug Resistance. Front Pharmacol 2021; 12:648491. [PMID: 33967786 PMCID: PMC8101550 DOI: 10.3389/fphar.2021.648491] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
Chemoresistance is one of the leading causes for the failure of tumor treatment. Hence, it is necessary to study further and understand the potential mechanisms of tumor resistance to design and develop novel anti-tumor drugs. Post-translational modifications are critical for proteins’ function under physiological and pathological conditions, among which ubiquitination is the most common one. The protein degradation process mediated by the ubiquitin-proteasome system is the most well-known function of ubiquitination modification. However, ubiquitination also participates in the regulation of many other biological processes, such as protein trafficking and protein-protein interaction. A group of proteins named deubiquitinases can hydrolyze the isopeptide bond and disassemble the ubiquitin-protein conjugates, thus preventing substrate proteins form degradation or other outcomes. Ubiquitin-specific protease 7 (USP7) is one of the most extensively studied deubiquitinases. USP7 exhibits a high expression signature in various malignant tumors, and increased USP7 expression often indicates the poor tumor prognosis, suggesting that USP7 is a marker of tumor prognosis and a potential drug target for anti-tumor therapy. In this review, we first discussed the structure and function of USP7. Further, we summarized the underlying mechanisms by which tumor cells develop resistance to anti-tumor therapies, provided theoretical support for targeting USP7 to overcome drug resistance, and some inspiration for the design and development of USP7 inhibitors.
Collapse
Affiliation(s)
- Jiabin Lu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - He Zhao
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Caini Yu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuanyuan Kang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Gao L, Zhu D, Wang Q, Bao Z, Yin S, Qiang H, Wieland H, Zhang J, Teichmann A, Jia J. Proteome Analysis of USP7 Substrates Revealed Its Role in Melanoma Through PI3K/Akt/FOXO and AMPK Pathways. Front Oncol 2021; 11:650165. [PMID: 33869052 PMCID: PMC8044529 DOI: 10.3389/fonc.2021.650165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-specific protease 7 (USP7), as a deubiquitinating enzyme, plays an important role in tumor progression by various mechanisms and serves as a potential therapeutic target. However, the functional role of USP7 in melanoma remains elusive. Here, we found that USP7 is overexpressed in human melanoma by tissue microarray. We performed TMT-based quantitative proteomic analysis to evaluate the A375 human melanoma cells treated with siRNA of USP7. Our data revealed specific proteins as well as multiple pathways and processes that are impacted by USP7. We found that the phosphatidylinositol-3-kinases/Akt (PI3K-Akt), forkhead box O (FOXO), and AMP-activated protein kinase (AMPK) signaling pathways may be closely related to USP7 expression in melanoma. Moreover, knockdown of USP7 in A375 cells, particularly USP7 knockout using CRISPR-Cas9, verified that USP7 regulates cell proliferation in vivo and in vitro. The results showed that inhibition of USP7 increases expression of the AMPK beta (PRKAB1), caspase 7(CASP7), and protein phosphatase 2 subunit B R3 isoform (PPP2R3A), while attenuating expression of C subunit of vacuolar ATPase (ATP6V0C), and peroxisomal biogenesis factor 11 beta (PEX11B). In summary, these findings reveal an important role of USP7 in regulating melanoma progression via PI3K/Akt/FOXO and AMPK signaling pathways and implicate USP7 as an attractive anticancer target for melanoma.
Collapse
Affiliation(s)
- Lanyang Gao
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Danli Zhu
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin Wang
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Bao
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Nervous System Disease and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiyan Qiang
- Department of Outpatient, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Heinrich Wieland
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinyue Zhang
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Alexander Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Pawlak A, Bajzert J, Bugiel K, Hernández Suárez B, Kutkowska J, Rapak A, Hildebrand W, Obmińska-Mrukowicz B, Freire R, Smits VAJ. Ubiquitin-specific protease 7 as a potential therapeutic target in dogs with hematopoietic malignancies. J Vet Intern Med 2021; 35:1041-1051. [PMID: 33650720 PMCID: PMC7995420 DOI: 10.1111/jvim.16082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ubiquitin‐specific protease 7 (USP7) belongs to the group of deubiquitinating enzymes (DUBs), which remove ubiquitin which controls various cellular processes such as chromosome segregation, DNA repair, gene expression, protein localization, kinase activity, protein degradation, cell cycle progression, and apoptosis. It is critical for several important functions in the cell, and therefore dysregulation of USP7 can contribute to tumorigenesis. Objectives Alterations in the USP7 protein have been identified in various malignancies of humans. Our aim was to examine whether USP7 could be a potential therapeutic target in hematopoietic cancers of dogs. Methods The expression level of USP7 in lymphocytes from healthy dogs and canine lymphoma cells was determined, and the effect of USP7 inhibition on the vital functions of canine cancer cells was examined. Results We showed that USP7 was overexpressed in lymphomas in dogs. The USP7 inhibitor P5091 has selective cytotoxic activity in canine lymphoma and leukemia cell lines. Our results indicate that inhibition of USP7 leads to a disruption of cell cycle progression, and triggers DNA damage and apoptosis. The observed proapoptotic effect of the USP7 inhibitor most likely is not dependent on the p53 pathway. Conclusions and Clinical Importance Our results suggest that USP7 could be explored as a potential therapeutic target in dogs with lymphoma. The effectiveness of USP7 inhibition in malignant cells is predicted to be independent of their p53 status.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Katarzyna Bugiel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Beatriz Hernández Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Poland
| | | | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, FIISC, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, FIISC, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Shin SB, Kim CH, Jang HR, Yim H. Combination of Inhibitors of USP7 and PLK1 has a Strong Synergism against Paclitaxel Resistance. Int J Mol Sci 2020; 21:E8629. [PMID: 33207738 PMCID: PMC7697005 DOI: 10.3390/ijms21228629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
USP7 is a promising target for the development of cancer treatments because of its high expression and the critical functions of its substrates in carcinogenesis of several different carcinomas. Here, we demonstrated the effectiveness of targeting USP7 in advanced malignant cells showing high levels of USP7, especially in taxane-resistant cancer. USP7 knockdown effectively induced cell death in several cancer cells of lung, prostate, and cervix. Depletion of USP7 induced multiple spindle pole formation in mitosis, and, consequently, resulted in mitotic catastrophe. When USP7 was blocked in the paclitaxel-resistant lung cancer NCI-H460TXR cells, which has resistance to mitotic catastrophe, NCI-H460TXR cells underwent apoptosis effectively. Furthermore, combination treatment with the mitotic kinase PLK1 inhibitor volasertib and the USP7 inhibitor P22077 showed a strong synergism through down-regulation of MDR1/ABCB1 in paclitaxel-resistant lung cancer. Therefore, we suggest USP7 is a promising target for cancer therapy, and combination therapy with inhibitors of PLK1 and USP7 may be valuable for treating paclitaxel-resistant cancers, because of their strong synergism.
Collapse
Affiliation(s)
| | | | | | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea; (S.-B.S.); (C.-H.K.); (H.-R.J.)
| |
Collapse
|
23
|
The emerging nature of Ubiquitin-specific protease 7 (USP7): a new target in cancer therapy. Drug Discov Today 2020; 26:490-502. [PMID: 33157193 DOI: 10.1016/j.drudis.2020.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that removes the ubiquitin (Ub) protein and spares substrates from degradation. Given its regulation of proteins involved in several cellular processes, abnormal expression and activity of USP7 are associated with several types of disease, including cancer. In this review, we summarize the developments in our understanding of USP7 over the past 5 years, focusing on its role in related cancers. Furthermore, we discuss clinical studies of USP7, including in vivo and pharmacological studies, as well as the development of USP7 inhibitors. A comprehensive understanding of USP7 will expand our knowledge of the structure and function of USP7-mediated signaling and shed light on drug discovery for different diseases in which USP7 is implicated.
Collapse
|
24
|
Wang L, Li M, Sha B, Hu X, Sun Y, Zhu M, Xu Y, Li P, Wang Y, Guo Y, Li J, Shi J, Li P, Hu T, Chen P. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma. Cell Prolif 2020; 54:e12919. [PMID: 33129231 PMCID: PMC7791184 DOI: 10.1111/cpr.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Targeting the deubiquitinases (DUBs) has become a promising avenue for anti-cancer drug development. However, the effect and mechanism of pan-DUB inhibitor, PR-619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated. MATERIALS AND METHODS The effect of PR-619 on ESCC cell growth and cell cycle was evaluated by CCK-8 and PI staining. Annexin V-FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo-3AM fluorescence. The accumulation of ubi-proteins and the expression of the endoplasmic reticulum (ER) stress-related protein and CaMKKβ-AMPK signalling were determined by immunoblotting. RESULTS PR-619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR-619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4-Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+ -CaMKKβ-AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR-41, could reduce the accumulation of ubi-proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR-619-treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR-619. CONCLUSIONS Our findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR-619) and imply that targeting DUBs may be a potential anti-ESCC strategy.
Collapse
Affiliation(s)
- Longhao Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanyu Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingda Zhu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pingping Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yating Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Guo
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Bojagora A, Saridakis V. USP7 manipulation by viral proteins. Virus Res 2020; 286:198076. [DOI: 10.1016/j.virusres.2020.198076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/14/2020] [Accepted: 06/24/2020] [Indexed: 01/27/2023]
|
26
|
Liu S, Zhou X, Li M, Zhao W, Zhou S, Cheng K, Xu Q, Chen C, Wen X, Sun H, Yuan H. Discovery of Ubiquitin-Specific Protease 7 (USP7) Inhibitors with Novel Scaffold Structures by Virtual Screening, Molecular Dynamics Simulation, and Biological Evaluation. J Chem Inf Model 2020; 60:3255-3264. [PMID: 32282203 DOI: 10.1021/acs.jcim.0c00154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
USP7 has been regarded as a potential therapeutic target for cancer. In this study, virtual screening, molecular dynamics (MD) simulation, and biological evaluation have been applied for the discovery of novel USP7 inhibitors targeting the catalytic active site. Among the obtained compounds, compound 12 with a novel scaffold structure exhibited certain USP7 inhibitory activity (Ub-AMC assay IC50 = 18.40 ± 1.75 μM, Ub-Rho assay IC50 = 7.75 μM). The binding affinity between USP7CD (USP7 catalytic domain) and this hit compound was confirmed with a KD value of 4.46 ± 0.86 μM. Preliminary in vitro studies disclosed its antiproliferative activity on human prostate cancer cell line LNCaP with an IC50 value of 15.43 ± 3.49 μM. MD simulation revealed the detailed differences of protein-ligand interactions between USP7CD and the ligands, including the reference compound ALM4 and compound 12, providing some important information for improving the bioactivity of 12. This hit compound will serve as a promising starting point for facilitating the further discovery of novel USP7 inhibitors.
Collapse
Affiliation(s)
- Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinyu Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Minglei Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenfeng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shuxi Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
27
|
Qi SM, Cheng G, Cheng XD, Xu Z, Xu B, Zhang WD, Qin JJ. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet? Front Cell Dev Biol 2020; 8:233. [PMID: 32300595 PMCID: PMC7142254 DOI: 10.3389/fcell.2020.00233] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The p53 tumor suppressor protein and its major negative regulators MDM2 and MDMX oncoproteins form the MDM2/MDMX-p53 circuitry, which plays critical roles in regulating cancer cell growth, proliferation, cell cycle progression, apoptosis, senescence, angiogenesis, and immune response. Recent studies have shown that the stabilities of p53, MDM2, and MDMX are tightly controlled by the ubiquitin-proteasome system. Ubiquitin specific protease 7 (USP7), one of the most studied deubiquitinating enzymes plays a crucial role in protecting MDM2 and MDMX from ubiquitination-mediated proteasomal degradation. USP7 is overexpressed in human cancers and contributes to cancer initiation and progression. USP7 inhibition promotes the degradation of MDM2 and MDMX, activates the p53 signaling, and causes cell cycle arrest and apoptosis, making USP7 a potential target for cancer therapy. Several small-molecule inhibitors of USP7 have been developed and shown promising efficacy in preclinical settings. In the present review, we focus on recent advances in the understanding of the USP7-MDM2/MDMX-p53 network in human cancers as well as the discovery and development of USP7 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Si-Min Qi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
28
|
Zheng N, Chu M, Lin M, He Y, Wang Z. USP7 stabilizes EZH2 and enhances cancer malignant progression. Am J Cancer Res 2020; 10:299-313. [PMID: 32064169 PMCID: PMC7017725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023] Open
Abstract
EZH2, a histone methylase, plays a critical role in the tumor progression via regulation of progenitor genes. However, the detailed molecular mechanism of EZH2 in cancer malignant progression remains unknown. Therefore, we aimed to investigate how EZH2 is regulated in human cancer. We used numerous approaches, including Co-immunoprecipitation (Co-IP), Transfection, RT-PCR, Western blotting, Transwell assays, and animal studies, to determine the deubiquitination mechanism of EZH2 in cancer cells. We demonstrated that USP7 regulated EZH2 in human cancer cells and in vivo in mouse models. Overexpression of USP7 promoted the expression of EZH2 protein, but overexpression of a USP7 mutant did not change the EZH2 level. Consistently, knockdown of USP7 resulted in a striking decrease in EZH2 protein levels in human cancer cells. Functionally, USP7 overexpression promoted cell growth and invasion via deubiquitination of EZH2. Consistently, downregulation of USP7 inhibited cell migration and invasion in cancer. More importantly, knockdown of USP7 inhibited tumor growth, while USP7 overexpression exhibited opposed effect in mice. Our results indicate that USP7 regulates EZH2 via its deubiquitination and stabilization. The USP7/EZH2 axis could present a new promising therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Nana Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang Province, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang Province, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang Province, China
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang Province, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang Province, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
29
|
Rawat R, Starczynowski DT, Ntziachristos P. Nuclear deubiquitination in the spotlight: the multifaceted nature of USP7 biology in disease. Curr Opin Cell Biol 2019; 58:85-94. [PMID: 30897496 DOI: 10.1016/j.ceb.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
Ubiquitination is a versatile and tightly regulated post-translational protein modification with many distinct outcomes affecting protein stability, localization, interactions, and activity. Ubiquitin chain linkages anchored on substrates can be further modified by additional post-translational modifications, including phosphorylation and SUMOylation. Deubiquitinases (DUBs) reverse these ubiquitin marks with matched levels of precision. Over hundred known DUBs regulate a wide variety of cellular events. In this review, we focus on ubiquitin-specific protease 7 (USP7, also known as herpesvirus-associated ubiquitin-specific protease, or HAUSP) as one of the best studied, disease-associated DUBs. By highlighting the functions of USP7, particularly in the nucleus, and the emergence of the newest generation of USP7 inhibitors, we illustrate the importance of individual DUBs in the nucleus, and the therapeutic prospects of DUB targeting in human disease.
Collapse
Affiliation(s)
- Radhika Rawat
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Panagiotis Ntziachristos
- Simpson Querrey Center for Epigenetics; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
30
|
USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst) 2019; 76:30-39. [PMID: 30807924 DOI: 10.1016/j.dnarep.2019.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Turnover of cellular proteins is regulated by Ubiquitin Proteasome System (UPS). Components of this pathway, including the proteasome, ubiquitinating enzymes and deubiquitinating enzymes, are highly specialized and tightly regulated. In this mini-review we focus on the de-ubiquitinating enzyme USP7, and summarize latest advances in understanding its structure, substrate specificity and relevance to human cancers. There is increasing interest in UPS components as targets for cancer therapy and here we also overview the recent progress in the development of small molecule inhibitors that target USP7.
Collapse
|
31
|
Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B. Inhibition of Ubiquitin-Specific Proteases as a Novel Anticancer Therapeutic Strategy. Front Pharmacol 2018; 9:1080. [PMID: 30319415 PMCID: PMC6171565 DOI: 10.3389/fphar.2018.01080] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Dysfunction or dysregulation of the ubiquitin proteasome system (UPS) is closely related to tumorigenesis and the development of multiple cancers. Targeting the UPS provides a new anticancer therapeutic strategy, but clinically available UPS-targeted inhibitors, including lenalidomide and bortezomib, are limited to treat solid tumors. Under physiological conditions, deubiquitinases or deubiquitinating enzymes (DUBs) play vital roles in the UPS by removing ubiquitin from substrate proteins and regulating their proteasomal degradation and sub-localization, thus maintaining the balance between ubiquitination and deubiquitination for protein quality control and homeostasis. The aberrant expression or function of DUBs generally leads to the occurrence and progression of a series of disorders, including malignant tumors. Therefore, targeting DUBs is a novel anticancer therapeutic strategy. Ubiquitin-specific proteases (USPs) are the largest subfamily of DUBs which have attracted considerable interest as anticancer targets. Most of USPs are abnormally activated or expressed in a variety of malignant tumors or in the tumor microenvironment, making them ideal anticancer target candidates, which indicates that USPs inhibitors may be a class of potential anticancer therapeutic agents. However, there are no relevant inhibitors targeting USPs have entered clinical trial so far. In this review, we will summarize the roles and mechanisms of USPs in malignant transformation and progression as well as recent advances of small-molecule inhibitors targeting USPs.
Collapse
Affiliation(s)
- Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct Target Ther 2018; 3:17. [PMID: 29967688 PMCID: PMC6023882 DOI: 10.1038/s41392-018-0012-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesvirus-associated ubiquitin-specific protease (HAUSP) is a USP family deubiquitinase. HAUSP is a protein of immense biological importance as it is involved in several cellular processes, including host-virus interactions, oncogenesis and tumor suppression, DNA damage and repair processes, DNA dynamics and epigenetic modulations, regulation of gene expression and protein function, spatio-temporal distribution, and immune functions. Since its discovery in the late 1990s as a protein interacting with a herpes virus regulatory protein, extensive studies have assessed its complex roles in p53-MDM2-related networks, identified numerous additional interacting partners, and elucidated the different roles of HAUSP in the context of cancer, development, and metabolic and neurological pathologies. Recent analyses have provided new insights into its biochemical and functional dynamics. In this review, we provide a comprehensive account of our current knowledge about emerging insights into HAUSP in physiology and diseases, which shed light on fundamental biological questions and promise to provide a potential target for therapeutic intervention. Improved understandings of a molecular-tag-removing enzyme could lead to the development of therapies for many diseases. Dr. Mrinal K Ghosh of the Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB) and colleagues reviewed 20 years of research on herpesvirus-associated ubiquitin-specific protease (HAUSP), involved in a wide range of cellular processes through its role in removing the ubiquitin from molecules, thus signaling their fate. It was first discovered in/as a herpes virus infected cells, ultimately enhancing infection. It was later found to have a wide range of functions depending on the molecules it interacts with under normal physiological and disease conditions. Targeting HAUSP with drugs shows promise for suppressing prostate, lung, colon, breast, blood, and other cancers. It could also impact treatment of neurological conditions such as Huntington’s disease, and metabolic disorders, such as diabetes.
Collapse
|
33
|
USP49 participates in the DNA damage response by forming a positive feedback loop with p53. Cell Death Dis 2018; 9:553. [PMID: 29748582 PMCID: PMC5945681 DOI: 10.1038/s41419-018-0475-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor is a critical factor in the DNA damage response (DDR), and regulation of p53 stability has a key role in this process. In our study, we identified USP49 as a novel deubiquitinase (DUB) for p53 from a library consisting of 80 DUBs and found that USP49 has a positive effect on p53 transcriptional activity and protein stability. Investigation of the mechanism revealed that USP49 interacts with the N terminus of p53 and suppresses several types of p53 ubiquitination. Furthermore, USP49 rendered HCT116 cells more sensitive to etoposide (Eto)-induced DNA damage and was upregulated in response to several types of cell stress, including DNA damage. Remarkably, USP49 expression was regulated by p53 and USP49 in knockout mice, which are more susceptible to azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumors. These findings suggest that USP49 has an important role in DDR and may act as a potential tumor suppressor by forming a positive feedback loop with p53.
Collapse
|
34
|
CDDO-Me reveals USP7 as a novel target in ovarian cancer cells. Oncotarget 2018; 7:77096-77109. [PMID: 27780924 PMCID: PMC5363571 DOI: 10.18632/oncotarget.12801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, β-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation.
Collapse
|
35
|
Lamberto I, Liu X, Seo HS, Schauer NJ, Iacob RE, Hu W, Das D, Mikhailova T, Weisberg EL, Engen JR, Anderson KC, Chauhan D, Dhe-Paganon S, Buhrlage SJ. Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem Biol 2017; 24:1490-1500.e11. [PMID: 29056421 DOI: 10.1016/j.chembiol.2017.09.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/09/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023]
Abstract
Deubiquitinating enzymes (DUBs) have garnered significant attention as drug targets in the last 5-10 years. The excitement stems in large part from the powerful ability of DUB inhibitors to promote degradation of oncogenic proteins, especially proteins that are challenging to directly target but which are stabilized by DUB family members. Highly optimized and well-characterized DUB inhibitors have thus become highly sought after tools. Most reported DUB inhibitors, however, are polypharmacological agents possessing weak (micromolar) potency toward their primary target, limiting their utility in target validation and mechanism studies. Due to a lack of high-resolution DUB⋅small-molecule ligand complex structures, no structure-guided optimization efforts have been reported for a mammalian DUB. Here, we report a small-molecule⋅ubiquitin-specific protease (USP) family DUB co-structure and rapid design of potent and selective inhibitors of USP7 guided by the structure. Interestingly, the compounds are non-covalent active-site inhibitors.
Collapse
Affiliation(s)
- Ilaria Lamberto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Wanyi Hu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepika Das
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tatiana Mikhailova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dharminder Chauhan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Yang B, Wei ZY, Wang BQ, Yang HC, Wang JY, Bu XY. Down-regulation of the long noncoding RNA-HOX transcript antisense intergenic RNA inhibits the occurrence and progression of glioma. J Cell Biochem 2017; 119:2278-2287. [PMID: 28857242 DOI: 10.1002/jcb.26390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
This study aims to explore the role of long noncoding RNA (lncRNA)-HOX transcript antisense intergenic RNA (HOTAIR) in the occurrence and progression of glioma. Fresh glioma and normal brain tissues were classified into a glioma group (n = 67) and a normal group (n = 64) respectively. U87 cells were assigned into the blank, sh-NC, and sh-HOTAIR groups. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to determine HOTAIR expression. Cell proliferation, cell cycle and cell apoptosis rates were detected by cell counting kit-8 (CCK-8) and flow cytometry (FCM). Scratch test and transwell assay were conducted for cell migration and invasion. Orthotopic glioma tumor model in nude mice was established by inoculating tumor cell suspension. Hematoxylin-Eosin (HE) staining was used to observe the growth and invasion of orthotopic glioma tumors. The expression of HOTAIR and cell viability was found to be lowest in the sh-HOTAIR group among the three groups. The sh-HOTAIR group exhibited a higher apoptotic rate and lower number of cell migration compared with the blank and sh-NC groups. Additionally, the speed of wound healing was slower, the migration distance decreased and the survival time of nude mice was extended in the sh-HOTAIR compared to the other groups. Moreover, the sh-HOTAIR group demonstrated reduced lesion sizes and inflammation, no convulsions or hemiplegia and lesser number of satellite metastases. Our findings support that down-regulation of HOTAIR could inhibit cell proliferation, promote cell apoptosis as well as suppress cell invasion and migration in the progression of glioma.
Collapse
Affiliation(s)
- Bin Yang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhen-Yu Wei
- Department of Neurosurgery, The 371th Central Hospital of Chinese People's Liberation Army, Xinxiang, P.R. China
| | - Bang-Qing Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Hua-Chao Yang
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Jun-Yi Wang
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Xing-Yao Bu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
37
|
Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. J Mol Cell Biol 2017; 9:45-52. [PMID: 27927749 DOI: 10.1093/jmcb/mjw049] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
It is well established that both p53 and MDM2 are short-lived proteins whose stabilities are tightly controlled through ubiquitination-mediated degradation. Although numerous studies indicate that the MDM2 E3 ligase activity, as well as the protein-protein interaction between p53 and MDM2, is the major focus for this regulation, emerging evidence suggests that the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7) plays a critical role. Furthermore, HAUSP inhibition elevates p53 stability and might be beneficial for therapeutic purposes. In this review, we discuss the advances of this dynamic pathway and the contributions of positive and negative regulators affecting HAUSP activity. We also highlight the roles of HAUSP in cancer justifying the production of the first generation of HAUSP inhibitors.
Collapse
Affiliation(s)
- Omid Tavana
- College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- College of Physicians and Surgeons, Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
38
|
USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Blood 2017; 130:156-166. [PMID: 28495793 DOI: 10.1182/blood-2016-12-758219] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 12/20/2022] Open
Abstract
The role of deubiquitylase ubiquitin-specific protease 7 (USP7) in the regulation of the p53-dependent DNA damage response (DDR) pathway is well established. Whereas previous studies have mostly focused on the mechanisms underlying how USP7 directly controls p53 stability, we recently showed that USP7 modulates the stability of the DNA damage responsive E3 ubiquitin ligase RAD18. This suggests that targeting USP7 may have therapeutic potential even in tumors with defective p53 or ibrutinib resistance. To test this hypothesis, we studied the effect of USP7 inhibition in chronic lymphocytic leukemia (CLL) where the ataxia telangiectasia mutated (ATM)-p53 pathway is inactivated with relatively high frequency, leading to treatment resistance and poor clinical outcome. We demonstrate that USP7 is upregulated in CLL cells, and its loss or inhibition disrupts homologous recombination repair (HRR). Consequently, USP7 inhibition induces significant tumor-cell killing independently of ATM and p53 through the accumulation of genotoxic levels of DNA damage. Moreover, USP7 inhibition sensitized p53-defective, chemotherapy-resistant CLL cells to clinically achievable doses of HRR-inducing chemotherapeutic agents in vitro and in vivo in a murine xenograft model. Together, these results identify USP7 as a promising therapeutic target for the treatment of hematological malignancies with DDR defects, where ATM/p53-dependent apoptosis is compromised.
Collapse
|
39
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
40
|
Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, Chen C, Califano A, Yamashiro DJ, Sun H, Gu W. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 2016; 22:1180-1186. [PMID: 27618649 PMCID: PMC5091299 DOI: 10.1038/nm.4180] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
The MYCN proto-oncogene is amplified in a number of advanced-stage human tumors, such as neuroblastomas. Similar to other members of the MYC family of oncoproteins, MYCN (also known as N-Myc) is a transcription factor, and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation. Although numerous studies have demonstrated that N-Myc is a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here we have identified ubiquitin-specific protease 7 (USP7; also known as HAUSP) as a regulator of N-Myc function in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNA interference (RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or genetic ablation of Usp7 in the mouse brain, destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in patients with neuroblastoma who have poorer prognosis, and HAUSP expression substantially correlates with N-Myc transcriptional activity. Furthermore, small-molecule inhibitors of HAUSP's deubiquitinase activity markedly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Taken together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors.
Collapse
Affiliation(s)
- Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dawei Li
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gonzalo Lopez
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Debarshi Banerjee
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Andrea Califano
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Biochemistry & Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Darrell J Yamashiro
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
41
|
Yi L, Cui Y, Xu Q, Jiang Y. Stabilization of LSD1 by deubiquitinating enzyme USP7 promotes glioblastoma cell tumorigenesis and metastasis through suppression of the p53 signaling pathway. Oncol Rep 2016; 36:2935-2945. [DOI: 10.3892/or.2016.5099] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|
42
|
Zhang C, Lu J, Zhang QW, Zhao W, Guo JH, Liu SL, Wu YL, Jiang B, Gao FH. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int J Biochem Cell Biol 2016; 79:209-221. [PMID: 27590858 DOI: 10.1016/j.biocel.2016.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 08/07/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Jing Lu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Quan-Wu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Wei Zhao
- Department of Pathology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou 213003, China
| | - Jia-Hui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Shan-Ling Liu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| |
Collapse
|
43
|
Chen ST, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem 2015; 290:21713-23. [PMID: 26175158 DOI: 10.1074/jbc.m114.628255] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 01/21/2023] Open
Abstract
The androgen receptor (AR), a nuclear receptor superfamily transcription factor, plays a key role in prostate cancer. AR signaling is the principal target for prostate cancer treatment, but current androgen-deprivation therapies cannot completely abolish AR signaling because of the heterogeneity of prostate cancers. Therefore, unraveling the mechanism of AR reactivation in androgen-depleted conditions can identify effective prostate cancer therapeutic targets. Increasing evidence indicates that AR activity is mediated by the interplay of modifying/demodifying enzymatic co-regulators. To better understand the mechanism of AR transcriptional activity regulation, we used antibodies against AR for affinity purification and identified the deubiquitinating enzyme ubiquitin-specific protease 7, USP7 as a novel AR co-regulator in prostate cancer cells. We showed that USP7 associates with AR in an androgen-dependent manner and mediates AR deubiquitination. Sequential ChIP assays indicated that USP7 forms a complex with AR on androgen-responsive elements of target genes upon stimulation with the androgen 5α-dihydrotestosterone. Further investigation indicated that USP7 is necessary to facilitate androgen-activated AR binding to chromatin. Transcriptome profile analysis of USP7-knockdown LNCaP cells also revealed the essential role of USP7 in the expression of a subset of androgen-responsive genes. Hence, inhibition of USP7 represents a compelling therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Shu-Ting Chen
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Maiko Okada
- the Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan
| | - Ryuichiro Nakato
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Kosuke Izumi
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Masashige Bando
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| | - Katsuhiko Shirahige
- From the Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032 and
| |
Collapse
|
44
|
Lee JK, Chang N, Yoon Y, Yang H, Cho H, Kim E, Shin Y, Kang W, Oh YT, Mun GI, Joo KM, Nam DH, Lee J. USP1 targeting impedes GBM growth by inhibiting stem cell maintenance and radioresistance. Neuro Oncol 2015; 18:37-47. [PMID: 26032834 DOI: 10.1093/neuonc/nov091] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 05/02/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical benefits from standard therapies against glioblastoma (GBM) are limited in part due to intrinsic radio- and chemoresistance of GBM and inefficient targeting of GBM stem-like cells (GSCs). Novel therapeutic approaches that overcome treatment resistance and diminish stem-like properties of GBM are needed. METHODS We determined the expression levels of ubiquitination-specific proteases (USPs) by transcriptome analysis and found that USP1 is highly expressed in GBM. Using the patient GBM-derived primary tumor cells, we inhibited USP1 by shRNA-mediated knockdown or its specific inhibitor pimozide and evaluated the effects on stem cell marker expression, proliferation, and clonogenic growth of tumor cells. RESULTS USP1 was highly expressed in gliomas relative to normal brain tissues and more preferentially in GSC enrichment marker (CD133 or CD15) positive cells. USP1 positively regulated the protein stability of the ID1 and CHEK1, critical regulators of DNA damage response and stem cell maintenance. Targeting USP1 by RNA interference or treatment with a chemical USP1 inhibitor attenuated clonogenic growth and survival of GSCs and enhanced radiosensitivity of GBM cells. Finally, USP1 inhibition alone or in combination with radiation significantly prolonged the survival of tumor-bearing mice. CONCLUSION USP1-mediated protein stabilization promotes GSC maintenance and treatment resistance, thereby providing a rationale for USP1 inhibition as a potential therapeutic approach against GBM.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Nakho Chang
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Yeup Yoon
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Heejin Cho
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Eunhee Kim
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Yongjae Shin
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Wonyoung Kang
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Young Taek Oh
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Gyeong In Mun
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Kyeung Min Joo
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| | - Jeongwu Lee
- Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Seoul, Korea (J.-K.L., Y.Y., H.Y., W.K., D.-H.N.); Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Korea (N.C., H.C., Y.T.O., Y.Y., D.-H.N.); Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea (K.M.J.); Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio (E.K., Y.S., G.I.M., J.L.)
| |
Collapse
|
45
|
Genome-wide association study of antibody level response to NDV and IBV in Jinghai yellow chicken based on SLAF-seq technology. J Appl Genet 2015; 56:365-73. [PMID: 25588649 DOI: 10.1007/s13353-014-0269-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 12/21/2022]
Abstract
Newcastle disease (ND) and avian infectious bronchitis (IB) are contagious diseases of chickens. To identify genes associated with antibody levels against ND and IB, a genome-wide association study was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in Jinghai yellow chickens. This determined six single-nucleotide polymorphisms (SNPs) that were associated with antibody levels against Newcastle disease virus (NDV): rsZ2494661, rsZ2494710, rs1211307701, rs1211307711, rs1218289310 and rs420701988. Of these, rsZ2494661 and rsZ2494710 reached the 5 % Bonferroni genome-wide significance level (5.5E-07) and they were both 134.7 kb downstream of the SETBP1 gene. The remaining four SNPs had 'suggestive' genome-wide significance levels (1.1E-05) and they were within or near the Plexin B1, LRRN1 and PDGFC genes. IB had two SNPs associated with antibody levels: rs149988433 and rs16170823; both reached chromosome-wide significance levels and they were near the USP7 and TRIM27 genes, respectively. Bioinformatics, GO annotation and pathway analysis indicated that five of these genes (Plexin B1, TRIM27, PDGFC, SETBP1 and USP7) may be important for the generation of protective antibodies against NDV and infectious bronchitis virus (IBV). This paves the way for further research on host immune responses against NDV.
Collapse
|
46
|
Bhattacharya S, Ghosh MK. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. FEBS J 2014; 281:3061-78. [PMID: 24823443 PMCID: PMC4149788 DOI: 10.1111/febs.12843] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
Tumor suppressor retinoblastoma-associated protein (Rb) is an important cell cycle regulator, arresting cells in early G1. It is commonly inactivated in cancers and its level is maintained during the cell cycle. Rb is regulated by various post-translational modifications such as phosphorylation, acetylation, ubiquitination and so on. Several E3 ligases including murine double minute 2 (MDM2) promote the degradation of Rb. This study focuses on the role of HAUSP (herpes virus associated ubiquitin specific protease) on Rb. Here, we show that HAUSP colocalizes and interacts with Rb to stabilize it from proteasomal degradation by removing wild-type and K48-linked ubiquitin chains in human embryonic kidney 293 (HEK293) cells. HAUSP deubiquitinates Rb in vivo and in vitro, leading to an increased cell population in the G1 phase. Hence, HAUSP is a novel deubiquitinase for Rb. Immunohistochemistry, western blotting and cell-based assays show that HAUSP is overexpressed in glioma and contributes towards glioma progression. However, HAUSP activity on Rb is abrogated in glioma (cancer), where these two proteins show an inverse relationship. MDM2 (a known substrate of HAUSP) serves as a better target for HAUSP-mediated deubiquitination in cancer cells, facilitating degradation of Rb and oncogenic progression. This novel regulatory axis is proteasome mediated, p53 independent, and the level of MDM2 is critical. The shift in equilibrium by differential deubiquitination in regulation of Rb explains a subtle difference existing between normal and cancer cells. This leads to speculation about a new possibility for distinguishing cancer cells from normal cells at the molecular level, which may be investigated for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, -700 032, India
| | | |
Collapse
|