1
|
Li L, Cai S, Chen J, Yin Z, Liu J, Shi S, Wang W. CK-666 exerts anticancer effects by regulating autophagy, tunneling nanotubes and extracellular vesicles formation. Biomed Pharmacother 2025; 183:117825. [PMID: 39809129 DOI: 10.1016/j.biopha.2025.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
CK-666, an inhibitor of the actin-related protein complex 2/3 (Arp2/3), can suppress lamellipodia formation and cell migration. However, research on its application in tumor therapy is still limited. Using RNA-seq, we clustered and analyzed the functions of differentially expressed mRNAs in CK-666-treated tumor cells. Interestingly, the differentially expressed genes related to CK-666 were closely associated with exosomes and autophagy. Through Western blot, we confirmed that CK-666 promoted the high expression of exosome and autophagy markers in tumor cells. Transmission electron microscopy results indicated the appearance of extracellular vesicles larger than exosomes. Scanning electron microscopy findings revealed that CK-666 inhibited the formation of intercellular tunneling nanotubes (TNTs). Fluorescent staining further revealed that CK-666 induced the formation and secretion of CD63-positive vesicles within the tunnels of retraction fibers (RFs). In vitro experiments verified that CK-666 preferentially inhibited fibroblasts in 3D tumorspheres. In the tumor 3D-Histoculture Drug Response Assay (3D-HDRA), it was found that CK-666 could suppress the activity of isolated tumor tissues. Moreover, our study discovered that the combination of CK-666 and docetaxel (DTX) significantly enhanced DTX sensitivity. In summary, our results suggest that CK-666 may play an oncogenic role by regulating autophagy, TNTs, and extracellular vesicles formation.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Suli Cai
- Health Management Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Jie Chen
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Zheyu Yin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Susu Shi
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
2
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
3
|
Ming Y, Luo C, Ji B, Cheng J. ARPC5 acts as a potential prognostic biomarker that is associated with cell proliferation, migration and immune infiltrate in gliomas. BMC Cancer 2023; 23:937. [PMID: 37789267 PMCID: PMC10548738 DOI: 10.1186/s12885-023-11433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Gliomas are the most common malignant brain tumors, with powerful invasiveness and an undesirable prognosis. Actin related protein 2/3 complex subunit 5 (ARPC5) encodes a component of the Arp2/3 protein complex, which plays a significant role in regulating the actin cytoskeleton. However, the prognostic values and biological functions of ARPC5 in gliomas remain unclear. METHODS Based on the TCGA, GEO, HPA, and UALCAN database, we determined the expression of ARPC5 in glioma. The results were verified by immunohistochemistry and Western blot analysis of glioma samples. Moreover, Kaplan-Meier curves, ROC curves, Cox regression analyses, and prognostic nomograms were used to observe the correlation between the ARPC5 expression and the prognosis of glioma patients. GO and KEGG enrichment analyses were conducted to identify immune-related pathways involved with the differential expression of ARPC5. Subsequently, the TCGA database was used to estimate the relationship between ARPC5 expression and immunity-related indexes, such as immune scores, infiltrating immune cells, and TMB. The TCIA database was used to assess the correlation between ARPC5 with immunotherapy. The association between ARPC5 and T cells marker CD3 was also evaluated through immunohistochemistry methods. The correlation between ARPC5 and T cell, as well as the prognosis of patients, was also evaluated using immunological methods. Moreover, the effect of ARPC5 on the biological characteristics of LN229 and U251 cells was determined by MTT, clone formation, and transwell migration assay. RESULTS The high degree of ARPC5 was correlated with worse prognosis and unfavorable clinical characteristics of glioma patients. In the analysis of GO and KEGG, it is shown that ARPC5 was strongly correlated with multiple immune-related signaling pathways. The single-cell analysis revealed that ARPC5 expression was increased in astrocytes, monocytes and T cells. In addition, ARPC5 expression was strongly associated with immune scores, infiltrating immune cells, TMB, MSI, immune biomarkers, and immunotherapy. In experimental analysis, we found that ARPC5 was significantly overexpressed in gliomas and closely correlated with patient prognosis and CD3 expression. Functionally, the knockout of ARPC5 significantly reduced the proliferation and invasion of LN229 and U251 cells. CONCLUSIONS Our study revealed that the high expression level of ARPC5 may serve as a promising prognostic biomarker and be associated with tumor immunity in glioma.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyuan Luo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Networks, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Beihong Ji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Cornelison R, Marrah L, Fierti A, Piczak C, Glowczyk M, Tajammal A, Lynch S, Li H. The Potential for Targeting AVIL and Other Actin-Binding Proteins in Rhabdomyosarcoma. Int J Mol Sci 2023; 24:14196. [PMID: 37762498 PMCID: PMC10531751 DOI: 10.3390/ijms241814196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue cancer with a survival rate below 27% for high-risk children despite aggressive multi-modal therapeutic interventions. After decades of research, no targeted therapies are currently available. Therapeutically targeting actin-binding proteins, although promising, has historically been challenging. Recent advances have made this possibility more salient, including our lab's identification of advillin (AVIL), a novel oncogenic actin-binding protein that plays a role in many cytoskeletal functions. AVIL is overexpressed in many RMS cell lines, patient-derived xenograft models, and a cohort of 30 clinical samples of both the alveolar (ARMS) and embryonal (ERMS) subtypes. Overexpression of AVIL in mesenchymal stem cells induces neoplastic transformation both in vitro and in vivo, and reversing overexpression through genetic modulation reverses the transformation. This suggests a critical role of AVIL in RMS tumorigenesis and maintenance. As an actin-binding protein, AVIL would not traditionally be considered a druggable target. This perspective will address the feasibility of targeting differentially expressed actin-binding proteins such as AVIL therapeutically, and how critical cell infrastructure can be damaged in a cancer-specific manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Park MJ, Jeong E, Lee EJ, Choi HJ, Moon BH, Kang K, Chang S. RNA Editing Enzyme ADAR1 Suppresses the Mobility of Cancer Cells via ARPIN. Mol Cells 2023; 46:351-359. [PMID: 36921992 PMCID: PMC10258462 DOI: 10.14348/molcells.2023.2174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 03/17/2023] Open
Abstract
Deamination of adenine or cytosine in RNA, called RNA editing, is a constitutively active and common modification. The primary role of RNA editing is tagging RNA right after its synthesis so that the endogenous RNA is recognized as self and distinguished from exogenous RNA, such as viral RNA. In addition to this primary function, the direct or indirect effects on gene expression can be utilized in cancer where a high level of RNA editing activity persists. This report identified actin-related protein 2/3 complex inhibitor (ARPIN) as a target of ADAR1 in breast cancer cells. Our comparative RNA sequencing analysis in MCF7 cells revealed that the expression of ARPIN was decreased upon ADAR1 depletion with altered editing on its 3'UTR. However, the expression changes of ARPIN were not dependent on 3'UTR editing but relied on three microRNAs acting on ARPIN. As a result, we found that the migration and invasion of cancer cells were profoundly increased by ADAR1 depletion, and this cellular phenotype was reversed by the exogenous ARPIN expression. Altogether, our data suggest that ADAR1 suppresses breast cancer cell mobility via the upregulation of ARPIN.
Collapse
Affiliation(s)
- Min Ji Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunji Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyeon Ji Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bo Hyun Moon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
6
|
Mair DB, Elmasli C, Kim JH, Barreto AD, Ding S, Gu L, Weinberg SH, Kim T, Kim DH, Li R. The Arp2/3 complex enhances cell migration on elastic substrates. Mol Biol Cell 2023; 34:ar67. [PMID: 36989030 PMCID: PMC10295479 DOI: 10.1091/mbc.e22-06-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cell migration on soft surfaces occurs in both physiological and pathological processes such as corticogenesis during embryonic development and cancer invasion and metastasis. The Arp2/3 complex in neural progenitor cells was previously demonstrated to be necessary for cell migration on soft elastic substrate but not on stiff surfaces, but the underlying mechanism was unclear. Here, we integrate computational and experimental approaches to elucidate how the Arp2/3 complex enables cell migration on soft surfaces. We found that lamellipodia comprised of a branched actin network nucleated by the Arp2/3 complex distribute forces over a wider area, thus decreasing stress in the substrate. Additionally, we found that interactions between parallel focal adhesions within lamellipodia prolong cell-substrate interactions by compensating for the failure of neighboring adhesions. Together with decreased substrate stress, this leads to the observed improvements in migratory ability on soft substrates in cells utilizing lamellipodia-dependent mesenchymal migration when compared with filopodia-based migration. These results show that the Arp2/3 complex-dependent lamellipodia provide multiple distinct mechanical advantages to gliomas migrating on soft 2D substrates, which can contribute to their invasive potential.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ceylin Elmasli
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Amanda D. Barreto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering, Florida International University College of Engineering and Computing, Miami, FL 33199
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Wexner Medical Center, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
7
|
Huang J, Zhou H, Tan C, Mo S, Liu T, Kuang Y. The overexpression of actin related protein 2/3 complex subunit 1B(ARPC1B) promotes the ovarian cancer progression via activation of the Wnt/β-catenin signaling pathway. Front Immunol 2023; 14:1182677. [PMID: 37304283 PMCID: PMC10247967 DOI: 10.3389/fimmu.2023.1182677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Ovarian cancer is one of the most fatal malignancies of the female reproductive system. The purpose of this study is to explore the mechanism of Actin Related Protein 2/3 Complex Subunit 1B(ARPC1B) in the progression of ovarian cancer. Methods The expressions and prognostic value of ARPC1B in ovarian cancer were identified using the GEPIA database and the Kaplan-Meier Plotter database. The expression of ARPC1B was manipulated to evaluate its impact on the malignant phenotypes of ovarian cancer. The cell proliferation ability was analyzed through CCK-8 assay and clone formation assay. The cell migration and invasion capacity was evaluated through wound healing assay and trans well assay. Mice xenografts were conducted to measure the effects of ARPC1B on tumor development in vivo. Results Our data suggested that ARPC1B was overexpressed in ovarian cancer, which was correlated with a poorer survival compared to low mRNA expression of ARPC1B in ovarian cancer patients. The overexpression of ARPC1B promoted cell proliferation, migration, and invasion of ovarian cancer cells. Conversely, the knockdown of ARPC1B resulted in the opposite effect. Additionally, ARPC1B expression could activate Wnt/β-catenin signaling pathway. The administration of the β-catenin inhibitor XAV-939 abolished the promotion of cell proliferation, migration, and invasion activities induced by ARPC1B overexpression in vitro. Conclusions ARPC1B was overexpressed in ovarian cancer and was correlated with poor prognosis. ARPC1B promoted ovarian cancer progression through activation of Wnt/β-catenin Signaling Pathway.
Collapse
|
8
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
9
|
Oliveira MMS, D'Aulerio R, Yong T, He M, Baptista MAP, Nylén S, Westerberg LS. Increased cross-presentation by dendritic cells and enhanced anti-tumour therapy using the Arp2/3 inhibitor CK666. Br J Cancer 2023; 128:982-991. [PMID: 36631633 PMCID: PMC10006228 DOI: 10.1038/s41416-022-02135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Dendritic cell (DC) vaccines for cancer therapy offer the possibility to let the patient's own immune system kill cancer cells. However, DC vaccines have shown less efficacy than expected due to failure to induce cancer cell killing and by activating T regulatory cells. METHODS We tested if inhibition of signalling via WASp and Arp2/3 using the small molecule CK666 would enhance DC-mediated killing of tumour cells in vitro and in vivo. RESULTS Using CK666 during the ex vivo phase of antigen processing of ovalbumin (OVA), murine and human DCs showed decreased phagosomal acidification, indicating activation of the cross-presentation pathway. When compared to untreated DCs, DCs treated with CK666 during uptake and processing of OVA-induced increased proliferation of OVA-specific CD8+ OT-I T cells in vitro and in vivo. Using the aggressive B16-mOVA melanoma tumour model, we show that mice injected with CK666-treated DCs and OVA-specific CD8+ OT-I T cells showed higher rejection of B16 melanoma cells when compared to mice receiving non-treated DCs. This resulted in the prolonged survival of tumour-bearing mice receiving CK666-treated DCs. Moreover, combining CK666-treated DCs with the checkpoint inhibitor anti-PD1 further prolonged survival. CONCLUSION Our data suggest that the small molecule inhibitor CK666 is a good candidate to enhance DC cross-presentation for cancer therapy.
Collapse
Affiliation(s)
- Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Roberta D'Aulerio
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Tracer Yong
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marisa A P Baptista
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Susanne Nylén
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
10
|
Chen YH, Chen H, Lin TT, Zhu JM, Chen JY, Dong RN, Chen SH, Lin F, Ke ZB, Huang JB, Wei Y, Zheng QS, Xue XY, Xu N. ARPC1A correlates with poor prognosis in prostate cancer and is up-regulated by glutamine metabolism to promote tumor cell migration, invasion and cytoskeletal changes. Cell Biosci 2023; 13:38. [PMID: 36814338 PMCID: PMC9945620 DOI: 10.1186/s13578-023-00985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE This study aimed to identify potential biomarkers for prostate cancer (PCa) progression and metastasis, and to discern their biological functions. METHODS Bioinformatics methods were used to screen for hub genes. The expression level of key hub genes in PCa was determined and their prognostic significance was examined. A series of functional assays were performed to investigate the function of the highest-ranking hub gene. RESULTS Actin related protein 2/3 complex subunit 1A (ARPC1A) was identified as the hub gene. ARPC1A was highly expressed in PCa tissues and cell lines, and was an independent prognostic factor for predicting biochemical recurrence after radical prostatectomy and overall survival of PCa patients. Knockdown of ARPC1A inhibited PCa cell migration, invasion and cytoskeleton formation, but had no impact on cell proliferation and cell cycle progression. In vivo, ARPC1A overexpression promoted lung metastasis of PCa, but had no efffect on tumor growth. Additionally, glutamine metabolism was identified as an upstream regulator of ARPC1A, and promoted migration, invasion and cytoskeletal changes of PCa cell through ARPC1A. CONCLUSION These findings suggested that ARPC1A, which correlates with poor prognosis in PCa, functions downstream of glutamine metabolism to regulate cytoskeletal changes, cellular migration and cellular invasion in this disease.
Collapse
Affiliation(s)
- Ye-Hui Chen
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Hang Chen
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Ting-Ting Lin
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Jun-Ming Zhu
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Jia-Yin Chen
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Ru-Nan Dong
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Shao-Hao Chen
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Fei Lin
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Zhi-Bin Ke
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Jin-Bei Huang
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Yong Wei
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Qing-Shui Zheng
- grid.256112.30000 0004 1797 9307Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005 China
| | - Xue-Yi Xue
- Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, The First Affiliated Hospital, Urology Research Institute, Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China. .,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
11
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
12
|
Mei P, Tey SK, Wong SWK, Ng TH, Mao X, Yeung CLS, Xu Y, Yu L, Huang Q, Cao P, Yam JWP, Gao Y. Actin-related protein 2/3 complex subunit 2-enriched extracellular vesicles drive liver cancer metastasis. Hepatol Int 2022; 16:603-613. [PMID: 35556226 DOI: 10.1007/s12072-022-10338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) play pivotal roles in tumor growth, cancer metastasis and angiogenesis. Here, we aimed to identify proteins that contribute to the functionality of EVs derived from metastatic hepatocellular carcinoma (HCC) cells. METHODS Proteins of EVs derived from metastatic HCC cells and normal liver cells were analyzed by mass spectrometry. Proteomic profiling identified actin-related protein 2/3 complex subunit 2 (ARPC2) to be highly expressed in EVs of metastatic HCC cells. The expression of ARPC2 in EVs and HCC tissues was examined using immunoblotting and TCGA database, respectively. The functional roles of EV-ARPC2 were investigated by knockout approach and various in vitro and in vivo assays. RESULTS ARPC2 was highly expressed in EVs of metastatic cells but barely detected in non-metastatic HCC cells and normal liver cells. Immunogold labeling showed the presence of APRC2 on the surface of EVs. Analysis of TCGA database of liver cancer revealed ARPC2 overexpression was correlated with poor prognosis of patients. ARPC2 was knockout in metastatic HCC cells. EVs derived from knockout cells displayed compromised activity in enhancing cell growth, motility and metastasis compared to EVs of control cells. Pimozide, an inhibitor of APRC2, also inhibited the promoting effect of EVs of metastatic cells in lung colonization of tumor cells in mice. CONCLUSION This study reveals previously unreported expression and function of ARPC2 in EVs. EVs with highly expressed ARPC2 enhance cancer cell growth and metastasis. ARPC2 may provide a prospective target for the novel treatment of HCC patients.
Collapse
Affiliation(s)
- Piaorong Mei
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Samuel Wan Ki Wong
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianhua Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peihua Cao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Fokin AI, Chuprov-Netochin RN, Malyshev AS, Romero S, Semenova MN, Konyushkin LD, Leonov SV, Semenov VV, Gautreau AM. Synthesis, Screening and Characterization of Novel Potent Arp2/3 Inhibitory Compounds Analogous to CK-666. Front Pharmacol 2022; 13:896994. [PMID: 35707404 PMCID: PMC9189929 DOI: 10.3389/fphar.2022.896994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Branched actin networks polymerized by the Actin-related protein 2 and 3 (Arp2/3) complex play key roles in force generation and membrane remodeling. These networks are particularly important for cell migration, where they drive membrane protrusions of lamellipodia. Several Arp2/3 inhibitory compounds have been identified. Among them, the most widely used is CK-666 (2-Fluoro-N-[2-(2-methyl-1H-indol-3-yl)ethyl]-benzamide), whose mode of action is to prevent Arp2/3 from reaching its active conformation. Here 74 compounds structurally related to CK-666 were screened using a variety of assays. The primary screen involved EdU (5-ethynyl-2′-deoxyuridine) incorporation in untransformed MCF10A cells. The resulting nine positive hits were all blocking lamellipodial protrusions and cell migration in B16-F1 melanoma cells in secondary screens, showing that cell cycle progression can be a useful read-out of Arp2/3 activity. Selected compounds were also characterized on sea urchin embryos, where Arp2/3 inhibition yields specific phenotypes such as the lack of triradiate spicules and inhibition of archenteron elongation. Several compounds were filtered out due to their toxicity in cell cultures or on sea urchin development. Two CK-666 analogs, 59 (N-{2-[5-(Benzyloxy)-2-methyl-1H-indol-3-yl] ethyl}-3-bromobenzamide) and 69 (2,4-Dichloro-N-[2-(7-chloro-2-methyl-1H-indol-3-yl) ethyl]-5-[(dimethylamino) sulfonyl] benzamide), were active in all assays and significantly more efficient in vivo than CK-666. These best hits with increased in vivo potency were, however, slightly less efficient in vitro than CK-666 in the classical pyrene-actin assay. Induced-fit docking of selected compounds and their possible metabolites revealed interaction with Arp2/3 that suppresses Arp2/3 activation. The data obtained in our screening validated the applicability of original assays for Arp2/3 activity. Several previously unexplored CK-666 structural analogs were found to suppress Arp2/3 activation, and two of them were identified as Arp2/3 inhibitors with improved in vivo efficiency.
Collapse
Affiliation(s)
- Artem I. Fokin
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- *Correspondence: Artem I. Fokin, ; Alexis M. Gautreau,
| | - Roman N. Chuprov-Netochin
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander S. Malyshev
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Dukhov Research Institute of Automatics (VNIIA), Moscow, Russia
| | - Stéphane Romero
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | | | | | - Sergey V. Leonov
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexis M. Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Artem I. Fokin, ; Alexis M. Gautreau,
| |
Collapse
|
14
|
Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res 2022; 15:24. [PMID: 35168653 PMCID: PMC8848895 DOI: 10.1186/s13048-022-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth aggressive tumor affecting women worldwide. Circular RNA (circRNA) is enrolled in CC process. This study aims to unveil the profiles of circ_101119 (circCDK17) in cell proliferation, migration, invasion, apoptosis and glycolysis in CC. METHODS The expression levels of circCDK17, microRNA-1294 (miR-1294) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). The protein expression levels of YWHAZ, recombinant glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) were determined by western blot. Cell proliferation, migratory and invasive abilities and apoptosis were illustrated by cell counting kit-8 (CCK-8) assay, transwell assay and flow cytometry analysis, respectively. Cell lactate production, glucose uptake and adenosine 5'-triphosphate (ATP) level were severally elucidated by lactate assay kit, glucose assay kit and ATP detection kit. RESULTS CircCDK17 expression and the mRNA and protein expression levels of YWHAZ were dramatically upregulated, while miR-1294 expression was obviously downregulated in CC tissues or cells compared with control groups. CircCDK17 silencing suppressed cell proliferation, migration, invasion and glycolysis, and induced cell apoptosis in CC; however, miR-1294 inhibitor restrained these effects. Additionally, circCDK17 was a sponge of miR-1294 and miR-1294 bound to YWHAZ. Furthermore, circCDK17 knockdown inhibited tumor formation in vivo. CONCLUSION CircCDK17 knockdown repressed cell proliferation, migration, invasion and glycolysis, and promoted cell apoptosis via miR-1294/YWHAZ axis in CC. This finding provides a theoretical basis in studying circRNA-mediated therapy in CC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Fei Liang
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Jun Yan
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yu Wang
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
15
|
ARPC1B Is Associated with Lethal Prostate Cancer and Its Inhibition Decreases Cell Invasion and Migration In Vitro. Int J Mol Sci 2022; 23:ijms23031476. [PMID: 35163398 PMCID: PMC8836051 DOI: 10.3390/ijms23031476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
ARPC1B (Actin Related Protein 2/3 Complex Subunit 1B) has been found to be involved in platelet abnormalities of immune-mediated inflammatory disease and eosinophilia. However, its role in prostate cancer (PCa) has not been established. We characterized the role of ARPC1B in PCa invasion and metastasis and investigated its prognosis using in vitro cellular models and PCa clinical data. Higher immunohistochemistry (IHC) expressions of ARPC1B were observed in localized and castrate resistant PCa (CRPC) vs. benign prostate tissue (p < 0.01). Additionally, 47% of patients with grade group 5 (GG) showed high ARPC1B expression vs. other GG patients. Assessing ARPC1B expression in association with two of the common genetic aberrations in PCa (ERG and PTEN) showed significant association to overall and cause-specific survival for combined assessment of ARPC1B and PTEN, and ARPC1B and ERG. Knockdown of ARPC1B impaired the migration and invasion of PC3 and DU145 PCa cells via downregulation of Aurora A kinase (AURKA) and resulted in the arrest of the cells in the G2/M checkpoint of the cell cycle. Additionally, higher ARPC1B expression was observed in stable PC3-ERG cells compared to normal PC3, supporting the association between ERG and ARPC1B. Our findings implicate the role of ARPC1B in PCa invasion and metastasis in association with ERG and further support its prognostic value as a biomarker in association with ERG and PTEN in identifying aggressive phenotypes of PCa cancer.
Collapse
|
16
|
Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 Complex Subunits as Prognostic Biomarkers for Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690151. [PMID: 34307456 PMCID: PMC8299467 DOI: 10.3389/fmolb.2021.690151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
The actin-related protein 2/3 complex (Arp2/3) is a major actin nucleator that has been widely reported and plays an important role in promoting the migration and invasion of various cancers. However, the expression patterns and prognostic values of Arp2/3 subunits in hepatocellular carcinoma (HCC) remain unclear. In this study, The Cancer Genome Atlas (TCGA) and UCSC Xena databases were used to obtain mRNA expression and the corresponding clinical information, respectively. The differential expression and Arp2/3 subunits in HCC were analyzed using the “limma” package of R 4.0.4 software. The prognostic value of each subunit was evaluated using Kaplan–Meier survival analysis and Cox proportional hazards regression analyses. The results revealed that mRNA expression of Arp2/3 members (ACTR2, ACTR3, ARPC1A, APRC1B, ARPC2, ARPC3, ARPC4, ARPC5, and ARPC5L) was upregulated in HCC. Higher expression of Arp2/3 members was significantly correlated with worse overall survival (OS) and shorter progression-free survival (PFS) in HCC patients. Cox proportional hazards regression analyses demonstrated that ACTR3, ARPC2, and ARPC5 were independent prognostic biomarkers of survival in patients with HCC. The relation between tumor immunocyte infiltration and the prognostic subunits was determined using the TIMER 2.0 platform and the GEPIA database. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanisms of prognostic subunits in the carcinogenesis of HCC. The results revealed that ACTR3, ARPC2, and ARPC5 were significantly positively correlated with the infiltration of immune cells in HCC. The GSEA results indicated that ACTR3, ARPC2, and ARPC5 are involved in multiple cancer-related pathways that promote the development of HCC. In brief, various analyses indicated that Arp2/3 complex subunits were significantly upregulated and predicted worse survival in HCC, and they found that ACTR3, ARPC2, and ARPC5 could be used as independent predictors of survival and might be applied as promising molecular targets for diagnosis and therapy of HCC in the future.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - LingLing Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China.,Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
17
|
Laporte S, Magistrato A. Deciphering the Molecular Terms of Arp2/3 Allosteric Regulation from All-Atom Simulations and Dynamical Network Theory. J Phys Chem Lett 2021; 12:5384-5389. [PMID: 34077215 DOI: 10.1021/acs.jpclett.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Arp2/3 molecular machine stimulates the generation of branched actin networks at the cytosolic surface of cellular membranes. Arp2/3 is thus pivotal for cell motility and migration, and its aberrant function is implicated in cancer invasion and metastasis. Here, all-atom multi μs-long molecular dynamics simulations and dynamical NetWork Analysis (NWA) unprecedentedly disclose the molecular terms of Arp2/3 regulation (activation/inhibition) by positive/negative allosteric modulators. After identifying the crucial structural elements underlying Arp2/3's conformational transition toward its active actin-polymerization-competent state, we decrypt the activating signaling paths heading from the allosteric effector (ATP) binding sites to these pivotal regions, also elucidating how small-molecule inhibitors scramble this signal-exchange. As a result, while ATP-induced signaling triggers a harmonious conformational transition toward active Arp2/3, the inhibitors disturb these information channels, desynchronizing Arp2/3 functional movements, thus hindering its activation. Our outcomes supply a conceptual basis for devising small-molecule inhibitors to block infiltrative cancer migration.
Collapse
Affiliation(s)
- Sara Laporte
- CNR-IOM at SISSA via Bonomea 265 34136, Trieste Italy
| | | |
Collapse
|
18
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
19
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
20
|
TRPV4 activates the Cdc42/N-wasp pathway to promote glioblastoma invasion by altering cellular protrusions. Sci Rep 2020; 10:14151. [PMID: 32843668 PMCID: PMC7447819 DOI: 10.1038/s41598-020-70822-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The invasion ability of glioblastoma (GBM) causes tumor cells to infiltrate the surrounding brain parenchyma and leads to poor outcomes. Transient receptor potential vanilloid 4 (TRPV4) exhibits a remarkable role in cancer cell motility, but the contribution of TRPV4 to glioblastoma metastasis is not fully understood. Here, we reported that TRPV4 expression was significantly elevated in malignant glioma compared to normal brain and low-grade glioma, and TRPV4 expression was negatively correlated with the prognosis of glioma patients. Functionally, stimulation of TRPV4 promoted glioblastoma cell migration and invasion, and repression of TRPV4 hindered the migration and invasion of glioblastoma cells in vitro. Molecularly, TRPV4 strongly colocalized and interacted with skeletal protein-F-actin at cellular protrusions, and TRPV4 regulated the formation of invadopodia and filopodia in glioblastoma cells. Furthermore, the Cdc42/N-wasp axis mediated the effect of TRPV4-regulated cellular protrusions and invasion. Foremost, TRPV4 inhibitor treatment or downregulation of TRPV4 significantly reduced the invasion-growth of subcutaneously and intracranially transplanted glioblastoma in mice. In conclusion, the TRPV4/Cdc42/wasp signaling axis regulates cellular protrusion formation in glioblastoma cells and influences the invasion-growth phenotype of glioblastoma in vivo. TRPV4 may serve as a prognostic factor and specific therapeutic target for GBM patients.
Collapse
|
21
|
Choi J, Lee YJ, Yoon YJ, Kim CH, Park SJ, Kim SY, Doo Kim N, Cho Han D, Kwon BM. Pimozide suppresses cancer cell migration and tumor metastasis through binding to ARPC2, a subunit of the Arp2/3 complex. Cancer Sci 2019; 110:3788-3801. [PMID: 31571309 PMCID: PMC6890432 DOI: 10.1111/cas.14205] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
ARPC2 is a subunit of the Arp2/3 complex, which is essential for lamellipodia, invadopodia and filopodia, and ARPC2 has been identified as a migrastatic target molecule. To identify ARPC2 inhibitors, we generated an ARPC2 knockout DLD-1 human colon cancer cell line using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system and explored gene signature-based strategies, such as a connectivity map (CMap) using the gene expression profiling data of ARPC2 knockout and knockdown cells. From the CMap-based drug discovery strategy, we identified pimozide (a clinically used antipsychotic drug) as a migrastatic drug and ARPC2 inhibitor. Pimozide inhibited the migration and invasion of various cancer cells. Through drug affinity responsive target stability (DARTS) analysis and cellular thermal shift assay (CETSA), it was confirmed that pimozide directly binds to ARPC2. Pimozide increased the lag phase of Arp2/3 complex-dependent actin polymerization and inhibited the vinculin-mediated recruitment of ARPC2 to focal adhesions in cancer cells. To validate the likely binding of pimozide to ARPC2, mutant cells, including ARPC2F225A , ARPC2F247A and ARPC2Y250F cells, were prepared using ARPC2 knockout cells prepared by gene-editing technology. Pimozide strongly inhibited the migration of mutant cells because the mutated ARPC2 likely has a larger binding pocket than the wild-type ARPC2. Therefore, pimozide is a potential ARPC2 inhibitor, and ARPC2 is a new molecular target. Taken together, the results of the present study provide new insights into the molecular mechanism and target that are responsible for the antitumor and antimetastatic activity of pimozide.
Collapse
Affiliation(s)
- Jiyeon Choi
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Yu-Jin Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yae Jin Yoon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cheol-Hee Kim
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea
| | - Seung-Jin Park
- Korea Research Institute of Bioscience and Biotechnology, Personalized Genomic Medicine Research Center, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Seon-Young Kim
- Korea Research Institute of Bioscience and Biotechnology, Personalized Genomic Medicine Research Center, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Dong Cho Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,University of Science and Technology, Daejeon, Korea
| |
Collapse
|
22
|
Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, Cheng X, Martinez ED, Torres MP, Kowalski J, Marcus AI, Vertino PM. Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci 2019; 132:jcs231514. [PMID: 31515279 PMCID: PMC6803364 DOI: 10.1242/jcs.231514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and include specialized cells that lead the invasive pack and others that follow behind. To better understand how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic sequence variation between leader and follower populations isolated from the H1299 non-small cell lung cancer cell line using an image-guided selection technique. We now identify 14 expressed mutations that are selectively enriched in leader or follower cells, suggesting a novel link between genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional characterization of two phenotype-specific candidate mutations showed that ARP3 enhances collective invasion by promoting the leader cell phenotype and that wild-type KDM5B suppresses chain-like cooperative behavior. These results demonstrate an important role for distinct genetic variants in establishing leader and follower phenotypes and highlight the necessity of maintaining a capacity for phenotypic plasticity during collective cancer invasion.
Collapse
Affiliation(s)
- Elizabeth L Zoeller
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Brian Pedro
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Jessica Konen
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Niveda Sundararaman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lei Wang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaojie Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Adam I Marcus
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
24
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
25
|
Colin M, Delporte C, Janky R, Lechon AS, Renard G, Van Antwerpen P, Maltese WA, Mathieu V. Dysregulation of Macropinocytosis Processes in Glioblastomas May Be Exploited to Increase Intracellular Anti-Cancer Drug Levels: The Example of Temozolomide. Cancers (Basel) 2019; 11:cancers11030411. [PMID: 30909495 PMCID: PMC6468498 DOI: 10.3390/cancers11030411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Macropinocytosis is a clathrin-independent endocytosis of extracellular fluid that may contribute to cancer aggressiveness through nutrient supply, recycling of plasma membrane and receptors, and exosome internalization. Macropinocytosis may be notably triggered by epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), two well-known markers for glioblastoma aggressiveness. Therefore, we studied whether the expression of key actors of macropinocytosis is modified in human glioma datasets. Strong deregulation has been evidenced at the mRNA level according to the grade of the tumor, and 38 macropinocytosis-related gene signatures allowed discrimination of the glioblastoma (GBM) samples. Honokiol-induced vacuolization was then compared to vacquinol-1 and MOMIPP, two known macropinocytosis inducers. Despite high phase-contrast morphological similarities, honokiol-induced vacuoles appeared to originate from both endocytosis and ER. Also, acridine orange staining suggested differences in the macropinosomes’ fate: their fusion with lysosomes appeared very limited in 3-(5-methoxy -2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP)-treated cells. Nevertheless, each of the compounds markedly increased temozolomide uptake by glioma cells, as evidenced by LC-MS. In conclusion, the observed deregulation of macropinocytosis in GBM makes them prone to respond to various compounds affecting their formation and/or intracellular fate. Considering that sustained macropinocytosis may also trigger cell death of both sensitive and resistant GBM cells, we propose to envisage macropinocytosis inducers in combination approaches to obtain dual benefits: increased drug uptake and additive/synergistic effects.
Collapse
Affiliation(s)
- Margaux Colin
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | | | - Anne-Sophie Lechon
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Gwendoline Renard
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium.
| |
Collapse
|
26
|
DuChez BJ, Doyle AD, Dimitriadis EK, Yamada KM. Durotaxis by Human Cancer Cells. Biophys J 2019; 116:670-683. [PMID: 30709621 PMCID: PMC6382956 DOI: 10.1016/j.bpj.2019.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023] Open
Abstract
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2-7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.
Collapse
Affiliation(s)
- Brian J DuChez
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
27
|
Yoon YJ, Han YM, Choi J, Lee YJ, Yun J, Lee SK, Lee CW, Kang JS, Chi SW, Moon JH, Lee S, Han DC, Kwon BM. Benproperine, an ARPC2 inhibitor, suppresses cancer cell migration and tumor metastasis. Biochem Pharmacol 2019; 163:46-59. [PMID: 30710516 DOI: 10.1016/j.bcp.2019.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/24/2019] [Indexed: 02/09/2023]
Abstract
Metastasis is the leading cause of cancer mortality and cancer cell migration is an essential stage of metastasis. We identified benproperine (Benp, a clinically used antitussive drug) as an inhibitor of cancer cell migration and an anti-metastatic agent. Benp selectively inhibited cancer cell migration and invasion, which also suppressed metastasis of cancer cells in animal models. Actin-related protein 2/3 complex subunit 2 (ARPC2) was identified as a molecular target of Benp by affinity column chromatography with Benp-tagged Sepharose beads. Benp bound directly to ARPC2 in cells, which was validated by pull-down assay using Benp-biotin and label-free biochemical methods such as the drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Benp inhibited Arp2/3 function, showing disruption of lamellipodial structure and inhibition of actin polymerization. Unlike Arp2/3 inhibitors, Benp selectively inhibited the migration of cancer cells but not normal cells. ARPC2-knockdown cancer cells showed defective cell migration and suppressed metastasis in an animal model. Therefore, ARPC2 is a potential target for anti-metastatic therapy, and Benp has the clinical potential to block metastasis. Furthermore, Benp is a useful agent for studying the functions of the Arp2/3 complex in cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Yae Jin Yoon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Young-Min Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Jiyeon Choi
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea; Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yu-Jin Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Jieun Yun
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Su-Kyung Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Chang Woo Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Jong Soon Kang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Seung-Wook Chi
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea; Korea University of Science and Technology in Korea, Daejeon, Republic of Korea
| | - Jeong Hee Moon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Sangku Lee
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea
| | - Dong Cho Han
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea; Korea University of Science and Technology in Korea, Daejeon, Republic of Korea.
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahakro, Daejeon 34141, Republic of Korea; Korea University of Science and Technology in Korea, Daejeon, Republic of Korea.
| |
Collapse
|
28
|
Mair DB, Ames HM, Li R. Mechanisms of invasion and motility of high-grade gliomas in the brain. Mol Biol Cell 2018; 29:2509-2515. [PMID: 30325290 PMCID: PMC6254577 DOI: 10.1091/mbc.e18-02-0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
High-grade gliomas are especially difficult tumors to treat due to their invasive behavior. This has led to extensive research focusing on arresting glioma cell migration. Cell migration involves the sensing of a migratory cue, followed by polarization in the direction of the cue, and reorganization of the actin cytoskeleton to allow for a protrusive leading edge and a contractile trailing edge. Transmission of these forces to produce motility also requires adhesive interactions of the cell with the extracellular microenvironment. In glioma cells, transmembrane receptors such as CD44 and integrins bind the cell to the surrounding extracellular matrix that provides a substrate on which the cell can exert the requisite forces for cell motility. These various essential parts of the migratory machinery are potential targets to halt glioma cell invasion. In this review, we discuss the mechanisms of glioma cell migration and how they may be targeted in anti-invasion therapies.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Heather M. Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
29
|
Dong L, Ding H, Li Y, Xue D, Li Z, Liu Y, Zhang T, Zhou J, Wang P. TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer. Int J Biol Macromol 2018; 121:200-206. [PMID: 30267820 DOI: 10.1016/j.ijbiomac.2018.09.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) has been reported to be overexpressed in serval types of human cancers, and regulate tumor cell proliferation, migration and invasion. However, the role of TRIP13 in prostate cancer was still unclear. In our study, the correlation between TRIP13 expression and clinical parameters including prognosis was evaluated in 160 prostate cancer patients. Moreover, the MTT assay, cell migration and invasion assays were performed to assess the effect of TRIP13 on prostate cancer cell biological behaviour. In our results, the expression status of TRIP13 was observed to be elevated in prostate cancer tissue samples through analyzing microarray (GSE55945). Furthermore, mRNA and protein TRIP13 expression were confirmed to be overexpressed in prostate cancer tissue samples and cell lines. High-expression of TRIP13 was correlated with present lymph node involvement, distant metastasis, high Gleason score, levels of serum PSA and poor prognosis in prostate cancer patients. The gain-of-function and loss-of-function studies suggested that TRIP13 functioned as oncogene to regulate prostate cancer cell proliferation, migration, invasion through controlling YWHAZ and epithelial-mesenchymal transition (EMT)-associated genes. In conclusion, TRIP13 is correlated with clinical progression and poor prognosis, and serves as oncogene in prostate cancer.
Collapse
Affiliation(s)
- Liming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Honglin Ding
- Department of Urology, The Affiliated Hospital of Chifeng Medical College, Chifeng 024000, Inner Mongolia, China
| | - Yanpei Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Dongwei Xue
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zhi Li
- Department of Ethnpharmacology, School of Pharmaeutical Scineces, China Medical University, Shenyang 110000, Liaoning, China
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Teng Zhang
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Jian Zhou
- Department of Urology, Tachengqu Hospital Affiliated of China Medical University, Tacheng 834700, Xinjiang, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
30
|
Fu Y, Yu W, Cai H, Lu A. Forecast of actin-binding proteins as the oncotarget in osteosarcoma - a review of mechanism, diagnosis and therapy. Onco Targets Ther 2018; 11:1553-1561. [PMID: 29593421 PMCID: PMC5865567 DOI: 10.2147/ott.s159894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignant tumor with a high rate of lung metastasis and principally emerges in children and adolescents. Although neoadjuvant chemotherapy is widely used around the world, a high rate of chemoresistance occurs and frequently generates a poor prognosis. Therefore, finding a new appropriate prognostic marker for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. Actin-binding proteins (ABPs) are a group of proteins that interact with actin cytoskeleton and play a crucial role in the regulation of the cell motility and morphology in eukaryotes. Meanwhile, ABPs also act as a bridge between the cytomembrane and nucleus, which transmit the outside-in and inside-out signals in cytoplasm. Furthermore, ABPs alter the dynamic structure of actin and regulate the invasion and metastasis of cancer. Hence, ABPs have a wide application in predicting the prognosis, and may be new targets, in tumor therapy. This review focuses on a series of ABPs and discusses their modulatory functions. It provides a new insight into the classification of ABPs’ functions in the process of invasion and metastasis in OS and illuminates the potential ability in predicting the prognosis of OS patients.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Yu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hongliu Cai
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Anwei Lu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
31
|
Actin cytoskeleton regulator Arp2/3 complex is required for DLL1 activating Notch1 signaling to maintain the stem cell phenotype of glioma initiating cells. Oncotarget 2018; 8:33353-33364. [PMID: 28380416 PMCID: PMC5464873 DOI: 10.18632/oncotarget.16495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Actin cytoskeleton regulator Arp2/3 complex stimulates glioma cell motility and migration, and thus triggers tumor invasion. However, little is known regarding the role of actin cytoskeleton in maintaining the stem cell phenotype. Here, we showed that Arp2/3 complex improved stem cell phenotype maintenance through sustaining the activated Notch signaling. ShRNA targeting Notch ligand Delta-like 1 (DLL1) decreased CD133 and Nestin expression, and impaired the self-renewal ability of CD133+ U87-MG and U251-MG glioma cells, indicating DLL1/Notch1 signaling promoted stem cell phenotype maintenance. Interestingly, inhibiting Arp2/3 complex also induced the similar effect of shDLL1. Silencing DLL1 in the Arp2/3 inhibited CD133+ cells did not further abrogate the stem cell phenotype, suggesting DLL1 function requires Arp2/3 complex in glioma initiating cells (GICs). However, exogenous soluble DLL1 (sDLL1) instead of endogenous DLL1 rescued the Arp2/3 inhibition-induced stem cell phenotype suppression. The underlying mechanism was that Arp2/3 inhibition impeded DLL1 vesicular transport from cytoplasm to cell membrane, which resulted in DLL1 unable to activate Notch pathway. Furthermore, we illustrated that Arp2/3 inhibition abolished the tumorigenicity of CD133+ U87-MG neurosphere cells in the intracranial model. These findings suggested that cytoskeleton maintained the stem cell phenotype in GBM, which provide novel therapeutic strategy that anti-invasive targeted therapies may help eliminate GICs.
Collapse
|
32
|
Anti-metastatic activity of Agrocybe aegerita galectin (AAL) in a mouse model of breast cancer lung metastasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
33
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
34
|
Khan MH, Salomaa SI, Jacquemet G, Butt U, Miihkinen M, Deguchi T, Kremneva E, Lappalainen P, Humphries MJ, Pouwels J. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex. J Cell Sci 2017; 130:3094-3107. [PMID: 28775156 PMCID: PMC5612173 DOI: 10.1242/jcs.200329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meraj H Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Siiri I Salomaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Umar Butt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Turku Drug Research Doctoral Programme, University of Turku, Turku 20520, Finland
| | - Takahiro Deguchi
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland
- Laboratory of Biophysics, University of Turku, Turku 20520, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
35
|
Liu C, Wang X, Genchev GZ, Lu H. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. Methods 2017. [DOI: 10.1016/j.ymeth.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
37
|
Wang PS, Chou FS, Ramachandran S, Xia S, Chen HY, Guo F, Suraneni P, Maher BJ, Li R. Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 2016; 143:2741-52. [PMID: 27385014 PMCID: PMC5004905 DOI: 10.1242/dev.130542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex – the unique actin nucleator that produces branched actin networks – plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment. Summary: During mouse cortical development, the Arp2/3 actin branching complex regulates process formation and the maintenance of radial glial cell polarity, as well as affecting neuronal migration.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Fu-Sheng Chou
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Praveen Suraneni
- Division of Hematology/Oncology, Robert Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 4940 Eastern Ave., Baltimore, MD 21224, USA Department of Neuroscience, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Brayford S, Bryce NS, Schevzov G, Haynes EM, Bear JE, Hardeman EC, Gunning PW. Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge. Curr Biol 2016; 26:1312-8. [PMID: 27112294 DOI: 10.1016/j.cub.2016.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 12/26/2022]
Abstract
At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration.
Collapse
Affiliation(s)
- Simon Brayford
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elizabeth M Haynes
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - James E Bear
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Arpin downregulation in breast cancer is associated with poor prognosis. Br J Cancer 2016; 114:545-53. [PMID: 26867158 PMCID: PMC4782208 DOI: 10.1038/bjc.2016.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 01/06/2016] [Indexed: 01/28/2023] Open
Abstract
Background: The Arp2/3 complex is required for cell migration and invasion. The Arp2/3 complex and its activators, such as the WAVE complex, are deregulated in diverse cancers. Here we investigate the expression of Arpin, the Arp2/3 inhibitory protein that antagonises the WAVE complex. Methods: We used qRT–PCR and reverse phase protein arrays in a patient cohort with known clinical parameters and outcome, immunofluorescence in breast biopsy cryosections and breast cancer cell lines. Results: Arpin was downregulated at the mRNA and protein levels in mammary carcinoma cells. Arpin mRNA downregulation was associated with poor metastasis-free survival (MFS) on univariate analysis (P=0.022). High expression of the NCKAP1 gene that encodes a WAVE complex subunit was also associated with poor MFS on univariate analysis (P=0.0037) and was mutually exclusive with Arpin low. Arpin low or NCKAP1 high was an independent prognosis factor on multivariate analysis (P=0.0012) and was strongly associated with poor MFS (P=0.000064). Conclusions: Loss of the Arp2/3 inhibitory protein Arpin produces a similar poor outcome in breast cancer as high expression of the NCKAP1 subunit of the Arp2/3 activatory WAVE complex.
Collapse
|
41
|
Cockbill LMR, Murk K, Love S, Hanley JG. Protein interacting with C kinase 1 suppresses invasion and anchorage-independent growth of astrocytic tumor cells. Mol Biol Cell 2015; 26:4552-61. [PMID: 26466675 PMCID: PMC4678014 DOI: 10.1091/mbc.e15-05-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytic tumors are the most common form of primary brain tumor. Astrocytic tumor cells infiltrate the surrounding CNS tissue, allowing them to evade removal upon surgical resection of the primary tumor. Dynamic changes to the actin cytoskeleton are crucial to cancer cell invasion, but the specific mechanisms that underlie the particularly invasive phenotype of astrocytic tumor cells are unclear. Protein interacting with C kinase 1 (PICK1) is a PDZ and BAR domain-containing protein that inhibits actin-related protein 2/3 (Arp2/3)-dependent actin polymerization and is involved in regulating the trafficking of a number of cell-surface receptors. Here we report that, in contrast to other cancers, PICK1 expression is down-regulated in grade IV astrocytic tumor cell lines and also in clinical cases of the disease in which grade IV tumors have progressed from lower-grade tumors. Exogenous expression of PICK1 in the grade IV astrocytic cell line U251 reduces their capacity for anchorage-independent growth, two-dimensional migration, and invasion through a three-dimensional matrix, strongly suggesting that low PICK1 expression plays an important role in astrocytic tumorigenesis. We propose that PICK1 negatively regulates neoplastic infiltration of astrocytic tumors and that manipulation of PICK1 is an attractive possibility for therapeutic intervention.
Collapse
Affiliation(s)
- Louisa M R Cockbill
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Kai Murk
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Seth Love
- School of Clinical Sciences, University of Bristol, Bristol BS10 5NB, United Kingdom
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
42
|
Alexandrova AY. Plasticity of tumor cell migration: acquisition of new properties or return to the past? BIOCHEMISTRY (MOSCOW) 2015; 79:947-63. [PMID: 25385021 DOI: 10.1134/s0006297914090107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During tumor development cancer cells pass through several stages when cell morphology and migration abilities change remarkably. These stages are named epithelial-mesenchymal and mesenchymal-amoeboid transitions. The molecular mechanisms underlying cell motility are changing during these transitions. As result of transitions the cells acquire new characteristics and modes of motility. Cell migration becomes more independent from the environmental conditions, and thus cell dissemination becomes more aggressive, which leads to formation of distant metastases. In this review we discuss the characteristics of each of the transitions, cell morphology, and the specificity of cellular structures responsible for different modes of cell motility as well as molecular mechanisms regulating each transition.
Collapse
Affiliation(s)
- A Y Alexandrova
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| |
Collapse
|
43
|
Wang L, Zhao K, Ren B, Zhu M, Zhang C, Zhao P, Zhou H, Chen L, Yu S, Yang X. Expression of cortactin in human gliomas and its effect on migration and invasion of glioma cells. Oncol Rep 2015; 34:1815-24. [PMID: 26238396 DOI: 10.3892/or.2015.4156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of cortactin in the infiltrative behavior of glioma cells and the potential mechanism of cortactin in promoting the migration and invasion of glioma cells. The expression of cortactin was detected by immunohistochemistry in 40 human glioma specimens and 8 non-tumor brain specimens. U251, LN229 and SNB19 glioma cells were employed for the in vitro study and assigned into the siRNA-cortactin (transfected with siRNA specific to cortactin), siRNA-NC (transfected with negative control RNA sequence) and siRNA-N (transfected with empty vector) groups. The expression of cortactin in different treated glioma cell groups was detected using western blot analysis and RT-qPCR. The migration and invasion of glioma cells under different treatments were assessed using a wound-healing assay and Transwell-chamber invasion assay, respectively. The lamellipodia of glioma cells following treatment were observed by immunofluorescence (IF) and changes of lamellipodia over time were imaged using an inverted microscope. The distribution of cortactin and the actin-related protein 2/3 (Arp2/3) complex in glioma cells were observed after IF detection. The expression of cortactin in the glioma specimens was significantly higher than that in non-tumor brain tissue (P<0.05) and positively correlated with the malignancy of glioma specimens (r=0.912, P=0.00). The cortactin expression in glioma cells was markedly inhibited (P<0.05) and their migration and invasion ability was also impaired significantly following treatment with siRNA (P<0.05) compared with the other two groups. The size and persistence time of lamellipodia were reduced after cortactin expression was inhibited in glioma cells. Cortactin and the Arp2/3 complex were co-localized in the front of glioma cells, where actin was polymerized and lamellipodia formed. Thus, the results revealed that, cortactin is crucial in invasion and migration of glioma cells, which may promote the migration and invasion of glioma cells by regulating lamellipodia formation, a process requiring the combination of cortactin and the Arp2/3 complex.
Collapse
Affiliation(s)
- Leilei Wang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhao
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Meng Zhu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chen Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pengfei Zhao
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hua Zhou
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lei Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shenping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xuejun Yang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
44
|
Zhu M, Chen L, Zhao P, Zhou H, Zhang C, Yu S, Lin Y, Yang X. Store-operated Ca(2+) entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014. [PMID: 25433371 DOI: 10.1186/preaccept-3101393591453932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The ubiquitous second messenger Ca(2+) has been demonstrated to play an important role in cancer progression. Store-operated Ca(2+) entry (SOCE) is the main Ca(2+) entry pathway regulating intracellular Ca(2+) concentration in a variety of cancer types. The present study aimed to explore the specific mechanisms of SOCE in the processes of glioma migration and invasion. METHODS The expression of Orai1, a key component of SOCE, was examined in glioma samples and glioma cell lines by immunohistochemistry and western blot analysis. Both pharmacological intervention and RNA interference were employed to investigate the role of SOCE in glioma cell migration and invasion in vitro. The intracellular Ca(2+) was certified through Fluo-4/AM based Ca(2+) measurement. The effect of SOCE on cell viability, migration, and invasion was explored by methyl thiazolyl tetrazolium (MTT) assay, wound healing assay, transwell invasion assay. Western blot analysis and immunofluorescence assay were used to observe the changes of downstream related protein and cell morpholog. RESULTS Orai1 expression was elevated in glioma tissues and several glioma cell lines compared with non-neoplastic brain tissues. Either inhibition of SOCE by a pharmacological inhibitor or Orai1 downregulation suppressed glioma cell migration and invasion. However, re-expression of Orai1 could rescue glioma cell motility. Furthermore, phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) participated in the mechanisms by which SOCE regulated focal adhesion turnover and epithelial-to-mesenchymal (-like) transition in glioma cells, both of which are considered to be critical for tumor progression. CONCLUSIONS The SOCE-Pyk2 pathway is essential for glioma migration and invasion. The study indicates the potential value of Orai1 as a molecular target for anti-invasion therapy.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Pengfei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Hua Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Yu Lin
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|
45
|
Zhu M, Chen L, Zhao P, Zhou H, Zhang C, Yu S, Lin Y, Yang X. Store-operated Ca(2+) entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:98. [PMID: 25433371 PMCID: PMC4258251 DOI: 10.1186/s13046-014-0098-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023]
Abstract
Background The ubiquitous second messenger Ca2+ has been demonstrated to play an important role in cancer progression. Store-operated Ca2+ entry (SOCE) is the main Ca2+ entry pathway regulating intracellular Ca2+ concentration in a variety of cancer types. The present study aimed to explore the specific mechanisms of SOCE in the processes of glioma migration and invasion. Methods The expression of Orai1, a key component of SOCE, was examined in glioma samples and glioma cell lines by immunohistochemistry and western blot analysis. Both pharmacological intervention and RNA interference were employed to investigate the role of SOCE in glioma cell migration and invasion in vitro. The intracellular Ca2+ was certified through Fluo-4/AM based Ca2+ measurement. The effect of SOCE on cell viability, migration, and invasion was explored by methyl thiazolyl tetrazolium (MTT) assay, wound healing assay, transwell invasion assay. Western blot analysis and immunofluorescence assay were used to observe the changes of downstream related protein and cell morpholog. Results Orai1 expression was elevated in glioma tissues and several glioma cell lines compared with non-neoplastic brain tissues. Either inhibition of SOCE by a pharmacological inhibitor or Orai1 downregulation suppressed glioma cell migration and invasion. However, re-expression of Orai1 could rescue glioma cell motility. Furthermore, phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) participated in the mechanisms by which SOCE regulated focal adhesion turnover and epithelial-to-mesenchymal (−like) transition in glioma cells, both of which are considered to be critical for tumor progression. Conclusions The SOCE-Pyk2 pathway is essential for glioma migration and invasion. The study indicates the potential value of Orai1 as a molecular target for anti-invasion therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0098-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Pengfei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Hua Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Yu Lin
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154# Anshan Road, Tianjin, 300052, China. .,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| |
Collapse
|