1
|
Wang Z, Xu C, Wang Q, Wang Y. Repurposing of nervous system drugs for cancer treatment: recent advances, challenges, and future perspectives. Discov Oncol 2025; 16:396. [PMID: 40133751 PMCID: PMC11936871 DOI: 10.1007/s12672-025-02067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
The nervous system plays a critical role in developmental biology and oncology, influencing processes from ontogeny to the complex dynamics of cancer progression. Interactions between the nervous system and cancer significantly affect oncogenesis, tumor growth, invasion, metastasis, treatment resistance, inflammation that promotes tumors, and the immune response. A comprehensive understanding of the signal transduction pathways involved in cancer biology is essential for devising effective anti-cancer strategies and overcoming resistance to existing therapies. Recent advances in cancer neuroscience promise to establish a new cornerstone of cancer therapy. Repurposing drugs originally developed for modulating nerve signal transduction represent a promising approach to target oncogenic signaling pathways in cancer treatment. This review endeavors to investigate the potential of repurposing neurological drugs, which target neurotransmitters and neural pathways, for oncological applications. In this context, it aims to bridge the interdisciplinary gap between neurology, psychiatry, internal medicine, and oncology. By leveraging already approved drugs, researchers can utilize existing extensive safety and efficacy data, thereby reducing both the time and financial resources necessary for the development of new cancer therapies. This strategy not only promises to enhance patient outcomes but also to expand the array of available treatments, thereby enriching the therapeutic landscape in oncology.
Collapse
Affiliation(s)
- Zixun Wang
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Chen Xu
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qi Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
2
|
Rocha MA, Cardoso AL, Martins C, Mello MLS. Sodium valproate affects the expression of p16 INK4a and p21 WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 2024; 28:432. [PMID: 39049983 PMCID: PMC11268092 DOI: 10.3892/ol.2024.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
3
|
Psilopatis I, Garmpis N, Garmpi A, Vrettou K, Sarantis P, Koustas E, Antoniou EA, Dimitroulis D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Nonni A, Nikolettos K, Fleckenstein FN, Zoumpouli C, Damaskos C. The Emerging Role of Histone Deacetylase Inhibitors in Cervical Cancer Therapy. Cancers (Basel) 2023; 15:2222. [PMID: 37190151 PMCID: PMC10137219 DOI: 10.3390/cancers15082222] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cervical carcinoma is one of the most common cancers among women globally. Histone deacetylase inhibitors (HDACIs) constitute anticancer drugs that, by increasing the histone acetylation level in various cell types, induce differentiation, cell cycle arrest, and apoptosis. The aim of the current review is to study the role of HDACIs in the treatment of cervical cancer. A literature review was conducted using the MEDLINE and LIVIVO databases with a view to identifying relevant studies. By employing the search terms "histone deacetylase" and "cervical cancer", we managed to identify 95 studies published between 2001 and 2023. The present work embodies the most up-to-date, comprehensive review of the literature centering on the particular role of HDACIs as treatment agents for cervical cancer. Both well-established and novel HDACIs seem to represent modern, efficacious anticancer drugs, which, alone or in combination with other treatments, may successfully inhibit cervical cancer cell growth, induce cell cycle arrest, and provoke apoptosis. In summary, histone deacetylases seem to represent promising future treatment targets in cervical cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- Department of Cytopathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kouraklis
- Department of Surgery, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Florian N. Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 13353 Berlin, Germany
| | - Christina Zoumpouli
- Department of Pathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| |
Collapse
|
4
|
Rocha MA, de Campos Vidal B, Mello MLS. Sodium Valproate Modulates the Methylation Status of Lysine Residues 4, 9 and 27 in Histone H3 of HeLa Cells. Curr Mol Pharmacol 2023; 16:197-210. [PMID: 35297358 DOI: 10.2174/1874467215666220316110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Valproic acid/sodium valproate (VPA), a well-known anti-epileptic agent, inhibits histone deacetylases, induces histone hyperacetylation, promotes DNA demethylation, and affects the histone methylation status in some cell models. Histone methylation profiles have been described as potential markers for cervical cancer prognosis. However, histone methylation markers that can be studied in a cervical cancer cell line, like HeLa cells, have not been investigated following treatment with VPA. METHODS In this study, the effect of 0.5 mM and 2.0 mM VPA for 24 h on H3K4me2/me3, H3K9me/me2 and H3K27me/me3 signals as well as on KMT2D, EZH2, and KDM3A gene expression was investigated using confocal microscopy, Western blotting, and RT-PCR. Histone methylation changes were also investigated by Fourier-transform infrared spectroscopy (FTIR). RESULTS We found that VPA induces increased levels of H3K4me2/me3 and H3K9me, which are indicative of chromatin activation. Particularly, H3K4me2 markers appeared intensified close to the nuclear periphery, which may suggest their implication in increased transcriptional memory. The abundance of H3K4me2/me3 in the presence of VPA was associated with increased methyltransferase KMT2D gene expression. VPA induced hypomethylation of H3K9me2, which is associated with gene silencing, and concomitant with the demethylase KDM3A, it increased gene expression. Although VPA induces increased H3K27me/me3 levels, it is suggested that the role of the methyltransferase EZH2 in this context could be affected by interactions with this drug. CONCLUSION Histone FTIR spectra were not affected by VPA under present experimental conditions. Whether our epigenetic results are consistent with VPA affecting the aggressive tumorous state of HeLa cells, further investigation is required.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
5
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
6
|
Duan P, Wang H, Yi X, Zhang H, Chen H, Pan Z. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway. Stem Cell Res Ther 2022; 13:342. [PMID: 35883192 PMCID: PMC9327281 DOI: 10.1186/s13287-022-03027-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/02/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The imbalance of osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is closely related to steroid-induced avascular necrosis of the femoral head (SANFH). We aimed to investigate the epigenetic mechanism of intramedullary fat accumulation and continuous osteonecrosis after glucocorticoid (GC) withdrawal in SANFH. METHODS An SANFH model was established in SD rats, which received an intermittent high GC dose for the first 4 weeks followed by an additional 4 weeks without GC. We explored the synergistic effects and mechanisms of C/EBPα and PPARγ on the differentiation of BMSCs by lentivirus-mediated gene knockdown and overexpression assays. A chromatin immunoprecipitation assay was performed to identify epigenetic modification sites on PPARγ in vivo and in vitro. RESULTS In the SANFH model, intramedullary fat was significantly increased, and the transcription factors C/EBPα and PPARγ were upregulated simultaneously in the femoral head. In vitro, C/EBPα promoted adipogenic differentiation of BMSCs by targeting the PPARγ signalling pathway, while overexpression of C/EBPα significantly impaired osteogenic differentiation. Further studies demonstrated that histone H3K27 acetylation of PPARγ played an important role in the epigenetic mechanism underlying SANFH. C/EBPα upregulates the histone H3K27 acetylation level in the PPARγ promoter region by inhibiting HDAC1. Additionally, inhibiting the histone acetylation level of PPARγ effectively prevented adipogenic differentiation, thus slowing the progression of SANFH. CONCLUSIONS Our results demonstrate the molecular mechanism by which C/EBPα regulates PPARγ expression by acetylating histones and revealed the epigenetic phenomenon in SANFH for the first time.
Collapse
Affiliation(s)
- Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanyu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Anti-proliferative and Apoptotic Effects of Valproic Acid on HeLa Cells. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Valproic acid (VPA), a branched short-chain fatty acid and histone deacetylase (HDAC) inhibitor, has diverse biological activities in human cells, including anti-cancer properties. Objectives: In the present study, we tested the cytotoxicity of VPA on the proliferation, cell cycle, and apoptosis of the human cervical cancer cell line, HeLa. Methods: HeLa cell line was cultured in Dulbecco’s modified eagle medium (DMEM) and the cytotoxicity effect of VPA (at 0 - 100 mM) on the HeLa cell was evaluated, using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay for 3 incubation times (24, 48, and 72 h). The effects of VPA on cell cycle arrest and apoptosis were evaluated, using flow cytometry. In addition, the alterations in the expression of Bax, Bcl-2, p53, and p21 were assessed with real‐time polymerase chain reaction (PCR). Results: Valproic acid reduced the viability of HeLa cells in a concentration- and time-dependent manner, and the IC50 values at 24, 48, and 72 h were 32.06, 21.29, and 14.51 mM, respectively. Further, VPA treatment remarkably increased the apoptosis of HeLa cells and arrested cells at the sub-G1 phase with a significant reduction in G2-M phase populations. The real-time PCR results demonstrated a significant increase in the expression of pro-apoptotic genes, including Bax, p53, and p21, as well as a reduction in the levels of the anti-apoptotic gene, Bcl-2. Conclusions: Valproic acid inhibits the proliferation of the HeLa cell line through the induction of the intrinsic pathway of apoptosis in a p35-dependent manner.
Collapse
|
8
|
Sargazi S, Hajinezhad MR, Barani M, Rahdar A, Shahraki S, Karimi P, Cucchiarini M, Khatami M, Pandey S. Synthesis, characterization, toxicity and morphology assessments of newly prepared microemulsion systems for delivery of valproic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116625] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Tilekar K, Hess JD, Upadhyay N, Schweipert M, Flath F, Gutierrez DA, Loiodice F, Lavecchia A, Meyer‐Almes F, Aguilera RJ, Ramaa CS. HDAC4 Inhibitors with Cyclic Linker and Non‐hydroxamate Zinc Binding Group: Design, Synthesis, HDAC Screening and
in
vitro
Cytotoxicity evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Jessica D. Hess
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Felix Flath
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Denisse A. Gutierrez
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science University of Bari “Aldo Moro” Via E. Orabona, 4 70126 Bari Italy
| | - Antonio Lavecchia
- Department of Pharmacy “Drug Discovery” Laboratory University of Napoli “Federico II” Via D. Montesano, 49 80131 Napoli Italy
| | - Franz‐Josef Meyer‐Almes
- Department of Chemical Engineering and Biotechnology University of Applied Science Haardtring 100 64295 Darmstadt Germany
| | - Renato J. Aguilera
- Cellular Characterization and Biorepository Core Facility Border Biomedical Research Center Department of Biological Sciences The University of Texas at El Paso 500 West University Avenue El Paso TX 79968-0519 USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy, Sector 8, CBD Belapur Navi Mumbai India
| |
Collapse
|
10
|
Sodium Valproate, a Histone Deacetylase Inhibitor, Provokes Reactive Oxygen Species-Mediated Cytotoxicity in Human Hepatocellular Carcinoma Cells. J Gastrointest Cancer 2021; 52:138-144. [PMID: 32006341 DOI: 10.1007/s12029-020-00370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Sodium valproate (SV), a novel class of histone deacetylases (HDACs) inhibitors commonly used as an antiepileptic drug. HDAC inhibitors are known to possess anticancer potentials. In this study, we investigated the cytotoxic potential of SV in human hepatocellular carcinoma (HepG2 cells) cell line. METHODS MTT assay was used to analyze cytotoxicity. Intracellular ROS and cytochrome c expression were analyzed by fluorescence microscopy. Morphology-related apoptosis was analyzed by dual staining with acridine orange/ethidium bromide. Caspase 3 protein expression was investigated by Western blotting analysis. RESULTS Sodium valproate treatments in HepG2 cells caused significant and dose-dependent cytotoxicity. Intracellular ROS was remarkably increased in the cells which are treated with SV and caused early and late apoptosis as evidenced by dual staining. SV-treated cells expressed cytochrome c and caspase 3 protein expression. CONCLUSION These results suggest the cytotoxic potentials of SV in HepG2 cells. This study may give an important clue for the inclusion of SV as an adjuvant along with standard anticancer agents after necessary in vivo and clinical studies.
Collapse
|
11
|
Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front Cell Dev Biol 2021; 8:592868. [PMID: 33634093 PMCID: PMC7901962 DOI: 10.3389/fcell.2020.592868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetic modifications on the carcinogenesis process has received a lot of attention in the last years. Among those, histone acetylation is a process regulated by histone deacetylases (HDAC) and histone acetyltransferases (HAT), and it plays an important role in epigenetic regulation, allowing the control of the gene expression. HDAC inhibitors (HDACi) induce cancer cell cycle arrest, differentiation, and cell death and reduce angiogenesis and other cellular events. Human papillomaviruses (HPVs) are small, non-enveloped double-stranded DNA viruses. They are major human carcinogens, being intricately linked to the development of cancer in 4.5% of the patients diagnosed with cancer worldwide. Long-term infection of high-risk (HR) HPV types, mainly HPV16 and HPV18, is one of the major risk factors responsible for promoting cervical cancer development. In vitro and in vivo assays have demonstrated that HDACi could be a promising therapy to HPV-related cervical cancer. Regardless of some controversial studies, the therapy with HDACi could target several cellular targets which HR-HPV oncoproteins could be able to deregulate. This review article describes the role of HDACi as a possible intervention in cervical cancer treatment induced by HPV, highlighting the main advances reached in the last years and providing insights for further investigations regarding those agents against cervical cancer.
Collapse
Affiliation(s)
- Natália Lourenço de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Gabriela Deberaldini
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gomes
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Aline Renata Pavan
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ângela Sousa
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean Leandro Dos Santos
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
12
|
Kooshkaki O, Derakhshani A, Safarpour H, Najafi S, Vahedi P, Brunetti O, Torabi M, Lotfinejad P, Paradiso AV, Racanelli V, Silvestris N, Baradaran B. The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. Int J Mol Sci 2020; 21:E5034. [PMID: 32708748 PMCID: PMC7404077 DOI: 10.3390/ijms21145034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gynecologic cancers account for approximately 11% of the newly diagnosed cancers in women in the United States and for 18% globally. The presence of tumor-infiltrating lymphocytes (TILs) influences the clinical outcome of cancer patients and immune checkpoint inhibitors (ICIs), including anti programmed cell death protein-1 (anti-PD-1), anti-programmed death-ligand 1 (anti-PD-L1), and anticytotoxic T-lymphocyte antigen 4 (anti-CTLA-4), which have been approved for treating different types of malignancies. Antibodies targeting the PD-1/PD-L1 checkpoint have shown dynamic and durable tumor regressions, suggesting a rebalancing of the host-tumor interaction. There are several the US food and drug administration (FDA)-approved ICIs targeting PD-1, including pembrolizumab and nivolumab, as well as those targeting PD-L1, including avelumab, atezolizumab, and durvalumab for melanoma, renal cell cancer, colorectal cancer, head and neck cancer, cervix cancer, urothelial cancer, and lung cancer. Current pre-clinical and clinical studies assessing PD-1/PD-L1 inhibitors in several gynecologic cancers have reported significant antitumor activity. In this review, we investigate pre-clinical and clinical studies that describe the safety and efficacy of anti-PD-1/PD-L1 antibodies, with a particular focus on ongoing clinical trials, analyzing the oncological outcome and adverse effects of ICIs in gynecologic cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.N.); (P.L.)
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.N.); (P.L.)
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Mitra Torabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran;
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.N.); (P.L.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Angelo Virgilio Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.N.); (P.L.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
13
|
Park HK, Han BR, Park WH. Combination of Arsenic Trioxide and Valproic Acid Efficiently Inhibits Growth of Lung Cancer Cells via G2/M-Phase Arrest and Apoptotic Cell Death. Int J Mol Sci 2020; 21:ijms21072649. [PMID: 32290325 PMCID: PMC7177455 DOI: 10.3390/ijms21072649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Arsenic trioxide (ATO; As2O3) has anti-cancer effects in various solid tumors as well as hematological malignancy. Valproic acid (VPA), which is known to be a histone deacetylase inhibitor, has also anti-cancer properties in several cancer cells including lung cancer cells. Combined treatment of ATO and VPA (ATO/VPA) could synergistically enhance anti-cancer effects and reduce ATO toxicity ATO. In this study, the combined anti-cancer effects of ATO and VPA (ATO/VPA) was investigated in NCI-H460 and NCI-H1299 lung cancer cells in vitro and in vivo. A combination of 3 μM ATO and 3 mM VPA (ATO/VPA) strongly inhibited the growths of both lung cancer cell types. DNA flow cytometry indicated that ATO/VPA significantly induced G2/M-phase arrest in both cell lines. In addition, ATO/VPA strongly increased the percentages of sub-G1 cells and annexin V-FITC positive cells in both cells. However, lactate dehydrogenase (LDH) release from cells was not increased in ATO/VPA-treated cells. In addition, ATO/VPA increased apoptosis in both cell types, accompanied by loss of mitochondrial membrane potential (MMP, ∆Ψm), activation of caspases, and cleavage of anti-poly ADP ribose polymerase-1. Moreover, a pan-caspase inhibitor, Z-VAD, significantly reduced apoptotic cell death induced by ATO/VPA. In the xenograft model, ATO/VPA synergistically inhibited growth of NCI-H460-derived xenograft tumors. In conclusion, the combination of ATO/VPA effectively inhibited the growth of lung cancer cells through G2/M-phase arrest and apoptotic cell death, and had a synergistic antitumor effect in vivo.
Collapse
Affiliation(s)
| | | | - Woo Hyun Park
- Correspondence: ; Tel.: +82-63-270-3079; Fax: +82-63-274-9892
| |
Collapse
|
14
|
Guo W, Chen Z, Tan L, Wu Q, Ren X, Fu C, Du Y, Ren J, Meng X. l-Cysteine decorated nanoscale metal-organic frameworks delivering valproic acid/cisplatin for drug-resistant lung cancer therapy. Chem Commun (Camb) 2020; 56:3919-3922. [PMID: 32149283 DOI: 10.1039/c9cc09712k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We design multifunctional CDDP-VPA@ZrMOF-Cys-PEG nanoparticles (CVZP NPs) based on the properties of valproic acid (VPA) that can downregulate the expression of vascular endothelial growth factor (VEGF) to reduce the drug resistance of tumor cells. In vivo experiments confirm that chemotherapy combined with microwave thermal therapy (MWTT) can significantly improve the therapeutic effect of cisplatin-resistant lung cancer.
Collapse
Affiliation(s)
- Wenna Guo
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chihara Y, Iizumi Y, Horinaka M, Watanabe M, Goi W, Morita M, Nishimoto E, Sowa Y, Yamada T, Takayama K, Sakai T. Histone deacetylase inhibitor OBP‑801 and amrubicin synergistically inhibit the growth of squamous cell lung carcinoma by inducing mitochondrial ASK1‑dependent apoptosis. Int J Oncol 2020; 56:848-856. [PMID: 32124968 DOI: 10.3892/ijo.2020.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Squamous cell lung carcinoma (SQCLC) is an aggressive type of lung cancer. In contrast with the marked advances that have been achieved in the treatment of lung adenocarcinoma, there are currently no effective targeted therapies for SQCLC, for with cytotoxic drugs are still the main treatment strategy. Therefore, the present study aimed to develop novel combination therapies for SQCLC. The results demonstrated that a combined treatment with the potent histone deacetylase (HDAC) inhibitor OBP‑801 and the third‑generation anthracycline amrubicin synergistically inhibited the viability of SQCLC cell lines by inducing apoptosis signal‑regulating kinase 1 (ASK1)‑dependent, as well as JNK‑ and p38 mitogen‑activated protein kinase (MAPK)‑independent apoptosis. OBP‑801 treatment strongly induced the protein expression levels of thioredoxin‑interacting protein (TXNIP), and amrubicin treatment increased the levels of intracellular reactive oxygen species (ROS), which suggested that this combination oxidized and dissociated thioredoxin 2 (Trx2) from mitochondrial ASK1 and activated ASK1. Moreover, mouse xenograft experiments using human H520 SQCLC cells revealed that the co‑treatment potently suppressed tumor growth in vivo. These results suggested that a combined treatment with OBP‑801 and amrubicin may have potential as a therapeutic strategy for SQCLC.
Collapse
Affiliation(s)
- Yusuke Chihara
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yosuke Iizumi
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Mano Horinaka
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Motoki Watanabe
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Wakana Goi
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Mie Morita
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Emi Nishimoto
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yoshihiro Sowa
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
16
|
Sanaei M, Kavoosi F, Roustazadeh A, Shahsavani H. In Vitro Effect of the Histone Deacetylase Inhibitor Valproic Acid on Viability and Apoptosis of the PLC/PRF5 Human Hepatocellular Carcinoma Cell Line. Asian Pac J Cancer Prev 2018; 19:2507-2510. [PMID: 30256044 PMCID: PMC6249479 DOI: 10.22034/apjcp.2018.19.9.2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleosome is the fundamental building block of eukaryotic chromatin formed by DNA and histone proteins. Chromatin modifications such as acetylation, methylation, and phosphorylation are necessary for protection, replication, and gene transcription. Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups to re-establish positive charges on histones and aberrant deacetylation may lead to tumorigenesis in different tissues. Histone deacetylase inhibitors (HDACIs) are a class of chemotherapeutic agent that can reactivate gene expression and inhibit the growth of tumor cells by histone deacetylase inhibition. HDACI valproic acid (VPA) has shown potent anticancer effects in vitro and in vivo. Previously, we reported that VAP can inhibit the growth and induce apoptosis of human colon carcinoma HT 29 and hepatocellular carcinoma HepG 2 cells. The aim of the present study was to access the effect of VPA on proliferation and apoptosis of the human hepatocellular carcinoma (HCC) PLC/PRF5 cell line.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | | | | | | |
Collapse
|
17
|
Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. Int J Infect Dis 2018; 69:78-84. [DOI: 10.1016/j.ijid.2018.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/29/2023] Open
|
18
|
Alfurhood JA, Sun H, Kabb CP, Tucker BS, Matthews JH, Luesch H, Sumerlin BS. Poly( N-(2-Hydroxypropyl) Methacrylamide)-Valproic Acid Conjugates as Block Copolymer Nanocarriers. Polym Chem 2017; 8:4983-4987. [PMID: 28959359 PMCID: PMC5612619 DOI: 10.1039/c7py00196g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report nanoassemblies based on block copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) in which drug cleavage enhances the biological compatibility of the original polymer carrier by regeneration of HPMA units. Drug release via ester hydrolysis suggests this approach offers potential for stimuli-responsive drug delivery under acidic conditions.
Collapse
Affiliation(s)
- Jawaher A Alfurhood
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Bryan S Tucker
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| |
Collapse
|
19
|
Park WH. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H 2O 2-induced calf pulmonary arterial endothelial cell death. Oncol Lett 2017; 14:1737-1744. [PMID: 28789403 DOI: 10.3892/ol.2017.6330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H2O2 treatment in calf pulmonary artery ECs (CPAECs). H2O2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H2O2-treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G1 phase cells in H2O2-treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H2O2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H2O2-treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H2O2-untreated, control CPAECs. The data suggest that the exposure of CPAECs to H2O2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H2O2-induced cell growth inhibition and cell death.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| |
Collapse
|
20
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
21
|
Thiel C, Cordes H, Fabbri L, Aschmann HE, Baier V, Smit I, Atkinson F, Blank LM, Kuepfer L. A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations. PLoS Comput Biol 2017; 13:e1005280. [PMID: 28151932 PMCID: PMC5289425 DOI: 10.1371/journal.pcbi.1005280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022] Open
Abstract
Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. Liver toxicity may occur at drug levels above the therapeutic range and is thus a crucial problem in clinical care. However, the cellular changes induced by drug administration of therapeutic and toxic doses in humans are still not well understood. We here coupled patient-specific drug concentration-time profiles following oral administration of therapeutic and toxic doses with in vitro drug response data to predict toxic changes that quantitatively reflect the transition from desired drug effects to undesired toxic reactions. These toxic changes were comparatively evaluated for fifteen hepatotoxic drugs to identify subsets of drugs, which show similar drug effects on key cellular processes, functional classes of genes, and individual genes, respectively. In addition, analyzing toxic changes for individual genes allowed the prediction of molecular biomarkers and potential drug-drug interactions. Our results may hence support the early diagnosis of liver toxicity in clinical care in the future and may, moreover, help to assess potential risks of drug combination therapies.
Collapse
Affiliation(s)
- Christoph Thiel
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Henrik Cordes
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Lorenzo Fabbri
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Hélène Eloise Aschmann
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Vanessa Baier
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Ines Smit
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Francis Atkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lars Mathias Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
| | - Lars Kuepfer
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, Aachen, Germany
- * E-mail:
| |
Collapse
|
22
|
Saenglee S, Jogloy S, Patanothai A, Leid M, Senawong T. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol Rep 2016; 68:1102-1110. [DOI: 10.1016/j.pharep.2016.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/22/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
|
23
|
Patties I, Kortmann RD, Menzel F, Glasow A. Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:94. [PMID: 27317342 PMCID: PMC4912728 DOI: 10.1186/s13046-016-0376-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Background Medulloblastoma (MB) is the most common pediatric brain tumor. Current treatment regimes consisting of primary surgery followed by radio- and chemotherapy, achieve 5-year overall survival rates of only about 60 %. Therapy-induced endocrine and neurocognitive deficits are common late adverse effects. Thus, improved antitumor strategies are urgently needed. In this study, we combined irradiation (IR) together with epigenetic modifiers and differentiation inducers in a multimodal approach to enhance the efficiency of tumor therapy in MB and also assessed possible late adverse effects on neurogenesis. Methods In three human MB cell lines (DAOY, MEB-Med8a, D283-Med) short-time survival (trypan blue exclusion assay), apoptosis, autophagy, cell cycle distribution, formation of gH2AX foci, and long-term reproductive survival (clonogenic assay) were analyzed after treatment with 5-aza-2′-deoxycytidine (5-azadC), valproic acid (VPA), suberanilohydroxamic acid (SAHA), abacavir (ABC), all-trans retinoic acid (ATRA) and resveratrol (RES) alone or combined with 5-aza-dC and/or IR. Effects of combinatorial treatments on neurogenesis were evaluated in cultured murine hippocampal slices from transgenic nestin-CFPnuc C57BL/J6 mice. Life imaging of nestin-positive neural stem cells was conducted at distinct time points for up to 28 days after treatment start. Results All tested drugs showed a radiosynergistic action on overall clonogenic survival at least in two-outof-three MB cell lines. This effect was pronounced in multimodal treatments combining IR, 5-aza-dC and a second drug. Hereby, ABC and RES induced the strongest reduction of clongenic survival in all three MB cell lines and led to the induction of apoptosis (RES, ABC) and/or autophagy (ABC). Additionally, 5-aza-dC, RES, and ABC increased the S phase cell fraction and induced the formation of gH2AX foci at least in oneout-of-three cell lines. Thereby, the multimodal treatment with 5-aza-dC, IR, and RES or ABC did not change the number of normal neural progenitor cells in murine slice cultures. Conclusion In conclusion, the radiosensitizing capacities of epigenetic and differentiation-inducing drugs presented here suggest that their adjuvant administration might improve MB therapy. Thereby, the combination of 5-aza-dC/IR with ABC and RES seemed to be the most promising to enhance tumor control without affecting the normal neural precursor cells.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany.
| | - Rolf-Dieter Kortmann
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| | - Franziska Menzel
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| |
Collapse
|
24
|
Zumla A, Rao M, Dodoo E, Maeurer M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med 2016; 14:89. [PMID: 27301245 PMCID: PMC4908783 DOI: 10.1186/s12916-016-0635-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023] Open
Abstract
Treatment of multidrug-resistant tuberculosis (MDR-TB) is extremely challenging due to the virulence of the etiologic strains of Mycobacterium tuberculosis (M. tb), the aberrant host immune responses and the diminishing treatment options with TB drugs. New treatment regimens incorporating therapeutics targeting both M. tb and host factors are urgently needed to improve the clinical management outcomes of MDR-TB. Host-directed therapies (HDT) could avert destructive tuberculous lung pathology, facilitate eradication of M. tb, improve survival and prevent long-term functional disability. In this review we (1) discuss the use of HDT for cancer and other infections, drawing parallels and the precedent they set for MDR-TB treatment, (2) highlight preclinical studies of pharmacological agents commonly used in clinical practice which have HDT potential, and (3) outline developments in cellular therapy to promote clinically beneficial immunomodulation to improve treatment outcomes in patients with pulmonary MDR-TB. The use of HDTs as adjuncts to MDR-TB therapy requires urgent evaluation.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Ernest Dodoo
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Markus Maeurer
- F79, Therapeutic Immunology (TIM) division, Department of Laboratory Medicine (LABMED), Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden. .,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
25
|
Chiou HYC, Lai WK, Huang LC, Huang SM, Chueh SH, Ma HI, Hueng DY. Valproic acid promotes radiosensitization in meningioma stem-like cells. Oncotarget 2016; 6:9959-69. [PMID: 25895030 PMCID: PMC4496410 DOI: 10.18632/oncotarget.3692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/05/2015] [Indexed: 12/16/2022] Open
Abstract
Although meningioma stem-like cells have been isolated and characterized, their therapeutic targeting remains a challenge. Meningioma sphere cells (MgSCs) with cancer stem cells properties show chemo- and radioresistance in comparison with meningioma adherent cells (MgACs). We tested the effect of valproic acid (VPA), a commonly used anti-epileptic drug, which passes the blood brain barrier, on cultured MgSCs. VPA reduced the viability of MgSCs and MgACs. In MgSCs, treatment with VPA increased radio-sensitivity, expression of p-cdc2, p-H2AX and cleaved caspase-3 and PARP. Anchorage-independent growth (AIG) was reduced by VPA. AIG was further reduced by combined treatment with irradiation. Expression of a stem cell marker, Oct4, was reduced by VPA. Oct4 was further decreased by combined treatment with irradiation. These results suggest that VPA may be a potential treatment for meningioma through targeting meningioma stem-like cells.
Collapse
Affiliation(s)
- Hsin-Ying Clair Chiou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wen-Kuo Lai
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
26
|
Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, Axelsson-Robertsson R, Doherty M, Andersson J, Maeurer M. Inflammation and tuberculosis: host-directed therapies. J Intern Med 2015; 277:373-87. [PMID: 24717092 DOI: 10.1111/joim.12256] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease that kills almost two million individuals every year. Multidrug-resistant (MDR) TB is caused by strains of Mycobacterium tuberculosis (M. tb) resistant to isoniazid and rifampin, the backbone of first-line antitubercular treatment. MDR TB affects an estimated 500,000 new patients annually. Genetic analysis of drug-resistant MDR-TB showed that airborne transmission of undetected and untreated strains played a major role in disease outbreaks. The need for new TB vaccines and faster diagnostics, as well as the development of new drugs, has recently been highlighted. The major problem in terms of current TB research and clinical demands is the increasing number of cases of extensively drug-resistant and 'treatment-refractory' TB. An emerging scenario of adjunct host-directed therapies is intended to target pulmonary TB where inflammatory processes can be deleterious and lead to immune exhaustion. 'Target-organ-saving' strategies may be warranted to prevent damage to infected tissues and achieve focused, clinically relevant and long-lasting anti-M. tb cellular immune responses. Candidates for such interventions may be biological agents or already approved drugs that can be 're-purposed' to interfere with biologically relevant cellular checkpoints. Here, we review current concepts of inflammation in TB disease and discuss candidate pathways for host-directed therapies to achieve better clinical outcomes.
Collapse
Affiliation(s)
- A Zumla
- University College London, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Han X, Wang S, Zhou W, Li Y, Lei W, Lv W. Synergistic combination of histone deacetylase inhibitor suberoylanilide hydroxamic acid and oncolytic adenovirus ZD55-TRAIL as a therapy against cervical cancer. Mol Med Rep 2015; 12:435-41. [PMID: 25684632 DOI: 10.3892/mmr.2015.3355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oncolytic adenoviruses (OA) have been investigated as virotherapeutic agents for the treatment of cervical cancer and thus far results are promising. However, the cytotoxicity of the viruses requires improvement. The present study demonstrated that this can be achieved by combining ZD55-TRAIL, an OA containing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene, with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). It was demonstrated that these agents act synergistically to kill HeLa cells by inducing G2 growth arrest and apoptosis. Notably, in a mouse xenograft model, ZD55-TRAIL/SAHA combination inhibited tumor growth. At the molecular level, it was found that upregulation of IκBα and the p50 and p65 subunits of nuclear factor-κB induced by ZD55-TRAIL, can be abrogated by SAHA treatment. These data strongly suggested that ZD55-TRAIL/SAHA co-treatment may serve as an effective therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Xiujun Han
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shibing Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wenjing Zhou
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Li
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wen Lei
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiguo Lv
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
28
|
Bollino D, Balan I, Aurelian L. Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 2015; 133:174-86. [PMID: 25581256 DOI: 10.1111/jnc.13029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase inhibitor used to treat epilepsy and mood disorders, has histone deacetylase-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing factor, mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with apoptosis-inducing factor nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. A growing body of evidence indicates that valproic acid (VPA) has neurotoxic activity, the mechanism of which is still poorly understood. We report, for the first time, that VPA activates a previously unrecognized calpain-dependent necroptosis cascade that initiates with JNK1 activation and involves AIF cleavage/nuclear translocation and H2AX phosphorylation as well as an altered Smac/DIABLO to XIAP balance.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Pharmacology, University of Maryland, Baltimore, Maryland, USA
| | | | | |
Collapse
|
29
|
Zheng Q, Liu W, Liu Z, Zhao H, Han X, Zhao M. Valproic acid protects septic mice from renal injury by reducing the inflammatory response. J Surg Res 2014; 192:163-9. [DOI: 10.1016/j.jss.2014.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 01/17/2023]
|
30
|
Ishiai S, Tahara W, Yamamoto E, Yamamoto R, Nagai K. Histone deacetylase inhibitory effect of Brazilian propolis and its association with the antitumor effect in Neuro2a cells. Food Sci Nutr 2014; 2:565-70. [PMID: 25473514 PMCID: PMC4237486 DOI: 10.1002/fsn3.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/27/2014] [Accepted: 04/29/2014] [Indexed: 11/07/2022] Open
Abstract
Propolis is a resinous product produced by honey bees and is known to have antitumor functions. On the other hand, histone deacetylase (Hdac) inhibitors have recently attracted attention for their antitumor effects. In this study, we examined whether Brazilian green propolis has an Hdac inhibitory activity and its contribution on antitumor effects. By in vitro Hdac activity assay, Brazilian propolis extract (BPE) significantly inhibited the enzyme activity. Actually, BPE treatment increased the intracellular histone acetylation in Neuro2a cells. Regarding antitumor effect in Neuro2a cells, BPE treatment significantly decreased cell viability. An Hdac activator theophylline significantly attenuated the effect. Then, we analyzed whether the decreasing effect on cell number was caused by cell death or growth retardation. By live/dead cell staining, BPE treatment significantly increased the dead cell number. By cell cycle analysis, BPE treatment retarded cell cycle at the M-phase. Both of these cellular effects were suppressed by addition of theophylline. These data indicate that BPE induced both cell death and growth retardation via Hdac inhibitory activity. We demonstrated that Brazilian propolis bears regulatory functions on histone acetylation via Hdac inhibition, and the effect contributes antitumor functions. Our data suggest that intake of Brazilian propolis shows preventing effects against cancer.
Collapse
Affiliation(s)
- Shinobu Ishiai
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Chuo-shi, Yamanashi, Japan ; Nihon Natural Foods Co., Ltd. Tokyo, Japan
| | | | | | | | - Kaoru Nagai
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Chuo-shi, Yamanashi, Japan
| |
Collapse
|
31
|
Storbeck M, Hupperich K, Gaspar JA, Meganathan K, Martínez Carrera L, Wirth R, Sachinidis A, Wirth B. Neuronal-specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain. PLoS One 2014; 9:e89020. [PMID: 24586484 PMCID: PMC3929626 DOI: 10.1371/journal.pone.0089020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/13/2014] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) increases the informational content of the genome and is more prevalent in the brain than in any other tissue. The splicing factor Tra2b (Sfrs10) can modulate splicing inclusion of exons by specifically detecting GAA-rich binding motifs and its absence causes early embryonic lethality in mice. TRA2B has been shown to be involved in splicing processes of Nasp (nuclear autoantigenic sperm protein), MAPT (microtubule associated protein tau) and SMN (survival motor neuron), and is therefore implicated in spermatogenesis and neurological diseases like Alzheimer’s disease, dementia, Parkinson’s disease and spinal muscular atrophy. Here we generated a neuronal-specific Tra2b knock-out mouse that lacks Tra2b expression in neuronal and glial precursor cells by using the Nestin-Cre. Neuronal-specific Tra2b knock-out mice die immediately after birth and show severe abnormalities in cortical development, which are caused by massive apoptotic events in the ventricular layers of the cortex, demonstrating a pivotal role of Tra2b for the developing central nervous system. Using whole brain RNA on exon arrays we identified differentially expressed alternative exons of Tubulinδ1 and Shugoshin-like2 as in vivo targets of Tra2b. Most interestingly, we found increased expression of the cyclin dependent kinase inhibitor 1a (p21) which we could functionally link to neuronal precursor cells in the affected brain regions. We provide further evidence that the absence of Tra2b causes p21 upregulation and ultimately cell death in NSC34 neuronal-like cells. These findings demonstrate that Tra2b regulates splicing events essential for maintaining neuronal viability during development. Apoptotic events triggered via p21 might not be restricted to the developing brain but could possibly be generalized to the whole organism and explain early embryonic lethality in Tra2b-depleted mice.
Collapse
Affiliation(s)
- Markus Storbeck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | | - Lilian Martínez Carrera
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Radu Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|