1
|
Sun L, He M, Liu D, Shan M, Chen L, Yang M, Dai X, Yao J, Li T, Zhang Y, Zhang Y, Xiang L, Chen A, Hao Y, He F, Xiong H, Lian J. Deacetylation of ANXA2 by SIRT2 desensitizes hepatocellular carcinoma cells to donafenib via promoting protective autophagy. Cell Death Differ 2025:10.1038/s41418-025-01499-3. [PMID: 40319178 DOI: 10.1038/s41418-025-01499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal forms of cancer globally. HCC cells frequently undergo macroautophagy, also known as autophagy, which can lead to tumor progression and chemotherapy resistance. Annexin A2 (ANXA2) has been identified as a potential therapeutic target in HCC and is involved in the regulation of autophagic process. Here, we for the first time showed that ANXA2 deacetylation plays a crucial role in donafenib-induced autophagy. Mechanistically, donafenib increased SIRT2 activity via triggering both SIRT2 dephosphorylation and deacetylation by respectively downregulating cyclin E/CDK and p300. Moreover, elevation of SIRT2 activity by donafenib caused ANXA2 deacetylation at K81/K206 sites, leading to a reduction of the binding between ANXA2 and mTOR, which resulted in a decrease of mTOR phosphorylation and activity, and ultimately promoted protective autophagy and donafenib insensitivity in HCC cells. Additionally, ANXA2 deacetylation at K81/K206 sites was positively correlated with poor prognosis in HCC patients. Meanwhile, we found that selective inhibition of SIRT2 increased the sensitivity of donafenib in HCC cells by strengthening ANXA2 acetylation. In summary, this study reveals that donafenib induces protective autophagy and decreases its sensitivity in HCC cells through enhancing SIRT2-mediated ANXA2 deacetylation, which suggest that targeting ANXA2 acetylation/deacetylation may be a promising strategy for improving the sensitivity of donafenib in HCC treatment.
Collapse
Affiliation(s)
- Liangbo Sun
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Xufang Dai
- Department of Educational College, Chongqing Normal University, Chongqing, 400047, China
| | - Jie Yao
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Li Xiang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Lee J, Koo GB, Park J, Han BC, Kwon M, Lee SH. Downregulation of O-GlcNAcylation enhances etoposide-induced p53-mediated apoptosis in HepG2 human liver cancer cells. FEBS Open Bio 2025. [PMID: 40237201 DOI: 10.1002/2211-5463.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Etoposide, an anticancer drug that inhibits topoisomerase II, is commonly used in combination chemotherapy. However, the impact of O-GlcNAcylation regulation on etoposide's anticancer effects has rarely been investigated. This study evaluated the effect of etoposide on cellular O-GlcNAcylation and whether modulating this process enhances etoposide-induced apoptosis. O-GlcNAc expression was measured after 24 h of etoposide treatment, and the effect of O-GlcNAc transferase (OGT) inhibition by OSMI-1 on etoposide's anticancer activity in HepG2 human liver cancer cells was quantitatively analyzed. Additionally, molecular analyses were used to confirm that the observed effects were mediated by p53-induced apoptosis. Etoposide reduced O-GlcNAcylation in a dose-dependent manner without directly interacting with OGT. Cotreatment with 20 μm of OSMI-1 lowered the IC50 value for cell viability by approximately 1.64-fold to 60.68 μm and increased the EC50 value for cytotoxicity by around 4.07-fold to 43.41 μm. Furthermore, this synergistic effect was linked to the activation of the p53/caspase-3/PARP1 pathway. These findings suggest that downregulating O-GlcNAcylation may enhance the efficacy of etoposide-based chemotherapy and help overcome tumor resistance.
Collapse
Affiliation(s)
- Jaehoon Lee
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| | - Gi-Bang Koo
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| | - Jihye Park
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| | - Byung-Cheol Han
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| | - Mijin Kwon
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| | - Seung-Ho Lee
- R&D Headquarter Korea Ginseng Corporation, Gwacheon-si, Korea
| |
Collapse
|
3
|
Yan Z, Li Y, Wang M, Xu K, Liu Y, Wang L, Luo H, Chen Z, Liu X. O-GlcNAcylation of DJ-1 suppresses ferroptosis in renal cell carcinoma by affecting the transsulfuration pathway. Int Immunopharmacol 2025; 148:114098. [PMID: 39842141 DOI: 10.1016/j.intimp.2025.114098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Renal cell carcinoma (RCC) is one of the most common urological malignancies worldwide, and advanced patients often face challenges with chemotherapy resistance and poor prognosis. Ferroptosis, a novel form of cell death, offers potential therapeutic prospects. In this study, we found that DJ-1 was elevated in kidney renal clear cell carcinoma (KIRC), and this abnormal expression pattern was closely associated with clinical pathological characteristics and worse prognosis. Our experiments both in vivo and in vitro revealed that DJ-1 enhanced the malignant characteristics of KIRC, leading to increased tumor growth. Additionally, DJ-1 inhibited ferroptosis through promoting homocysteine (Hcy) synthesis in the transsulfuration pathway in KIRC cells. Mechanistic studies revealed that O-GlcNAc transferase (OGT) mediated O-GlcNAcylation of DJ-1 was crucial for maintaining its homodimeric structure. Importantly, O-GlcNAcylation-deficient mutation of DJ-1 at T19 residue enhanced the interaction between S-adenosyl homocysteine hydrolase (SAHH) and the negative regulatory factor S-adenosyl homocysteine hydrolase-like-1 (AHCYL1), thereby inhibited the activities of SAHH and transsulfuration pathway. In summary, the oncogenic role of DJ-1 in KIRC was closely related to the reduction of ferroptosis, and the O-GlcNAcylation of DJ-1 exerted an antioxidant effect by activating the transsulfuration pathway. Therefore, DJ-1, specifically O-GlcNAcylation of DJ-1 could represent an important target for ferroptosis-based anti-tumor therapy.
Collapse
Affiliation(s)
- Zhiwei Yan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Yanze Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Minghui Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Kai Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Hongbo Luo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China; Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China.
| |
Collapse
|
4
|
Tang B, Wang K, Ren Q, Zhou J, Xu Y, Liu L, Yin B, Zhang Y, Huang Q, Lv R, Luo Z, Zhao H, Shen L. GALNT14-mediated O-glycosylation drives lung adenocarcinoma progression by reducing endogenous reactive oxygen species generation. Cell Signal 2024; 124:111477. [PMID: 39426495 DOI: 10.1016/j.cellsig.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Aberrant glycosylation, resulting from dysregulated expression of glycosyltransferases, is a prevalent feature of cancer cells. N-acetylgalactosaminyltransferase-14 (GALNT14) serves as a pivotal enzyme responsible for initiating O-GalNAcylation. It remains unclear whether and how GALNT14 affects lung adenocarcinoma (LUAD). Here, GALNT14 expression in LUAD was analyzed by searching public databases and verified by examining clinical samples. Bioinformatics, LC-MS/MS, RNA-seq, and RIP-seq analyses were used to uncover the mechanism underlying GALNT14. We observed that GALNT14 was frequently overexpressed in LUAD tissues. High GALNT14 expression was positively associated with advanced TNM stage, larger tumor size, and unfavorable prognosis. Functionally, GALNT14 facilitated LUAD cell proliferation, migration, and invasion in vitro and accelerated tumor growth in vivo. Mechanistically, GALNT14 reduced the accumulation of endogenous reactive oxygen species (ROS) to exert its oncogenic function via O-glycosylating hnRNPUL1 to upregulate AKR1C2 expression. Meanwhile, GALNT14 expression was directly modulated by miR-125a.These findings indicated that GALNT14-mediated O-GalNAcylation could drive LUAD progression via eliminating ROS and might be a valuable therapeutic target.
Collapse
Affiliation(s)
- Bingbing Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Kelong Wang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Junshuo Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuewen Xu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Liaoyuan Liu
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Bin Yin
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yaling Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Qian Huang
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ruiqi Lv
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China; Key Laboratory of Cancer Therapy Resistance and Clinical Translational Study, Shiyan 442000, Hubei, China.
| |
Collapse
|
5
|
Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, Wang J, Zhang J, Xin G, Yu Y, Lei YL, Black JD, Li Z, Wen H. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. eLife 2024; 13:RP94849. [PMID: 39365288 PMCID: PMC11452177 DOI: 10.7554/elife.94849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent mice by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt-/-) caused a marked reduction in tumor growth in both syngeneic mice tumor models and a genetic mice colorectal cancer (CRC) model induced by mutation of the Apc gene (Apcmin). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt-/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T-cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor-cell-intrinsic mechanism to repress antitumor immunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Bao Zhao
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
| | - Xiang Cheng
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jing Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Cancer Biology and Genetics, The Ohio State UniversityColumbusUnited States
| | - Junran Zhang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
- Department of Radiation Oncology, The Ohio State UniversityColumbusUnited States
| | - Gang Xin
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of DelawareNewarkUnited States
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of MichiganAnn ArborUnited States
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State UniversityColumbusUnited States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
6
|
Chen J, Zhao B, Dong H, Li T, Cheng X, Gong W, Wang J, Zhang J, Xin G, Yu Y, Lei YL, Black JD, Li Z, Wen H. Inhibition of O-GlcNAc transferase activates type I interferon-dependent antitumor immunity by bridging cGAS-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571787. [PMID: 38168435 PMCID: PMC10760207 DOI: 10.1101/2023.12.14.571787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent hosts by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt -/- ) caused a marked reduction in tumor growth in both syngeneic tumor models and a genetic colorectal cancer (CRC) model induced by mutation of the Apc gene (Apc min ). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt -/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor cell-intrinsic mechanism to repress antitumor immunity.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Bao Zhao
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- These authors contributed equally to this work
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiang Cheng
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Wang Gong
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jing Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Junran Zhang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Lead Contact
| |
Collapse
|
7
|
Islam MA, Hossain MM, Khanam A, Asaduzzaman AKM, Kabir SR, Ozeki Y, Fujii Y, Hasan I. Carbohydrate-Binding Properties and Antimicrobial and Anticancer Potential of a New Lectin from the Phloem Sap of Cucurbita pepo. Molecules 2024; 29:2531. [PMID: 38893406 PMCID: PMC11174025 DOI: 10.3390/molecules29112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
A Cucurbita phloem exudate lectin (CPL) from summer squash (Cucurbita pepo) fruits was isolated and its sugar-binding properties and biological activities were studied. The lectin was purified by affinity chromatography and the hemagglutination assay method was used to determine its pH, heat stability, metal-dependency and sugar specificity. Antimicrobial and anticancer activities were also studied by disc diffusion assays and in vivo and in vitro methods. The molecular weight of CPL was 30 ± 1 KDa and it was stable at different pH (5.0 to 9.0) and temperatures (30 to 60 °C). CPL recovered its hemagglutination activity in the presence of Ca2+. 4-nitrophenyl-α-D-glucopyranoside, lactose, rhamnose and N-acetyl-D-glucosamine strongly inhibited the activity. With an LC50 value of 265 µg/mL, CPL was moderately toxic and exhibited bacteriostatic, bactericidal and antibiofilm activities against different pathogenic bacteria. It also exhibited marked antifungal activity against Aspergillus niger and agglutinated A. flavus spores. In vivo antiproliferative activity against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice was observed when CPL exerted 36.44% and 66.66% growth inhibition at doses of 3.0 mg/kg/day and 6.0 mg/kg/day, respectively. A 12-day treatment by CPL could reverse their RBC and WBC counts as well as restore the hemoglobin percentage to normal levels. The MTT assay of CPL performed against human breast (MCF-7) and lung (A-549) cancer cell lines showed 29.53% and 18.30% of inhibitory activity at concentrations of 128 and 256 µg/mL, respectively.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
| | - Md. Mikail Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
| | - Alima Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
| | - A. K. M. Asaduzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
| | - Yasuhiro Ozeki
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Kanagawa, Japan;
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan;
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.A.I.); (M.M.H.); (A.K.); (A.K.M.A.); (S.R.K.)
- Department of Microbiology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
8
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
9
|
Doud EH, Yeh ES. Mass Spectrometry-Based Glycoproteomic Workflows for Cancer Biomarker Discovery. Technol Cancer Res Treat 2023; 22:15330338221148811. [PMID: 36740994 PMCID: PMC9903044 DOI: 10.1177/15330338221148811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.
Collapse
Affiliation(s)
- Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
| | - Elizabeth S. Yeh
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
10
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
11
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
12
|
Bian C, Sun X, Huang J, Zhang W, Mu G, Wei K, Chen L, Xia Y, Wang J. A novel glycosyltransferase-related lncRNA signature correlates with lung adenocarcinoma prognosis. Front Oncol 2022; 12:950783. [PMID: 36059686 PMCID: PMC9434379 DOI: 10.3389/fonc.2022.950783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most fatal cancers in the world. Previous studies have shown the increase in glycosylation level, and abnormal expressions of related enzymes are closely related to various cancers. Long non-coding RNAs (lncRNAs) play an important role in the proliferation, metabolism, and migration of cancer cells, but the underlying role of glycosyltransferase (GT)-related lncRNAs in LUAD remains to be elucidated. Methods We abstracted 14,056 lncRNAs from The Cancer Genome Atlas (TCGA) dataset and 257 GT-related genes from the Gene Set Enrichment Analysis (GSEA) database. Univariate, LASSO-penalized, and multivariate Cox regression analyses were conducted to construct a GT-related lncRNA prognosis model. Results A total of 2,726 GT-related lncRNAs were identified through Pearson's correlation analysis, and eight of them were utilized to construct a GT-related lncRNA model. The overall survival (OS) of the low-risk group continued to be superior to that of the high-risk group according to the subgroups classified by clinical features. The risk model was proved to have independent prognostic characteristics for LUAD by univariate and multivariate Cox regression analyses. The status of the tumor immune microenvironment and the relevant immunotherapy response was significantly different between the two risk groups. The candidate drugs aimed at LUAD subtype differentiation were identified. Conclusion We constructed a risk model comprising eight GT-related lncRNAs which was identified as an independent predictor of prognoses to predict patient survival and guide-related treatments for patients with LUAD.
Collapse
Affiliation(s)
- Chengyu Bian
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingjing Huang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guang Mu
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xia
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province People’s Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS Chem Biol 2022; 17:513-520. [PMID: 35254053 DOI: 10.1021/acschembio.1c00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
Collapse
Affiliation(s)
- Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yi Hao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Chunting Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yangya’nan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Yong Yang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, 100144, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing, 100142, China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, 100144, China
- Gastrointestinal Cancer Center, Peking University Cancer Hospital, Beijing, 100142, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
O-GlcNAcylation regulation of cellular signaling in cancer. Cell Signal 2022; 90:110201. [PMID: 34800629 PMCID: PMC8712408 DOI: 10.1016/j.cellsig.2021.110201] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.
Collapse
|
15
|
Chakravarti R, Lenka SK, Gautam A, Singh R, Ravichandiran V, Roy S, Ghosh D. A Review on CRISPR-Mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23:836-853. [DOI: 10.2174/1389450123666220117105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Recent studies have shed light on the role of epigenetic marks in certain diseases like cancer, type II diabetes mellitus (T2DM), obesity, and cardiovascular dysfunction, to name a few. Epigenetic marks like DNA methylation and histone acetylation are randomly altered in the disease state. It has been seen that methylation of DNA and histones can result in down-regulation of gene expression, whereas histone acetylation, ubiquitination, and phosphorylation are linked to enhanced expression of genes. How can we precisely target such epigenetic aberrations to prevent the advent of diseases? The answer lies in the amalgamation of the efficient genome editing technique, CRISPR, with certain effector molecules that can alter the status of epigenetic marks as well as employ certain transcriptional activators or repressors. In this review, we have discussed the rationale of epigenetic editing as a therapeutic strategy and how CRISPR-Cas9 technology coupled with epigenetic effector tags can efficiently edit epigenetic targets. In the later part, we have discussed how certain epigenetic effectors are tagged with dCas9 to elicit epigenetic changes in cancer. Increased interest in exploring the epigenetic background of cancer and non-communicable diseases like type II diabetes mellitus and obesity accompanied with technological breakthroughs has made it possible to perform large-scale epigenome studies.
Collapse
Affiliation(s)
- Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swadhin Kumar Lenka
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
16
|
Wang L. A Novel Glycosyltransferase-Related Gene Signature for Overall Survival Prediction in Patients with Ovarian Cancer. Int J Gen Med 2022; 14:10337-10350. [PMID: 34992448 PMCID: PMC8717217 DOI: 10.2147/ijgm.s332945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is a highly malignant epithelial tumor. Recently, it has been reported the role of glycosyltransferases (GTs) in various cancers. However, the prognostic value of GTs-related genes in ovarian cancer remained largely unknown. Methods RNA-sequencing (RNA-seq) data and corresponding clinical characteristics of patients with ovarian cancer were extracted from the public database of the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). We constructed the least absolute shrinkage and selection operator (LASSO) Cox regression model to explore a multigene signature comprising GTs-related genes in the TCGA and GTEx cohort. Patients with ovarian cancer in International Cancer Genome Consortium (ICGC) database were applied for further validation. We also performed functional analysis on the differentially expressed genes (DEGs) of high-risk and low-risk groups in the TCGA cohort. Additionally, the immune status between the two risk groups was assessed, respectively. Results Our results showed that 64 GTs-related genes were differentially expressed between tumor tissues and normal tissues in the TCGA and GTEx cohort. A prognostic model of 15 candidate genes was constructed, which classified patients into high- and low-risk groups. Compared with low-risk patients, high-risk patients had an obvious worse overall survival (OS) (P < 0.0001 in the TCGA and GTEx cohort and P = 0.042 in the ICGC cohort). Multivariate Cox regression analysis revealed that the risk score was an independent factor for OS of ovarian cancer. Functional analysis indicated that these DEGs were also enriched in immune-related pathways, and the immune status was significantly different between the two risk groups in TCGA cohort. Conclusion In conclusion, a novel GTs-related gene signature may be used for the prognosis of ovarian cancer. Targeting GTs-related gene can act as a therapeutic alternative for ovarian cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, Tianjin NanKai Hospital, Tianjin, 300100, People's Republic of China
| |
Collapse
|
17
|
Comparative O-GlcNAc Proteomic Analysis Reveals a Role of O-GlcNAcylated SAM68 in Lung Cancer Aggressiveness. Cancers (Basel) 2022; 14:cancers14010243. [PMID: 35008409 PMCID: PMC8749979 DOI: 10.3390/cancers14010243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Lung cancer claims the most lives annually among cancers; to date, invasion and metastasis still pose challenges to effective treatment. O-GlcNAcylation, an enzymatic modification of proteins after biosynthesis, modulates the functions of many proteins. Aberrant O-GlcNAcylation is linked to pathogenic mechanisms of cancer, including invasion and metastasis. However, little is known about the profile of O-GlcNAcylated proteins involved in cancer aggressiveness. Here, by comparing profiles of O-GlcNAcylated proteins from two lung cancer cell lines different in their invasive potential, we identified candidates for O-GlcNAcylated proteins that may be involved in cancer aggressiveness. One of these candidates, SAM68, was further characterized. Results confirmed O-GlcNAcylation of SAM68; functional analyses on SAM68 with mutations at O-GlcNAcylation sites suggested a role of O-GlcNAcylated SAM68 in modulating lung cancer cell migration/invasion. Future elucidation of the functional significance of differential O-GlcNAcylation of proteins identified in this study may provide new insights into mechanisms of lung cancer progression. Abstract O-GlcNAcylation is a reversible and dynamic post-translational protein modification catalyzed by O-GlcNAc transferase (OGT). Despite the reported association of O-GlcNAcylation with cancer metastasis, the O-GlcNAc proteome profile for cancer aggressiveness remains largely uncharacterized. Here, we report our comparative O-GlcNAc proteome profiling of two differentially invasive lung adenocarcinoma cell lines, which identified 158 down-regulated and 106 up-regulated candidates in highly invasive cells. Among these differential proteins, a nuclear RNA-binding protein, SAM68 (SRC associated in mitosis of 68 kDa), was further investigated. Results showed that SAM68 is O-GlcNAcylated and may interact with OGT in the nucleus. Eleven O-GlcNAcylation sites were identified, and data from mutant analysis suggested that multiple serine residues in the N-terminal region are important for O-GlcNAcylation and the function of SAM68 in modulating cancer cell migration and invasion. Analysis of clinical specimens found that high SAM68 expression was associated with late cancer stages, and patients with high-OGT/high-SAM68 expression in their tumors had poorer overall survival compared to those with low-OGT/low-SAM68 expression. Our study revealed an invasiveness-associated O-GlcNAc proteome profile and connected O-GlcNAcylated SAM68 to lung cancer aggressiveness.
Collapse
|
18
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
19
|
Sombutthaweesri T, Wu S, Chamusri N, Settakorn J, Pruksakorn D, Chaiyawat P, Sastraruji T, Krisanaprakornkit S, Supanchart C. Relationship Between O-GlcNAcase Expression and Prognosis of Patients With Osteosarcoma. Appl Immunohistochem Mol Morphol 2021; 30:e1-e10. [PMID: 34469899 DOI: 10.1097/pai.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Several studies have demonstrated a role of O-GlcNAcylation (O-GlcNAc) in tumorigenesis of various carcinomas by modification of tumor-associated proteins. However, its implication in the pathogenesis of osteosarcoma remains unclear. This study aimed to investigate the levels of O-GlcNAc and the expressions of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcase (OGA) in human osteosarcoma tissues, by using immunohistochemistry; and to find correlations between the levels or expressions and several clinicopathologic parameters. There were 109 first diagnosed osteosarcoma patients, including Enneking stage IIB (n=70) and III (n=39). Correlations between the immunoreactive score (IRS) and clinicopathologic parameters, overall survival, and metastasis-free survival were evaluated. A positive correlation was found between the IRS of OGA and the percentage of postchemotherapeutic tumor necrosis (r=0.308; P=0.017). Univariate analysis revealed significantly lower OGA IRS in metastatic patients (P=0.020) and poor chemotherapeutic-responder patients (P=0.001). By multivariate analysis, presence of tumor metastasis (P=0.002) and lower OGA IRS (P=0.004) was significantly associated with shorter overall survival. Subgroup analysis in stage IIB osteosarcoma (n=70) demonstrated that male sex (P=0.019), presence of tumor recurrence (P=0.026), poor chemotherapeutic responder (P=0.022), and lower OGA IRS (P=0.019) were significantly correlated with short metastasis-free survival. But, lower OGA IRS was the only independent predictor for short metastasis-free survival (P=0.006). Our findings suggested that O-GlcNAc pathway, especially OGA, may involve in pathogenesis and aggressiveness of osteosarcoma. Low level of OGA expression may be used as a poor prognostic indicator.
Collapse
Affiliation(s)
- Thamonwan Sombutthaweesri
- Departments of Oral and Maxillofacial Surgery Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry Department of Pathology Musculoskeletal Science and Translational Research Center (MSTR) Omics Center for Health Sciences (OCHS) Department of Orthopedics, Faculty of Medicine Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsai IJ, Su ECY, Tsai IL, Lin CY. Clinical Assay for the Early Detection of Colorectal Cancer Using Mass Spectrometric Wheat Germ Agglutinin Multiple Reaction Monitoring. Cancers (Basel) 2021; 13:cancers13092190. [PMID: 34063271 PMCID: PMC8124906 DOI: 10.3390/cancers13092190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is currently the third leading cause of cancer death worldwide. Early diagnosis of CRC is important for increasing the opportunity for treatment and receiving a good prognosis. The aim of our study was to develop a detection method that combined wheat germ agglutinin (WGA) chromatography with mass spectrometry (MS) for early detection of CRC. Further, machine learning algorithms and logistic regression were applied to combine multiple biomarkers we discovered. We validated in a population of 286 plasma samples the diagnostic performance of peptides corresponding to WGA-captured protein and its combination, which received a sensitivity of 84.5% and a specificity of 97.5% in the diagnoses of CRC. Proteomic biomarkers combined with algorithms can provide a powerful tool for discriminating patients with CRC and health controls (HCs). Measurements of WGA-captured PF4, ITIH4, and APOE with MS are then useful for early detection of CRC. Additionally, our study revealed the potential of applying lectin chromatography with MS for disease diagnosis. Abstract Colorectal cancer (CRC) is currently the third leading cause of cancer-related mortality in the world. U.S. Food and Drug Administration-approved circulating tumor markers, including carcinoembryonic antigen, carbohydrate antigen (CA) 19-9 and CA125 were used as prognostic biomarkers of CRC that attributed to low sensitivity in diagnosis of CRC. Therefore, our purpose is to develop a novel strategy for novel clinical biomarkers for early CRC diagnosis. We used mass spectrometry (MS) methods such as nanoLC-MS/MS, targeted LC-MS/MS, and stable isotope-labeled multiple reaction monitoring (MRM) MS coupled to test machine learning algorithms and logistic regression to analyze plasma samples from patients with early-stage CRC, late-stage CRC, and healthy controls (HCs). On the basis of our methods, 356 peptides were identified, 6 differential expressed peptides were verified, and finally three peptides corresponding wheat germ agglutinin (WGA)-captured proteins were semi-quantitated in 286 plasma samples (80 HCs and 206 CRCs). The novel peptide biomarkers combination of PF454–62, ITIH4429–438, and APOE198–207 achieved sensitivity 84.5%, specificity 97.5% and an AUC of 0.96 in CRC diagnosis. In conclusion, our study demonstrated that WGA-captured plasma PF454–62, ITIH4429–438, and APOE198–207 levels in combination may serve as highly effective early diagnostic biomarkers for patients with CRC.
Collapse
Affiliation(s)
- I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3326)
| |
Collapse
|
21
|
Tanaka H, Saigo C, Iwata Y, Yasufuku I, Kito Y, Yoshida K, Takeuchi T. Human colorectal cancer-associated carbohydrate antigen on annexin A2 protein. J Mol Med (Berl) 2021; 99:1115-1123. [PMID: 33904933 DOI: 10.1007/s00109-021-02077-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Cancer-associated antigens are not only a good marker for monitoring cancer progression but are also useful for molecular target therapy. In this study, we aimed to generate a monoclonal antibody that preferentially reacts with colorectal cancer cells relative to noncancerous gland cells. We prepared antigens composed of HT-29 colorectal cancer cell lysates that were adsorbed by antibodies to sodium butyrate-induced enterocytically differentiated HT-29 cells. Subsequently, we generated a monoclonal antibody, designated 12G5A, which reacted with HT-29 colon cancer cells, but not with sodium butyrate-induced differentiated HT-29 cells. Immunohistochemical staining revealed 12G5A immunoreactivity in all 73 colon cancer tissue specimens examined at various degrees, but little or no immunoreactivity in noncancerous gland cells. Notably, high 12G5A immunoreactivity, which was determined as more than 50% of colon cancer cells intensively stained with 12G5A antibody, exhibited significantly higher association with a poor overall survival rate of patients with colorectal cancer (P = 0.0196) and unfavorable progression-free survival rate of patients with colorectal cancer (P = 0.0418). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, si-RNA silencing analysis, enzymatic deglycosylation, and tunicamycin treatment revealed that 12G5A recognized the glycosylated epitope on annexin A2 protein. Our findings indicate that 12G5A identified a cancer-associated glycosylation epitope on annexin A2, whose expression was related to unfavorable colorectal cancer behavior. KEY MESSAGE: • 12G5A monoclonal antibody recognized a colorectal cancer-associated epitope. • 12G5A antibody recognized the N-linked glycosylation epitope on annexin A2. • 12G5A immunoreactivity was related to unfavorable colorectal cancer behavior.
Collapse
Affiliation(s)
- Hideharu Tanaka
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshinori Iwata
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Itaru Yasufuku
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
22
|
Verathamjamras C, Sriwitool TE, Netsirisawan P, Chaiyawat P, Chokchaichamnankit D, Prasongsook N, Srisomsap C, Svasti J, Champattanachai V. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J 2021; 38:55-65. [PMID: 33608772 DOI: 10.1007/s10719-021-09978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation, a single attachment of N-acetylglucosamine (GlcNAc) on serine and threonine residues, plays important roles in normal and pathobiological states of many diseases. Aberrant expression of O-GlcNAc modification was found in many types of cancer including colorectal cancer (CRC). This modification mainly occurs in nuclear-cytoplasmic proteins; however, it can exist in some extracellular and secretory proteins. In this study, we investigated whether O-GlcNAc-modified proteins are present in serum of patients with CRC. Serum glycoproteins of CRC patients and healthy controls were enriched by wheat germ agglutinin, a glycan binding protein specifically binds to terminal GlcNAc and sialic acid. Two-dimensional gel electrophoresis, RL2 O-GlcNAc immunoblotting, affinity purification, and mass spectrometry were performed. The results showed that RL2 O-GlcNAc antibody predominantly reacted against serum immunoglobulin A1 (IgA1). The levels of RL2-reacted IgA were significantly increased while total IgA were not different in patients with CRC compared to those of healthy controls. Analyses by ion trap mass spectrometry using collision-induced dissociation and electron-transfer dissociation modes revealed one O-linked N-acetylhexosamine modification site at Ser268 located in the heavy constant region of IgA1; unfortunately, it cannot be discriminated whether it was N-acetylglucosamine or N-acetylgalactosamine because of their identical molecular mass. Although failed to demonstrate unequivocally it was O-GlcNAc, these data indicated that serum-IgA had an aberrantly increased reactivity against RL2 O-GlcNAc antibody in CRC patients. This specific glycosylated form of serum-IgA1 will expand the spectrum of aberrant glycosylation which provides valuable information to cancer glycobiology.
Collapse
Affiliation(s)
- Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Tanin-Ek Sriwitool
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | | | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.,Muscoloskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Naiyarat Prasongsook
- Divison of Medical Oncology, Department of Medicine, Faculty of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, 10400, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | - Voraratt Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand. .,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.
| |
Collapse
|
23
|
Chen Y, Liu J, Zhang W, Kadier A, Wang R, Zhang H, Yao X. O-GlcNAcylation Enhances NUSAP1 Stability and Promotes Bladder Cancer Aggressiveness. Onco Targets Ther 2021; 14:445-454. [PMID: 33488099 PMCID: PMC7815093 DOI: 10.2147/ott.s258175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022] Open
Abstract
Objective NUSAPl and O-GlcNAcylation were reported to be hyper-activated in many kinds of cancers and involved in the advanced progression of cancers. In bladder cancer, O-GlcNAc transferase (OGT) expresses in patients' urine samples, with no expression in healthy individuals, indicating O-GlcNAcylation might involve in the occurrence and development of bladder cancer. Therefore, the present study aims to investigate the effects of O-GlcNAcylation in bladder cancer and if it can regulate NUSAP1 protein. Materials and Methods Western blot, immunohistochemistry, and PCR were used to evaluate the protein expression and mRNA level of NUSAP1; CCK-8 and flow cytometry used to evaluate the proliferation and inhibited the apoptosis of bladder cancer. Results The results showed that NUSAP1 was highly expressed in bladder cancer cells and tissue samples. NUSAP1 up-regulation significantly promoted the proliferation and inhibited the apoptosis of bladder cancer HT-1376 and T24 cells. Besides, the expression of O-GlcNAc was elevated in bladder cancer tissues and cells, and up-regulation of O-GlcNAc with GlcNAc and PuGNAc obviously increased NUSAP1 protein expression and stability. Moreover, knockdown OGT significantly inhibited the proliferation and tumorigenesis and promoted the apoptosis of bladder cancer cells, confirmed by CCK-8, in vivo xenotransplantation, and flow cytometry, whereas these roles were impaired when NUSAP1 was up-regulated. Conclusion Overall, our study makes clear that hyper-O-GlcNAcylation accelerates bladder cancer progression through promotion of NUSAP1 expression and its stability.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Aimaitiaji Kadier
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
24
|
Targeting O-GlcNAcylation to develop novel therapeutics. Mol Aspects Med 2020; 79:100885. [PMID: 32736806 DOI: 10.1016/j.mam.2020.100885] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc) is an abundant post-translational modification (PTM) that modifies the serine or threonine residues of thousands of proteins in the nucleus, cytoplasm and mitochondria. Being a major "nutrient sensor" in cells, the O-GlcNAc pathway is sensitive to cellular metabolic states. Extensive crosstalk is observed between O-GlcNAcylation and protein phosphorylation. O-GlcNAc regulates protein functions at multiple levels, including enzymatic activity, transcriptional activity, subcellular localization, intermolecular interactions and degradation. Abnormal O-GlcNAcylation is associated with many human diseases including cancer, diabetes and neurodegenerative diseases. Though research on O-GlcNAc is still in its infantry, accumulating evidence suggest O-GlcNAcylation to be a promising therapeutic target. In this review, we briefly discuss the basic features of this PTM, the O-GlcNAc signaling pathway, its regulatory functions on different proteins, and its involvement in human diseases. We hope this review will provide insights to researchers who study human disease, as well as researchers who are interested in the fundamental roles of O-GlcNAcylation in all cells.
Collapse
|
25
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
26
|
Netsirisawan P, Chokchaichamnankit D, Saharat K, Srisomsap C, Svasti J, Champattanachai V. Quantitative proteomic analysis of the association between decreasing O‑GlcNAcylation and metastasis in MCF‑7 breast cancer cells. Int J Oncol 2020; 56:1387-1404. [PMID: 32236627 PMCID: PMC7170043 DOI: 10.3892/ijo.2020.5022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common type of cancer and leading cause of cancer-associated mortality in women worldwide. O-linked N-acetyl glucosaminylation (O-GlcNAcylation) is a dynamic post-translational modification of nuclear, cytoplasmic and mitochondrial proteins. Mounting evidence suggests that abnormal O-GlcNAcylation status is associated with cancer malignancy. In our previous study, it was reported that O-GlcNAc and O-GlcNAc transferase (OGT; an enzyme responsible for the addition of O-GlcNAc) were upregulated in breast cancer tissues and cells. Moreover, O-GlcNAcylation was required for resistance to anoikis and the anchorage-independent growth of breast cancer cells. However, the precise roles of this modification on the development of malignancy are yet to be elucidated. Therefore, in the present study, the effects of inhibiting O-GlcNAc on the malignant transformation of MCF-7 breast cancer cells under different culture conditions were determined, using monolayer (primary growth), anoikis resistance (spheroid growth) and reseeding (secondary growth) to mimic the metastatic process. Decreasing O-GlcNAc levels using small interfering (si)RNA targeting OGT resulted in a reduction in cell viability and invasiveness in anoikis resistant and reseeding conditions. Furthermore, gel-free quantitative proteomics was performed to identify the proteins affected by a reduction of O-GlcNAc. A total of 317 proteins were identified and compared, and the expression of 162 proteins was altered >1.5 fold in the siOGT treated cells compared with the siScamble (siSC) treated cells. Notably, 100 proteins involved in cellular metabolism, cellular localization, stress responses and gene expression were significantly altered in the reseeding condition. Among these differentially expressed proteins, the levels of small nuclear ribonucleoprotein Sm D1 exhibited the largest decrease in expression following knockdown of OGT, and this reduction in expression was associated with a significant decrease in the levels of mTOR expression, a protein which promotes tumor growth and progression. Taken together, the results of the present study demonstrate that decreasing O-GlcNAcylation altered protein expression, and ultimately influenced the metastatic processes, particulary regarding the invasion and reattached growth of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | | |
Collapse
|
27
|
Leidal AM, Debnath J. Unraveling the mechanisms that specify molecules for secretion in extracellular vesicles. Methods 2020; 177:15-26. [PMID: 31978536 DOI: 10.1016/j.ymeth.2020.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound organelles naturally released from cells and potentially function as vehicles of intercellular communication. Cells release numerous sub-species of EVs, including exosomes and microvesicles, which are formed via distinct cellular pathways and molecular machineries and contain specific proteins, RNAs and lipids. Accumulating evidence indicates that the repertoire of molecules packaged into EVs is shaped by both the physiological state of the cell and the EV biogenesis pathway involved. Although these observations intimate that precisely regulated pathways sort molecules into EVs, the underlying molecular mechanisms that direct molecules for secretion remain poorly defined. Recently, with the advancement of mass spectrometry, next-generation sequencing techniques and molecular biology tools, several mechanisms contributing to EV cargo selection are beginning to be unraveled. This review examines strategies employed to reveal how specific proteins, RNAs and lipids are directed for secretion via EVs.
Collapse
Affiliation(s)
- Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Yu M, Chu S, Fei B, Fang X, Liu Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp Cell Res 2019; 382:111464. [PMID: 31202709 DOI: 10.1016/j.yexcr.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVE Integrin α5 (ITGA5) as one member of integrins family, plays an important role in promoting cancer cell metastasis and invasion through inducing the communications among different cells or cells with extracellular matrix (ECM). However, the mechanisms underlying ITGA5 in colorectal cancer (CRC) progression need to be explored, especially for its O-GlcNAcylation. To this end, the current study was performed to explore the effects of O-GlcNAcylation on ITGA5 expression, as well as to probe the effects of ITGA5 O-GlcNAcylation on CRC progression. METHODS The expression profiles of ITGA5, OGT and O-GlcNAc in CRC tissues and cells were detected by immunohistochemistry (IHC), RT-PCR and western blotting. CCK-8, flow cytometry and xenotransplantation assays were used to assess cell growth, apoptosis and tumorigenesis. Immunoprecipitation (IP), in vitro O-GlcNAcylation of ITGA5 and enzymatic labelling of O-GlcNAc assays were used to detect the O-GlcNAcylation of ITGA5 protein. RESULTS The expression of ITGA5, OGT and O-GlcNAc were all elevated in CRC tissues and cells compared with the normal tissues and cells. Up-regulation of ITGA5 in CRC RKO cells enhanced cell growth and tumorigenesis while decreased cell apoptosis, while down-regulation of ITGA5 in CRC SW620 cells decreased cell growth and tumorigenesis and induced cell apoptosis. Besides, PUGNAc, GlcN or PUGNAc + GlcNAc treatment increased ITGA5 protein expression in RKO and SW620 cells, as well as increased its protein stability via enhancing its O-GlcNAcylation. CONCLUSION Collectively, the present study makes clear that ITGA5 overexpression accelerates the progression of CRC, which is closely associated to its enhanced O-GlcNAcylation.
Collapse
Affiliation(s)
- Miao Yu
- Department of Gastrointestinal Colorectal and Anal Surgery, CHINA-JAPAN Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Songtao Chu
- Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin, Jilin Province, 132013, China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal Surgery, CHINA-JAPAN Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, CHINA-JAPAN Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, CHINA-JAPAN Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
29
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
30
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
31
|
Park SK, Zhou X, Pendleton KE, Hunter OV, Kohler JJ, O'Donnell KA, Conrad NK. A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 2018; 20:1088-1099. [PMID: 28768194 PMCID: PMC5588854 DOI: 10.1016/j.celrep.2017.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/11/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS) that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Sung-Kyun Park
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E Pendleton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga V Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
33
|
Williams C, Royo F, Aizpurua-Olaizola O, Pazos R, Boons GJ, Reichardt NC, Falcon-Perez JM. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles 2018. [PMID: 29535851 PMCID: PMC5844028 DOI: 10.1080/20013078.2018.1442985] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology.
Collapse
Affiliation(s)
- Charles Williams
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Felix Royo
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain
| | - Oier Aizpurua-Olaizola
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Raquel Pazos
- Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Juan M Falcon-Perez
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,CIBER-BBN, San Sebastian, Spain.,IKERBASQUE Basque Foundation for science, Bilbao, Spain
| |
Collapse
|
34
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
35
|
Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nat Chem Biol 2017; 13:1267-1273. [PMID: 29058723 PMCID: PMC5698155 DOI: 10.1038/nchembio.2494] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential human glycosyltransferase that adds O-GlcNAc modifications to numerous proteins. However, little is known about the mechanism with which OGT recognizes various protein substrates. Here we report on GlcNAc electrophilic probes (GEPs) to expedite the characterization of OGT-substrate recognition. Data from mass spectrometry, X-ray crystallization, and biochemical and radiolabeled kinetic assays support the application of GEPs to rapidly report the impacts of OGT mutations on protein substrate or sugar binding and to discover OGT residues crucial for protein recognition. Interestingly, we found that the same residues on the inner surface of the N-terminal domain contribute to OGT interactions with different protein substrates. By tuning reaction conditions, a GEP enables crosslinking of OGT with acceptor substrates in situ, affording a unique method to discover genuine substrates that weakly or transiently interact with OGT. Hence, GEPs provide new strategies to dissect OGT-substrate binding and recognition.
Collapse
|
36
|
Malek R, Wang H, Taparra K, Tran PT. Therapeutic Targeting of Epithelial Plasticity Programs: Focus on the Epithelial-Mesenchymal Transition. Cells Tissues Organs 2017; 203:114-127. [PMID: 28214899 DOI: 10.1159/000447238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 12/14/2022] Open
Abstract
Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.
Collapse
Affiliation(s)
- Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
37
|
O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia 2017; 31:2132-2142. [PMID: 28074064 PMCID: PMC5629373 DOI: 10.1038/leu.2017.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription 5 (STAT5) regulates differentiation, survival, proliferation and transformation of hematopoietic cells. Upon cytokine stimulation, STAT5 tyrosine phosphorylation (pYSTAT5) is transient, while in diverse neoplastic cells persistent overexpression and enhanced pYSTAT5 are frequently found. Post-translational modifications might contribute to enhanced STAT5 activation in the context of transformation, but the strength and duration of pYSTAT5 are incompletely understood. We found that O-GlcNAcylation and tyrosine phosphorylation act together to trigger pYSTAT5 levels and oncogenic transcription in neoplastic cells. The expression of a mutated hyperactive gain-of-function (GOF) STAT5 without O-GlcNAcylation resulted in decreased tyrosine phosphorylation, oligomerization and transactivation potential and complete loss of oncogenic transformation capacity. The lack of O-GlcNAcylation diminished phospho-ERK and phospho-AKT levels. Our data show that O-GlcNAcylation of STAT5 is an important process that contributes to oncogenic transcription through enhanced STAT5 tyrosine phosphorylation and oligomerization driving myeloid transformation. O-GlcNAcylation of STAT5 could be required for nutrient sensing and metabolism of cancer cells.
Collapse
|
38
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
39
|
Ferrer CM, Sodi VL, Reginato MJ. O-GlcNAcylation in Cancer Biology: Linking Metabolism and Signaling. J Mol Biol 2016; 428:3282-3294. [PMID: 27343361 DOI: 10.1016/j.jmb.2016.05.028] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
The hexosamine biosynthetic pathway (HBP) is highly dependent on multiple metabolic nutrients including glucose, glutamine, and acetyl-CoA. Increased flux through HBP leads to elevated post-translational addition of β-D-N-acetylglucosamine sugars to nuclear and cytoplasmic proteins. Increased total O-GlcNAcylation is emerging as a general characteristic of cancer cells, and recent studies suggest that O-GlcNAcylation is a central communicator of nutritional status to control key signaling and metabolic pathways that regulate multiple cancer cell phenotypes. This review summarizes our current understanding of changes of O-GlcNAc cycling enzymes in cancer, the role of O-GlcNAcylation in tumorigenesis, and the current challenges in targeting this pathway therapeutically.
Collapse
Affiliation(s)
- Christina M Ferrer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Valerie L Sodi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
40
|
Liu W, Bo P. Relationship of protein O-GlcNAcylation with inflammation and immunity. Shijie Huaren Xiaohua Zazhi 2016; 24:2025-2031. [DOI: 10.11569/wcjd.v24.i13.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Addition of O-linked N-acetylglucosamine (O-GlcNAc) to the hydroxyl group of serine/threonine residues (O-GlcNAcylation) is a post-translational modification common to multicellular eukaryotes. O-GlcNAc plays an important role in the regulation of many biological processes including, but not limited to, cell cycle progression, transcription, translation, signal transduction, and stress response. Physiologically, it functions as a major stress sensor that inhibits the inflammatory response and cell apoptosis, reduces the amount of protein degradation, and adjusts the body's immunity. In this review, we summarize the current understanding of the physiological significance of O-GlcNAcylation, as well as its correlation with inflammation and immunity.
Collapse
|
41
|
Taparra K, Tran PT, Zachara NE. Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 2016; 6:85. [PMID: 27148477 PMCID: PMC4834358 DOI: 10.3389/fonc.2016.00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/27/2016] [Indexed: 01/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a highly conserved program necessary for orchestrating distant cell migration during embryonic development. Multiple studies in cancer have demonstrated a critical role for EMT during the initial stages of tumorigenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many malignancies. Recent evidence correlates EMT-related transcriptomic alterations with metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to environmental stressors, supporting the irregular macromolecular demand of rapid proliferation. One potential metabolic pathway of increasing importance is the hexosamine biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the metabolite UDP-GlcNAc. This and other charged nucleotide sugars serve as the basis for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field of glycobiology have cultivated great curiosity within the cancer research community. However, specific mechanistic relationships between the HBP and fundamental pathways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation downstream of the HBP is well positioned to mediate many cellular changes associated with EMT including cell-cell adhesion, responsiveness to growth factors, immune system evasion, and signal transduction programs. Here, we outline some of the basics of the HBP and putative roles the HBP may have in driving EMT-related cancer processes. With novel appreciation of the HBP's connection to EMT, we hope to illuminate the potential for new therapeutic targets of cancer.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
42
|
Steenackers A, Olivier-Van Stichelen S, Baldini SF, Dehennaut V, Toillon RA, Le Bourhis X, El Yazidi-Belkoura I, Lefebvre T. Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines. Front Endocrinol (Lausanne) 2016; 7:46. [PMID: 27252680 PMCID: PMC4879930 DOI: 10.3389/fendo.2016.00046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells.
Collapse
Affiliation(s)
- Agata Steenackers
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Stéphanie Olivier-Van Stichelen
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Steffi F. Baldini
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Vanessa Dehennaut
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- CNRS, UMR 8161, M3T, Mechanisms of Tumorigenesis and Targeted Therapies, «Institut de Biologie de Lille», Pasteur Institute of Lille, FRABio FR 3688, University of Lille, Lille Cedex, France
| | - Robert-Alain Toillon
- U908, CPAC, Cell Plasticity and Cancer, INSERM, University of Lille, Lille, France
| | - Xuefen Le Bourhis
- U908, CPAC, Cell Plasticity and Cancer, INSERM, University of Lille, Lille, France
| | - Ikram El Yazidi-Belkoura
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, University of Lille, Lille, France
- *Correspondence: Tony Lefebvre,
| |
Collapse
|
43
|
Jang TJ. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer. Pathol Res Pract 2015; 212:113-9. [PMID: 26724145 DOI: 10.1016/j.prp.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 12/03/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied MATERIAL AND METHODS Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue RESULTS Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. CONCLUSIONS Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions; however, these findings are not sufficient to show the role of O-GlcNAcylation in the EMT/MET of CRC.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyongju, Korea.
| |
Collapse
|
44
|
CHAIYAWAT PARUNYA, CHOKCHAICHAMNANKIT DARANEE, LIRDPRAPAMONGKOL KRIENGSAK, SRISOMSAP CHANTRAGAN, SVASTI JISNUSON, CHAMPATTANACHAI VORARATT. Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Oncol Rep 2015; 34:1933-42. [DOI: 10.3892/or.2015.4178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
|
45
|
A Review: Proteomics in Nasopharyngeal Carcinoma. Int J Mol Sci 2015; 16:15497-530. [PMID: 26184160 PMCID: PMC4519910 DOI: 10.3390/ijms160715497] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Collapse
|
46
|
Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC, Wang YF, Chen YL, Yu CK, Wang SM, Liu CC, Shiau AL, Lei HY, Chang CP. Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS One 2015; 10:e0116278. [PMID: 25706563 PMCID: PMC4338065 DOI: 10.1371/journal.pone.0116278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection causes a myriad of diseases from mild hand-foot-and-mouth disease or herpangina to fatal brain stem encephalitis complicated with pulmonary edema. Several severe EV71 endemics have occurred in Asia-Pacific region, including Taiwan, and have become a serious threat to children’s health. EV71 infection is initiated by the attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between viruses and cell surface receptors, soluble factors may also influence the binding of EV71 to host cells.Galectin-1 has been reported to participate in several virus infections, but is not addressed in EV71. In this study, we found that the serum levels of galectin-1 in EV71-infected children were higher than those in non-infected people. In EV71 infected cells, galectin-1 was found to be associated with the EV71 VP1 and VP3 via carbohydrate residues and subsequently released and bound to another cell surface along with the virus. EV71 propagated from galectin-1 knockdown SK-N-SH cells exhibited lower infectivity in cultured cells and less pathogenicity in mice than the virus propagated from parental cells. In addition, this galectin-1-free EV71 virus was sensitive to high temperature and lost its viability after long-term storage, which could be restored following supplement of recombinant galectin-1. Taken together, our findings uncover a new role of galectin-1 in facilitating EV71 virus infection.
Collapse
Affiliation(s)
- Pei-Huan Lee
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Ming Liu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzong-Shiann Ho
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Che Tsai
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi-Cheng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yuh-Ling Chen
- Department of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Keung Yu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Min Wang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Nagel AK, Ball LE. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 2015; 126:137-66. [PMID: 25727147 DOI: 10.1016/bs.acr.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.
Collapse
|
48
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer. Clin Exp Med 2014; 15:455-68. [PMID: 25315705 PMCID: PMC4623075 DOI: 10.1007/s10238-014-0318-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
Abstract
Aberrant protein O-GlcNAcylation may contribute to the development and malignant behavior of many cancers. This modification is controlled by O-linked β-N-acetylglucosamine transferase (OGT) and O-GlcNAcase (OGA). The aim of this study was to determine the expression of O-GlcNAc cycling enzymes mRNA/protein and to investigate their relationship with clinicopathological parameters in laryngeal cancer. The mRNA levels of OGT and MGEA5 genes were determined in 106 squamous cell laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent laryngeal mucosa (NCLM) controls using quantitative real-time PCR. The level of OGT and OGA proteins was analyzed by Western blot. A positive expression of OGT and MGEA5 transcripts and OGT and OGA proteins was confirmed in 75.5 and 68.9 % and in 43.7 and 59.4 % samples of SCLC, respectively. Higher levels of mRNA/protein for both OGT and OGA as well as significant increases of 60 % in total protein O-GlcNAcylation levels were noted in SCLC compared with NCLM (p < 0.05). As a result, an increased level of OGT and MGEA5 mRNA was related to larger tumor size, nodal metastases, higher grade and tumor behavior according to TFG scale, as well as incidence of disease recurrence (p < 0.05). An inverse association between OGT and MGEA5 transcripts was determined with regard to prognosis (p < 0.05). In addition, the highest OGT and OGA protein levels were observed in poorly differentiated tumors (p < 0.05). No correlations with other parameters were noted, but the results showed a trend of more advanced tumors to be more frequently OGT and OGA positive. The results suggest that increased O-GlcNAcylation may have an effect on tumor aggressiveness and prognosis in laryngeal cancer.
Collapse
|
50
|
The potential role of O-GlcNAc modification in cancer epigenetics. Cell Mol Biol Lett 2014; 19:438-60. [PMID: 25141978 PMCID: PMC6275943 DOI: 10.2478/s11658-014-0204-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
There is no doubt that cancer is not only a genetic disease but that it can also occur due to epigenetic abnormalities. Diet and environmental factors can alter the scope of epigenetic regulation. The results of recent studies suggest that O-GlcNAcylation, which involves the addition of N-acetylglucosamine on the serine or threonine residues of proteins, may play a key role in the regulation of the epigenome in response to the metabolic status of the cell. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT), which catalyzes the addition of the GlcNAc moiety to target proteins; and O-GlcNAcase (OGA), which removes the sugar moiety from proteins. Aberrant expression of O-GlcNAc cycling enzymes, especially OGT, has been found in all studied human cancers. OGT can link the cellular metabolic state and the epigenetic status of cancer cells by interacting with and modifying many epigenetic factors, such as HCF-1, TET, mSin3A, HDAC, and BAP1. A growing body of evidence from animal model systems also suggests an important role for OGT in polycomb-dependent repression of genes activity. Moreover, O-GlcNAcylation may be a part of the histone code: O-GlcNAc residues are found on all core histones.
Collapse
|