1
|
Glembocki A, Siddaway R, Arnoldo A, Jakeman M, Lafreniere A. Clinical and Pathological Features of a Schwannoma Harboring a SH3PXD2A::HTRA1 Gene Fusion in a Pre-pubescent Patient. Pediatr Dev Pathol 2025; 28:137-141. [PMID: 39717921 PMCID: PMC11894906 DOI: 10.1177/10935266241308946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
An 11-year-old girl presented with a soft tissue lesion on the dorsal aspect of the left middle finger. Ultrasound imaging demonstrated a 2.8 cm × 0.8 cm × 0.8 cm lesion overlying the dorsal aspect of the base of the digit near the metacarpophalangeal joint. The patient's past medical history is remarkable for neuroblastoma, diagnosed at 9 months of age, with no MYCN amplification or 1p loss. We report a pediatric schwannoma harbouring a SH3PXD2A::HTRA1 gene fusion with a distinctive serpentine histology. The lesion consisted of well-circumscribed nodules surrounded by thin EMA-positive perineural capsules. Each nodule was composed of lesional cells arranged in short fascicles with occasional clefting and a distinct "serpentine" palisading pattern. The lesion demonstrated Antoni A regions with Verocay body formation. No significant Antoni B areas were seen. The lesional Schwannian cells were bland with elongated and tapered nuclei, showing strong and diffuse positivity for S100. This pre-pubescent girl (Tanner Stage 2) is currently the youngest reported case of fusion-positive schwannoma. In addition, she has a significant prior history of a malignant neoplasm, and the lesion arose in an appendicular location.
Collapse
Affiliation(s)
- Aida Glembocki
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert Siddaway
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anthony Arnoldo
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Molly Jakeman
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Plastic, Reconstructive & Aesthetic Surgery, University of Toronto, Toronto, ON, Canada
| | - Anthea Lafreniere
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Lin CY, Wu KY, Chi LM, Tang YH, Huang HJ, Lai CH, Tsai CN, Tsai CL. Starvation-inactivated MTOR triggers cell migration via a ULK1-SH3PXD2A/TKS5-MMP14 pathway in ovarian carcinoma. Autophagy 2023; 19:3151-3168. [PMID: 37505094 PMCID: PMC10621272 DOI: 10.1080/15548627.2023.2239633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
ABBREVIATIONS AMPK: AMP-activated protein kinase; CHX: cycloheximide; RAD001: everolimus; HBSS: Hanks' balanced salt solution; LC-MS/MS: liquid chromatography-mass spectrometry/mass spectrometry; MMP14: matrix metallopeptidase 14; MTOR: mechanistic target of rapamycin kinase; MAPK: mitogen-activated protein kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology; SH3: Src homology 3; SH3PXD2A/TKS5: SH3 and PX domains 2A; SH3PXD2A-[6A]: S112A S142A S146A S147A S175A S348A mutant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
| | - Kai-Yun Wu
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Lang-Ming Chi
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Yun-Hsin Tang
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Huei-Jean Huang
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Chyong-Huey Lai
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taoyuan City, Guishan District, Taiwan
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City, Tucheng District, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
| |
Collapse
|
4
|
Kato K, Miyazawa H, Kawashiri S, Lambert DW. Tumour: Fibroblast Interactions Promote Invadopodia-Mediated Migration and Invasion in Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5277440. [PMID: 36471888 PMCID: PMC9719419 DOI: 10.1155/2022/5277440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023]
Abstract
OBJECTIVES In the progression of cancer, interactions between cancer cells and cancer-associated fibroblasts (CAFs) play important roles. Cancer cell invasion is facilitated by filamentous actin (F-actin)-rich membrane protrusions called invadopodia, and the relationship between CAFs and invadopodia has been unclear. We used oral squamous cell carcinoma (OSCC) to investigate CAFs' effects on the formation of invadopodia, and we assessed the expressions of invadopodia markers and CAF markers ex vivo and their relationship with clinical parameters and survival. MATERIALS AND METHODS We examined the effect of culture with normal oral fibroblast (NOF)-derived and CAF-derived conditioned medium on the migration and invasion of two OSCC-derived cell lines using Transwells in the absence/presence of Matrigel. Immunoblotting and immunocytochemistry were conducted to assess the expressions of the invadopodia markers tyrosine kinase substrate 5 (Tks5) and membrane type 1 matrix metalloproteinase (MT1-MMP). We also used immunohistochemistry to examine patients with OSCC for an evaluation of the relationship between the CAF marker alpha smooth muscle actin (αSMA) and the expression of Tks5. The patients' survival was also assessed. RESULTS Compared to the use of culture medium alone, NOF-CM and CAF-CM both significantly increased the OSCC cells' migration and invasion (p < 0.05), and they significantly increased the expressions of both Tks5 and MT1-MMP. After the depletion of Tks5, the OSCC cells' migration and invasion abilities decreased. The expression of Tks5 and that of αSMA were correlated with poor survival, and a high expression of both markers was associated with an especially poor prognosis. CONCLUSIONS These results indicate that the formation of invadopodia is (i) important for OSCC cells' migration and invasion and (ii) regulated by the interaction of OSCC cells and stromal fibroblasts.
Collapse
Affiliation(s)
- Koroku Kato
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Hiroki Miyazawa
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, 13-1 Takara Machi, Kanazawa 9208641, Japan
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| |
Collapse
|
5
|
Zhou Y, Yong H, Cui W, Chu S, Li M, Li Z, Bai J, Zhang H. Long noncoding RNA SH3PXD2A-AS1 promotes NSCLC proliferation and accelerates cell cycle progression by interacting with DHX9. Cell Death Discov 2022; 8:192. [PMID: 35410446 PMCID: PMC9001675 DOI: 10.1038/s41420-022-01004-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
As the most commonly diagnosed lung cancer, non-small cell lung carcinoma (NSCLC) is regulated by many long noncoding RNAs (lncRNAs). In the present study, we found that SH3PXD2A-AS1 expression in NSCLC tissues was upregulated compared with that in normal lung tissues in The Cancer Genome Atlas (TCGA) database by using the GEPIA website. K-M analysis was performed to explore the effects of this molecule on the survival rate in NSCLC. The results demonstrated that SH3PXD2A-AS1 expression was increased in human NSCLC, and high SH3PXD2A-AS1 expression was correlated with poor overall survival. SH3PXD2A-AS1 promotes lung cancer cell proliferation and accelerates cell cycle progression in vitro. Animal studies validated that knockdown of SH3PXD2A-AS1 inhibits NSCLC cell proliferation in vivo. Mechanically, SH3PXD2A-AS1 interacted with DHX9 to enhance FOXM1 expression, promote tumour cell proliferation and accelerate cell cycle progression. Altogether, SH3PXD2A-AS1 promoted NSCLC growth by interacting with DHX9 to enhance FOXM1 expression. SH3PXD2A-AS1 may serve as a promising predictive biomarker for the diagnosis and prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Yeqing Zhou
- Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
- Department of Thoracic Surgery, Shengze Hospital in Jiangsu, Suzhou, 215228, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, the Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - WenJie Cui
- Department of Respiratory and Critical Care Medicine, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| | - Hao Zhang
- Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, China.
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
6
|
Sugimoto A, Okuno T, Tsujio G, Sera T, Yamamoto Y, Maruo K, Kushiyama S, Nishimura S, Kuroda K, Togano S, Miki Y, Yoshii M, Tamura T, Toyokawa T, Tanaka H, Muguruma K, Ohira M, Yashiro M. The clinicopathologic significance of Tks5 expression of peritoneal mesothelial cells in gastric cancer patients. PLoS One 2021; 16:e0253702. [PMID: 34255789 PMCID: PMC8277061 DOI: 10.1371/journal.pone.0253702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Gastric cancer (GC) patients frequently develop peritoneal metastasis. Recently, it has been reported that peritoneal mesothelial cells (PMCs) activated by GC cells acquire a migratory capacity and promote GC cell invasion. The invasiveness of PMCs reportedly depends on the activity of Tks5, an adaptor protein required for invadopodia formation. However, the relationship between clinicopathologic features and Tks5 expression in PMCs has been poorly documented. In this study, we evaluated the clinicopathologic significance of the Tks5 expression of PMCs in GC patients. Materials and methods A total of 110 GC patients who underwent gastrectomy were enrolled in this study. Tks5 expressions in PMCs from the greater omentum, lesser omentum and retroperitoneum were evaluated by immunohistochemistry. We analyzed the correlation between Tks5 expressions in PMCs and the patients’ clinicopathologic features. Results Tks5 expression was found in 71 (64.5%) of the 110 patients, while 39 (35.5%) were Tks5-negative. Tks5 positivity was significantly (p = 0.038) associated with a greater tumor depth (i.e., T3/4 compared with T1/T2). Peritoneal recurrence was found in 12 of 98 cases within 3 years of surgery. The 3-year peritoneal recurrence-free survival (PRFS) rate in Tks5-positive cases was significantly poorer than that in Tks5-negative cases (80.1% vs 97.4%, p = 0.024). Multivariate analysis revealed that Tks5 positivity and lymph node metastasis were independent factors for PRFS. Conclusion Tks5 is frequently expressed in PMCs in advanced-stage gastric cancer. Tks5 might be a useful predictor for peritoneal recurrence in GC patients.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Gen Tsujio
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Maruo
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sadaaki Nishimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Miki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Kui X, Wang Y, Zhang C, Li H, Li Q, Ke Y, Wang L. Prognostic value of SH3PXD2B (Tks4) in human hepatocellular carcinoma: a combined multi-omics and experimental study. BMC Med Genomics 2021; 14:115. [PMID: 33906640 PMCID: PMC8080318 DOI: 10.1186/s12920-021-00963-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and fatal cancers worldwide. HCC invasion and metastasis are crucial for its poor prognosis. SH3PXD2B is a scaffold protein and critical for intravascular and extravascular invasion and metastasis of various types of tumors. However, the role of SH3PXD2B in HCC progression remains unclear. METHODS The levels of SH3PXD2B mRNA transcripts in the TCGA database and SH3PXD2B protein expression in the Human Protein Atlas were analyzed. Furthermore, the levels of SH3PXD2B expression in clinical samples were analyzed by quantitative RT-PCR and immunohistochemistry. The potential association of the levels of SH3PXD2B expression with clinicopathological characteristics, overall survival (OS), and recurrence-free survival (RFS) of HCC patients was analyzed. The impact of SH3PXD2B silencing by shRNA-based lentivirus transduction on the proliferation and invasion of human HCC Hep3B and Huh7 cells was determined. RESULTS SH3PXD2B expression was up-regulated in HCC tissues in the TCGA and Human Protein Atlas as well as clinical samples, relative to that of non-tumor liver samples. The levels of SH3PXD2B expression in HCC tissues were significantly associated with higher HBV infection rate, higher HCC grades and TNM stages, higher Ki-67 expression, higher serum α-fetoprotein (AFP), a shorter OS and RFS of HCC patients. Functionally, SH3PXD2B silencing significantly inhibited the formation and function of invadopodia and the invasion of Hep3B and Huh7 cells, but did not affect their proliferation in vitro. CONCLUSIONS Our data suggest that SH3PXD2B may promote the invasion and metastasis of HCC and be a valuable therapeutic target and biomarker for treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Xiang Kui
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
- Department of Hepatobiliary Surgery, The Sixth People's Hospital of Chengdu, Chengdu, 610051, China
| | - Hai Li
- School of Medicine, Kunming University, Kunming, 650214, China
| | - Qingfeng Li
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
8
|
Mitre GP, Balbinot KM, Ribeiro ALR, da Silva Kataoka MS, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Key proteins of invadopodia are overexpressed in oral squamous cell carcinoma suggesting an important role of MT1-MMP in the tumoral progression. Diagn Pathol 2021; 16:33. [PMID: 33879222 PMCID: PMC8059181 DOI: 10.1186/s13000-021-01090-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most relevant malignant neoplasm among all head and neck tumours due to its high prevalence and unfavourable prognosis. Tumour invasion and metastasis that affect prognosis are result of a set of complex events that cells with invasive potential use to spread to other regions. These cells use several mechanisms to invade tissues, including a type of finger-like membrane protrusion called invadopodia. This study aims to investigate the immunoexpression of invaopodia related-proteins TKs5, cortactin, TKs4 and MT1-MMP in OSCC and correlate it to clinicopathological data. METHODS An immunohistochemical evaluation of fifty cases of OSCCs and 20 cases of oral mucosa (OM) were assessed. The expression of invadopodia proteins were analysed in comparison to normal tissue (OM) and correlated to different clinical-stage and histological grade of OSCC. RESULTS TKs5, cortactin, TKs4 and MT1-MMP were significantly overexpressed in OSCC when compared to OM (p < 0.0001). Among tumour stages, TKs5 showed a statistical difference in immunolabelling between stage I and III (p = 0.026). Cortactin immunolabelling was statistically higher in grade I than in grade II and III. No differences were seen on TKs4 expression based on tumour staging or grading. MT1-MMP was higher expressed and showed statistical difference between stages I and III and grades I compared to II and III. CONCLUSIONS The invadopodia related-proteins were found to be overexpressed in OSCC when compared to OM, suggesting invadopodia formation and activity. Besides overexpressed in OSCC, cortactin, TKs4 and TKs5 showed no or ambiguous differences in protein expression when compared among clinical-stages or histological grades groups. Conversely, the expression of MT1-MMP increased in advanced stages and less differentiated tumours, suggesting MT1-MMP expression as a promising prognostic marker in OSCC.
Collapse
Affiliation(s)
- Geovanni Pereira Mitre
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - André Luis Ribeiro Ribeiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Maria Sueli da Silva Kataoka
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - Sérgio de Melo Alves Júnior
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Cell Culture Laboratory, Federal University of Pará, Rua Augusto Corrêa, 01, Guamá, PA, 66075110, Belém, Brazil.
| |
Collapse
|
9
|
Iizuka S, Quintavalle M, Navarro JC, Gribbin KP, Ardecky RJ, Abelman MM, Ma CT, Sergienko E, Zeng FY, Pass I, Thomas GV, McWeeney SK, Hassig CA, Pinkerton AB, Courtneidge SA. Serine-Threonine Kinase TAO3-Mediated Trafficking of Endosomes Containing the Invadopodia Scaffold TKS5α Promotes Cancer Invasion and Tumor Growth. Cancer Res 2021; 81:1472-1485. [PMID: 33414172 DOI: 10.1158/0008-5472.can-20-2383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Invadopodia are actin-based proteolytic membrane protrusions required for invasive behavior and tumor growth. In this study, we used our high-content screening assay to identify kinases whose activity affects invadopodia formation. Among the top hits selected for further analysis was TAO3, an STE20-like kinase of the GCK subfamily. TAO3 was overexpressed in many human cancers and regulated invadopodia formation in melanoma, breast, and bladder cancers. Furthermore, TAO3 catalytic activity facilitated melanoma growth in three-dimensional matrices and in vivo. A novel, potent catalytic inhibitor of TAO3 was developed that inhibited invadopodia formation and function as well as tumor cell extravasation and growth. Treatment with this inhibitor demonstrated that TAO3 activity is required for endosomal trafficking of TKS5α, an obligate invadopodia scaffold protein. A phosphoproteomics screen for TAO3 substrates revealed the dynein subunit protein LIC2 as a relevant substrate. Knockdown of LIC2 or expression of a phosphomimetic form promoted invadopodia formation. Thus, TAO3 is a new therapeutic target with a distinct mechanism of action. SIGNIFICANCE: An unbiased screening approach identifies TAO3 as a regulator of invadopodia formation and function, supporting clinical development of this class of target.
Collapse
Affiliation(s)
- Shinji Iizuka
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | | | - Jose C Navarro
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Kyle P Gribbin
- Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Robert J Ardecky
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Matthew M Abelman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon.,Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Christian A Hassig
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Sara A Courtneidge
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. .,Department of Cell Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Bayarmagnai B, Perrin L, Esmaeili Pourfarhangi K, Graña X, Tüzel E, Gligorijevic B. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J Cell Sci 2019; 132:jcs.227116. [PMID: 31533971 DOI: 10.1242/jcs.227116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
The process of tumor cell invasion and metastasis includes assembly of invadopodia, protrusions capable of degrading the extracellular matrix (ECM). The effect of cell cycle progression on invadopodia has not been elucidated. In this study, by using invadopodia and cell cycle fluorescent markers, we show in 2D and 3D cultures, as well as in vivo, that breast carcinoma cells assemble invadopodia and invade into the surrounding ECM preferentially during the G1 phase. The expression (MT1-MMP, also known as MMP14, and cortactin) and localization (Tks5; also known as SH3PXD2A) of invadopodia components are elevated in G1 phase, and cells synchronized in G1 phase exhibit significantly higher ECM degradation compared to the cells synchronized in S phase. The cyclin-dependent kinase inhibitor (CKI) p27kip1 (also known as CDKN1B) localizes to the sites of invadopodia assembly. Overexpression and stable knockdown of p27kip1 lead to contrasting effects on invadopodia turnover and ECM degradation. Taken together, these findings suggest that expression of invadopodia components, as well as invadopodia function, are linked to cell cycle progression, and that invadopodia are controlled by cell cycle regulators. Our results caution that this coordination between invasion and cell cycle must be considered when designing effective chemotherapies.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Louisiane Perrin
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | | | - Xavier Graña
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Fels Research Institute for Cancer Biology and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erkan Tüzel
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Bojana Gligorijevic
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA .,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
13
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res 2019; 18:113-126. [PMID: 30891314 PMCID: PMC6403413 DOI: 10.1016/j.jare.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Haplotype blocks methods plays a complementary role to the single-SNP approaches. CIT, FGT, SSLD, and single-SNP methods should be applied to discover the markers. Selection of the method used for the association has an impact on the biomarkers. SSLD method detected more significant SNPs than CIT, FGT, and single-SNP methods. The 383 SNPs discovered by all methods are significantly associated with RA.
The human genome, which includes thousands of genes, represents a big data challenge. Rheumatoid arthritis (RA) is a complex autoimmune disease with a genetic basis. Many single-nucleotide polymorphism (SNP) association methods partition a genome into haplotype blocks. The aim of this genome wide association study (GWAS) was to select the most appropriate haplotype block partitioning method for the North American Rheumatoid Arthritis Consortium (NARAC) dataset. The methods used for the NARAC dataset were the individual SNP approach and the following haplotype block methods: the four-gamete test (FGT), confidence interval test (CIT), and solid spine of linkage disequilibrium (SSLD). The measured parameters that reflect the strength of the association between the biomarker and RA were the P-value after Bonferroni correction and other parameters used to compare the output of each haplotype block method. This work presents a comparison among the individual SNP approach and the three haplotype block methods to select the method that can detect all the significant SNPs when applied alone. The GWAS results from the NARAC dataset obtained with the different methods are presented. The individual SNP, CIT, FGT, and SSLD methods detected 541, 1516, 1551, and 1831 RA-associated SNPs respectively, and the individual SNP, FGT, CIT, and SSLD methods detected 65, 156, 159, and 450 significant SNPs respectively, that were not detected by the other methods. Three hundred eighty-three SNPs were discovered by the haplotype block methods and the individual SNP approach, while 1021 SNPs were discovered by all three haplotype block methods. The 383 SNPs detected by all the methods are promising candidates for studying RA susceptibility. A hybrid technique involving all four methods should be applied to detect the significant SNPs associated with RA in the NARAC dataset, but the SSLD method may be preferred because of its advantages when only one method was used.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Chen YC, Baik M, Byers JT, Chen KT, French SW, Díaz B. TKS5-positive invadopodia-like structures in human tumor surgical specimens. Exp Mol Pathol 2018; 106:17-26. [PMID: 30439350 DOI: 10.1016/j.yexmp.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Invadopodia, cancer cell protrusions with proteolytic activity, are functionally associated with active remodeling of the extracellular matrix. Here, we show that the invadopodia-related protein TKS5 is expressed in human pancreatic adenocarcinoma lines, and demonstrate that pancreatic cancer cells depend on TKS5 for invadopodia formation and function. Immunofluorescence staining of human pancreatic cancer cells reveals that TKS5 is a marker of mature and immature invadopodia. We also analyze the co-staining patterns of TKS5 and the commonly used invadopodia marker Cortactin, and find only partial co-localization of these two proteins at invadopodia, with a large fraction of TKS5-positive invadopodia lacking detectable levels of Cortactin. Whereas compelling evidence exist on the role of invadopodia as mediators of invasive migration in cultured cells and in animal models of cancer, these structures have never been detected inside human tumors. Here, using antibodies against TKS5 and Cortactin, we describe for the first time structures strongly resembling invadopodia in various paraffin-embedded human tumor surgical specimens from pancreas and other organs. Our results strongly suggest that invadopodia are present inside human tumors, and warrants further investigation on their regulation and occurrence in surgical specimens, and on the value of TKS5 antibodies as pathological research and diagnostic tools.
Collapse
Affiliation(s)
- Yu-Chuan Chen
- Division on Medical Oncology Hematology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew Baik
- Division on Medical Oncology Hematology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joshua T Byers
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kathryn T Chen
- Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Begoña Díaz
- Division on Medical Oncology Hematology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Mao L, Whitehead CA, Paradiso L, Kaye AH, Morokoff AP, Luwor RB, Stylli SS. Enhancement of invadopodia activity in glioma cells by sublethal doses of irradiation and temozolomide. J Neurosurg 2018; 129:598-610. [DOI: 10.3171/2017.5.jns17845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVEGlioblastoma is the most common primary central nervous system tumor in adults. These tumors are highly invasive and infiltrative and result in tumor recurrence as well as an extremely poor patient prognosis. The current standard of care involves surgery, radiotherapy, and chemotherapy. However, previous studies have suggested that glioblastoma cells that survive treatment are potentially more invasive. The goal of this study was to investigate whether this increased phenotype in surviving cells is facilitated by actin-rich, membrane-based structures known as invadopodia.METHODSA number of commercially available cell lines and glioblastoma cell lines obtained from patients were initially screened for the protein expression levels of invadopodia regulators. Gelatin-based zymography was also used to establish their secretory protease profile. The effects of radiation and temozolomide treatment on the glioblastoma cells were then investigated with cell viability, Western blotting, gelatin-based zymography, and invadopodia matrix degradation assays.RESULTSThe authors’ results show that the glioma cells used in this study express a number of invadopodia regulators, secrete MMP-2, and form functional matrix-degrading invadopodia. Cells that were treated with radiotherapy and temozolomide were observed to show an increase primarily in the activation of MMP-2. Importantly, this also resulted in a significant enhancement in the invadopodia-facilitated matrix-degrading ability of the cells, along with an increase in the percentage of cells with invadopodia after radiation and temozolomide treatment.CONCLUSIONSThe data from this study suggest that the increased invasive phenotype that has been previously observed in glioma cells posttreatment is mediated by invadopodia. The authors propose that if the formation or activity of these structures can be disrupted, they could potentially serve as a viable target for developing novel adjuvant therapeutic strategies that can be used in conjunction with the current treatment protocols in combatting the invasive phenotype of this deadly disease.
Collapse
Affiliation(s)
- Leon Mao
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Clarissa A. Whitehead
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Lucia Paradiso
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Andrew H. Kaye
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew P. Morokoff
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rodney B. Luwor
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
| | - Stanley S. Stylli
- 1Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital; and
- 2Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Gorai S, Paul D, Borah R, Haloi N, Santra MK, Manna D. Role of Cationic Groove and Hydrophobic Residues in Phosphatidylinositol-Dependent Membrane-Binding Properties of Tks5-Phox Homology Domain. ChemistrySelect 2018. [DOI: 10.1002/slct.201702558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | - Debasish Paul
- National Centre for Cell Science; Pune 411007, Maharashtra India
| | - Rituparna Borah
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | - Nandan Haloi
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | | | - Debasis Manna
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| |
Collapse
|
17
|
Abstract
Tyrosine kinase substrate (Tks) adaptor proteins are considered important regulators of various physiological and/or pathological processes, particularly cell migration and invasion, and cancer progression. These proteins contain PX and SH3 domains, and act as scaffolds, bringing membrane and cellular components in close proximity in structures known as invadopodia or podosomes. Tks proteins, analogous to the related proteins p47phox, p40phox and NoxO1, also facilitate local generation of reactive oxygen species (ROS), which aid in signaling at invadopodia and/or podosomes to promote their activity. As their name suggests, Tks adaptor proteins are substrates for tyrosine kinases, especially Src. In this Cell Science at a Glance article and accompanying poster, we discuss the known structural and functional aspects of Tks adaptor proteins. As the science of Tks proteins is evolving, this article will point out where we stand and what still needs to be explored. We also underscore pathological conditions involving these proteins, providing a basis for future research to develop therapies for treatment of these diseases.
Collapse
Affiliation(s)
- Priyanka Saini
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
18
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|