1
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Granit Mizrahi A, Gugenheim A, Hamad H, Hamed R, Tetro N, Maimon O, Khutsurauli S, Nechushtan H, Nisman B, Duran D, Samman W, Birimberg-Schwartz L, Grunewald M, Eyal S, Peretz T. Valproic acid reprograms the metabolic aberration of cisplatin treatment via ALDH modulation in triple-negative breast cancer cells. Front Cell Dev Biol 2023; 11:1217149. [PMID: 37954205 PMCID: PMC10639136 DOI: 10.3389/fcell.2023.1217149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
We recently demonstrated that the histone deacetylase inhibitor valproic acid (VPA) reprograms the cisplatin-induced metabolome of triple-negative breast cancer (TNBC) cells, including a shift in hexose levels. Accordingly, here, we tested the hypothesis that VPA alters glucose metabolism in correlation with cisplatin sensitivity. Two TNBC cell lines, MDA-MB-231 (a cisplatin-resistant line) and MDA-MB-436 (a cisplatin-sensitive line), were analyzed. The glycolysis and oxidative metabolism were measured using the Glycolysis Stress Test kit. The expression of aldehyde dehydrogenases (ALDHs), enzymes linked to drug resistance, was investigated by Western blot and real-time PCR analyses. We additionally studied the influence of ALDH inhibition by disulfiram on the viability of MDA-MB-231 cells and on a TNBC patient-derived organoid system. Cisplatin treatment reduced the extracellular acidification rate in MDA-MB-436 cells but not MDA-MB-231 cells, whereas VPA addition increased the extracellular acidification rate in both cell lines. VPA further reduced the oxygen consumption rate of cisplatin-treated MDA-MB-436 cells, which correlated with cell cycle alterations. However, in MDA-MB-231 cells, the cell cycle distribution did not change between cisplatin/VPA-cisplatin treatments. In both cell lines, VPA increased the expression of ALDH isoform and ALDH1A1 expression. However, only in MDA-MB-231 cells, VPA synergized with cisplatin to augment this effect. Disulfiram sensitized the cells to the cytotoxic effects of the VPA-cisplatin combination. Furthermore, the disulfiram-VPA-chemotherapy combination was most effective in TNBC organoids. Our results show that ALDH overexpression may act as one mechanism of cellular resistance to VPA in TNBC and that its inhibition may enhance the therapeutic efficacy of VPA-chemotherapeutic drug combinations.
Collapse
Affiliation(s)
- Avital Granit Mizrahi
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Ahinoam Gugenheim
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haneen Hamad
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Roa’a Hamed
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Nino Tetro
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Ofra Maimon
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Salome Khutsurauli
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hovav Nechushtan
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Nisman
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Deborah Duran
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem, Israel
| | - Widad Samman
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem, Israel
| | - Liron Birimberg-Schwartz
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem, Israel
- Department of Pediatric Gastroenterology, The Hadassah Medical Organization, Jerusalem, Israel
| | - Myriam Grunewald
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem, Israel
| | - Sara Eyal
- School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | - Tamar Peretz
- Oncology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
4
|
Cui H, Ren X, Dai L, Chang L, Liu D, Zhai Z, Kang H, Ma X. Comprehensive analysis of nicotinamide metabolism-related signature for predicting prognosis and immunotherapy response in breast cancer. Front Immunol 2023; 14:1145552. [PMID: 36969219 PMCID: PMC10031006 DOI: 10.3389/fimmu.2023.1145552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background Breast cancer (BC) is the most common malignancy among women. Nicotinamide (NAM) metabolism regulates the development of multiple tumors. Herein, we sought to develop a NAM metabolism-related signature (NMRS) to make predictions of survival, tumor microenvironment (TME) and treatment efficacy in BC patients. Methods Transcriptional profiles and clinical data from The Cancer Genome Atlas (TCGA) were analyzed. NAM metabolism-related genes (NMRGs) were retrieved from the Molecular Signatures Database. Consensus clustering was performed on the NMRGs and the differentially expressed genes between different clusters were identified. Univariate Cox, Lasso, and multivariate Cox regression analyses were sequentially conducted to develop the NAM metabolism-related signature (NMRS), which was then validated in the International Cancer Genome Consortium (ICGC) database and Gene Expression Omnibus (GEO) single-cell RNA-seq data. Further studies, such as gene set enrichment analysis (GSEA), ESTIMATE, CIBERSORT, SubMap, and Immunophenoscore (IPS) algorithm, cancer-immunity cycle (CIC), tumor mutation burden (TMB), and drug sensitivity were performed to assess the TME and treatment response. Results We identified a 6-gene NMRS that was significantly associated with BC prognosis as an independent indicator. We performed risk stratification according to the NMRS and the low-risk group showed preferable clinical outcomes (P < 0.001). A comprehensive nomogram was developed and showed excellent predictive value for prognosis. GSEA demonstrated that the low-risk group was predominantly enriched in immune-associated pathways, whereas the high-risk group was enriched in cancer-related pathways. The ESTIMATE and CIBERSORT algorithms revealed that the low-risk group had a higher abundance of anti-tumor immunocyte infiltration (P < 0.05). Results of Submap, IPS, CIC, TMB, and external immunotherapy cohort (iMvigor210) analyses showed that the low-risk group were indicative of better immunotherapy response (P < 0.05). Conclusions The novel signature offers a promising way to evaluate the prognosis and treatment efficacy in BC patients, which may facilitate clinical practice and management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaobin Ma
- *Correspondence: Xiaobin Ma, ; Huafeng Kang,
| |
Collapse
|
5
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
6
|
Improved delivery of Mcl-1 and survivin siRNA combination in breast cancer cells with additive siRNA complexes. Invest New Drugs 2022; 40:962-976. [PMID: 35834040 DOI: 10.1007/s10637-022-01282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the influence of commercial transfection reagents (Prime-Fect, Leu-Fect A, and Leu-Fect C) complexed with different siRNAs (CDC20, HSP90, Mcl-1 and Survivin) in MDA-MB-436 breast cancer cells and the impact of incorporating an anionic additive, Trans-Booster, into siRNA formulations for improving in vitro gene silencing and delivery efficiency. Gene silencing was quantitatively analyzed by real-time RT-PCR while cell proliferation and siRNA uptake were evaluated by the MTT assay and flow cytometry, respectively. Amongst the investigated siRNAs and transfection reagents, Mcl-1/Prime-Fect complexes showed the highest inhibition of cell viability and the most effective siRNA delivery. The effect of various formulations on transfection efficiency showed that the additive with 1:1 ratio with siRNA was optimal achieving the lowest cell viability compared to untreated cells and negative control siRNA treatment (p < 0.05). Furthermore, the combination of Mcl-1 and survivin siRNA suppressed the growth of MDA-MB-436 cells more effectively than treatment with the single siRNAs and resulted in cell viability as low as ~ 20% (vs. non-treated cells). This aligned well with the induction of apoptosis as analyzed by flow cytometry, which revealed higher apoptotic cells with the combination treatment group. We conclude that commercial transfection reagents formulated with Mcl-1/Survivin siRNA combination could serve as a potent anti-proliferation agent in the treatment of breast cancers.
Collapse
|
7
|
Jung M, Lee K, Im Y, Seok SH, Chung H, Kim DY, Han D, Lee CH, Hwang EH, Park SY, Koh J, Kim B, Nikas IP, Lee H, Hwang D, Ryu HS. Nicotinamide (niacin) supplement increases lipid metabolism and ROS‐induced energy disruption in triple‐negative breast cancer: potential for drug repositioning as an anti‐tumor agent. Mol Oncol 2022; 16:1795-1815. [PMID: 35278276 PMCID: PMC9067146 DOI: 10.1002/1878-0261.13209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolic dysregulation is an important hallmark of cancer. Nicotinamide (NAM), a water‐soluble amide form of niacin (vitamin B3), is currently available as a supplement for maintaining general physiologic functions. NAM is a crucial regulator of mitochondrial metabolism and redox reactions. In this study, we aimed to identify the mechanistic link between NAM‐induced metabolic regulation and the therapeutic efficacy of NAM in triple‐negative breast cancer (TNBC). The combined analysis using multiomics systems biology showed that NAM decreased mitochondrial membrane potential and ATP production, but increased the activities of reverse electron transport (RET), fatty acid β‐oxidation and glycerophospholipid/sphingolipid metabolic pathways in TNBC, collectively leading to an increase in the levels of reactive oxygen species (ROS). The increased ROS levels triggered apoptosis and suppressed tumour growth and metastasis of TNBC in both human organoids and xenograft mouse models. Our results showed that NAM treatment leads to cancer cell death in TNBC via mitochondrial dysfunction and activation of ROS by bifurcating metabolic pathways (RET and lipid metabolism); this provides insights into the repositioning of NAM supplement as a next‐generation anti‐metabolic agent for TNBC treatment.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Kyung‐Min Lee
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Yebin Im
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Da Young Kim
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Cheng Hyun Lee
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Eun Hye Hwang
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Soo Young Park
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Jiwon Koh
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Bohyun Kim
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Ilias P Nikas
- School of Medicine European University Cyprus 2404 Nicosia Cyprus
| | - Hyebin Lee
- Department of Radiation Oncology Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Han Suk Ryu
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
8
|
Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Juarez M, Vargas-Castillo A, Ponce-Toledo RI, Lai D, Hua S, Tovar AR, Torres N, Perez-Montiel D, Diaz-Chavez J, Duenas-Gonzalez A. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci Rep 2021; 11:5222. [PMID: 33664364 PMCID: PMC7933231 DOI: 10.1038/s41598-021-84538-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The malignant energetic demands are satisfied through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic inflammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their effect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These effects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a significant tumor volume inhibition, without damage to normal tissues. The six-drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our findings demonstrate that the simultaneous use of this six-drug combination has anticancer effects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well-tolerated in mice and reduces whole animal energetic expenditure and fat loss.
Collapse
Affiliation(s)
- Alejandro Schcolnik-Cabrera
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
- PECEM, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alma Chavez-Blanco
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Guadalupe Dominguez-Gomez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Mandy Juarez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Ariana Vargas-Castillo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | - Rafael Isaac Ponce-Toledo
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Donna Lai
- Molecular Biology Facility, University of Sydney, Sydney, Australia
| | - Sheng Hua
- Molecular Biology Facility, University of Sydney, Sydney, Australia
| | - Armando R Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | - Nimbe Torres
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | | | - Jose Diaz-Chavez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico.
- Unit of Biomedical Research in Cancer, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
9
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Selvanesan BC, Meena K, Beck A, Meheus L, Lara O, Rooman I, Gravekamp C. Nicotinamide combined with gemcitabine is an immunomodulatory therapy that restrains pancreatic cancer in mice. J Immunother Cancer 2020; 8:e001250. [PMID: 33154149 PMCID: PMC7646363 DOI: 10.1136/jitc-2020-001250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Treatments for pancreatic ductal adenocarcinoma are poorly effective, at least partly due to the tumor's immune-suppressive stromal compartment. New evidence of positive effects on immune responses in the tumor microenvironment (TME), compelled us to test the combination of gemcitabine (GEM), a standard chemotherapeutic for pancreatic cancer, with nicotinamide (NAM), the amide form of niacin (vitamin B3), in mice with pancreatic cancer. METHODS Various mouse tumor models of pancreatic cancer, that is, orthotopic Panc-02 and KPC (KrasG12D, p53R172H, Pdx1-Cre) grafts, were treated alternately with NAM and GEM for 2 weeks, and the effects on efficacy, survival, stromal architecture and tumor-infiltrating immune cells was examined by immunohistochemistry (IHC), flow cytometry, Enzyme-linked immunospot (ELISPOT), T cell depletions in vivo, Nanostring analysis and RNAscope. RESULTS A significant reduction in tumor weight and number of metastases was found, as well as a significant improved survival of the NAM+GEM group compared with all control groups. IHC and flow cytometry showed a significant decrease in tumor-associated macrophages and myeloid-derived suppressor cells in the tumors of NAM+GEM-treated mice. This correlated with a significant increase in the number of CD4 and CD8 T cells of NAM+GEM-treated tumors, and CD4 and CD8 T cell responses to tumor-associated antigen survivin, most likely through epitope spreading. In vivo depletions of T cells demonstrated the involvement of CD4 T cells in the eradication of the tumor by NAM+GEM treatment. In addition, remodeling of the tumor stroma was observed with decreased collagen I and lower expression of hyaluronic acid binding protein, reorganization of the immune cells into lymph node like structures and CD31 positive vessels. Expression profiling for a panel of immuno-oncology genes revealed significant changes in genes involved in migration and activation of T cells, attraction of dendritic cells and epitope spreading. CONCLUSION This study highlights the potential of NAM+GEM as immunotherapy for advanced pancreatic cancer.
Collapse
Affiliation(s)
| | - Kiran Meena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amanda Beck
- Michael F. Price Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lydie Meheus
- AntiCancer Fund, Boechoutlaan, Strombeek-Bever, Belgium
| | - Olaya Lara
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Ilse Rooman
- AntiCancer Fund, Boechoutlaan, Strombeek-Bever, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Badawy AB. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: starting with nicotinamide. Biosci Rep 2020; 40:BSR20202856. [PMID: 33063092 PMCID: PMC7601349 DOI: 10.1042/bsr20202856] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 induces a proinflammatory environment that is stronger in patients requiring intensive care. The cytokine components of this environment may determine efficacy or otherwise of glucocorticoid therapy. The immunity modulators, the aryl hydrocarbon receptor (AhR) and the nuclear NAD+-consuming enzyme poly (ADP-ribose) polymerase 1 (PARP 1) may play a critical role in COVID-19 pathophysiology. The AhR is overexpressed in coronaviruses, including COVID-19 and, as it regulates PARP gene expression, the latter is likely to be activated in COVID-19. PARP 1 activation leads to cell death mainly by depletion of NAD+ and adenosine triphosphate (ATP), especially when availability of these energy mediators is compromised. PARP expression is enhanced in other lung conditions: the pneumovirus respiratory syncytial virus (RSV) and chronic obstructive pulmonary disease (COPD). I propose that PARP 1 activation is the terminal point in a sequence of events culminating in patient mortality and should be the focus of COVID-19 immunotherapy. Potent PARP 1 inhibitors are undergoing trials in cancer, but a readily available inhibitor, nicotinamide (NAM), which possesses a highly desirable biochemical and activity profile, merits exploration. It conserves NAD+ and prevents ATP depletion by PARP 1 and Sirtuin 1 (silent mating type information regulation 2 homologue 1) inhibition, enhances NAD+ synthesis, and hence that of NADP+ which is a stronger PARP inhibitor, reverses lung injury caused by ischaemia/reperfusion, inhibits proinflammatory cytokines and is effective against HIV infection. These properties qualify NAM for therapeutic use initially in conjunction with standard clinical care or combined with other agents, and subsequently as an adjunct to stronger PARP 1 inhibitors or other drugs.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, U.K
| |
Collapse
|
12
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
13
|
Nagashima H, Lee CK, Tateishi K, Higuchi F, Subramanian M, Rafferty S, Melamed L, Miller JJ, Wakimoto H, Cahill DP. Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD + to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discov 2020; 10:1672-1689. [PMID: 32606138 DOI: 10.1158/2159-8290.cd-20-0226] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
NAD+ is an essential cofactor metabolite and is the currency of metabolic transactions critical for cell survival. Depending on tissue context and genotype, cancer cells have unique dependencies on NAD+ metabolic pathways. PARPs catalyze oligomerization of NAD+ monomers into PAR chains during cellular response to alkylating chemotherapeutics, including procarbazine or temozolomide. Here we find that, in endogenous IDH1-mutant tumor models, alkylator-induced cytotoxicity is markedly augmented by pharmacologic inhibition or genetic knockout of the PAR breakdown enzyme PAR glycohydrolase (PARG). Both in vitro and in vivo, we observe that concurrent alkylator and PARG inhibition depletes freely available NAD+ by preventing PAR breakdown, resulting in NAD+ sequestration and collapse of metabolic homeostasis. This effect reversed with NAD+ rescue supplementation, confirming the mechanistic basis of cytotoxicity. Thus, alkylating chemotherapy exposes a genotype-specific metabolic weakness in tumor cells that can be exploited by PARG inactivation. SIGNIFICANCE: Oncogenic mutations in the isocitrate dehydrogenase genes IDH1 or IDH2 initiate diffuse gliomas of younger adulthood. Strategies to maximize the effectiveness of chemotherapy in these tumors are needed. We discover alkylating chemotherapy and concurrent PARG inhibition exploits an intrinsic metabolic weakness within these cancer cells to provide genotype-specific benefit.See related commentary by Pirozzi and Yan, p. 1629.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine K Lee
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumi Higuchi
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megha Subramanian
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seamus Rafferty
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Buqué A, Bloy N, Kroemer G, Galluzzi L. Possible mechanisms of cancer prevention by nicotinamide. Br J Pharmacol 2020; 178:2034-2040. [DOI: 10.1111/bph.15096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aitziber Buqué
- Department of Radiation Oncology Weill Cornell Medical College New York NY USA
| | - Norma Bloy
- Department of Radiation Oncology Weill Cornell Medical College New York NY USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers Paris France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP‐HP Paris France
- Suzhou Institute for Systems Medicine Chinese Academy of Sciences Suzhou China
- Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology Weill Cornell Medical College New York NY USA
- Sandra and Edward Meyer Cancer Center New York NY USA
- Caryl and Israel Englander Institute for Precision Medicine New York NY USA
- Department of Dermatology Yale School of Medicine New Haven CT USA
- Université de Paris Paris France
| |
Collapse
|
15
|
The Role of Nicotinamide in Cancer Chemoprevention and Therapy. Biomolecules 2020; 10:biom10030477. [PMID: 32245130 PMCID: PMC7175378 DOI: 10.3390/biom10030477] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide (NAM) is a water-soluble form of Vitamin B3 (niacin) and a precursor of nicotinamide-adenine dinucleotide (NAD+) which regulates cellular energy metabolism. Except for its role in the production of adenosine triphosphate (ATP), NAD+ acts as a substrate for several enzymes including sirtuin 1 (SIRT1) and poly ADP-ribose polymerase 1 (PARP1). Notably, NAM is an inhibitor of both SIRT1 and PARP1. Accumulating evidence suggests that NAM plays a role in cancer prevention and therapy. Phase III clinical trials have confirmed its clinical efficacy for non-melanoma skin cancer chemoprevention or as an adjunct to radiotherapy against head and neck, laryngeal, and urinary bladder cancers. Evidence for other cancers has mostly been collected through preclinical research and, in its majority, is not yet evidence-based. NAM has potential as a safe, well-tolerated, and cost-effective agent to be used in cancer chemoprevention and therapy. However, more preclinical studies and clinical trials are needed to fully unravel its value.
Collapse
|
16
|
Banerjee J, Lodhi N, Nguyen BN. The Role of Poly(ADP-Ribose) Polymerase-1 in Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:634-643. [PMID: 31750014 DOI: 10.1089/wound.2018.0821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Critical Issue: Chronic nonhealing wounds of the lower extremities resulting in major amputations are a major health problem worldwide. Significance: Diabetes and ischemia are two major etiologies of nonhealing wounds of the lower extremities. Hyperglycemia from diabetes and oxidative stress from ischemia activate polyadenosine diphosphate (ADP)-ribose polymerase-1 (PARP-1), which is a nuclear enzyme that is best known for its role in DNA repair. However, the exact function of PARP-1 in ischemic/diabetic wound healing has not been well studied. Recent Advances: Poly-ADP-ribose (PAR) polymer has been detected in the wound bed and many of the PARylation-related reactions (oxidative stress response, expression of inflammatory cytokines and chemokines, cell proliferation, and migration) are important in the wound healing process. However, the role of PARP-1 in wound healing and the potential of targeting PARP-1 therapeutically in wounds are only recently being elucidated, with much still unknown. This review summarizes the recent advances in this field, highlighting some of the mechanisms through which PARP-1 may affect normal wound closure. Future Directions: The review also presents a perspective on some of the downstream targets of PARP-1 that may be explored for their role in wound healing and discusses about the therapeutic potential of PARP inhibitors for wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Vascular Surgery, George Washington University, Washington, District of Columbia
| | - Niraj Lodhi
- Department of Biomedical Research, Hackensack University Medical Center, Hackensack, New Jersey
| | - Bao-Ngoc Nguyen
- Department of Vascular Surgery, George Washington University, Washington, District of Columbia
| |
Collapse
|
17
|
Badawy AAB. Targeting tryptophan availability to tumors: the answer to immune escape? Immunol Cell Biol 2018; 96:1026-1034. [PMID: 29888434 DOI: 10.1111/imcb.12168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Tumoral immune escape is an obstacle to successful cancer therapy. Tryptophan (Trp) metabolites along the kynurenine pathway induce immunosuppression involving apoptosis of effector immune cells, which tumors use to escape an immune response. Production of these metabolites is initiated by indoleamine 2,3-dioxygenase (IDO1). IDO1 inhibitors, however, do not always overcome the immune escape and another enzyme expressed in tumors, Trp 2,3-dioxygenase (TDO2), has been suggested as the reason. However, without Trp, tumors cannot achieve an immune escape through either enzyme. Trp is therefore key to immune escape. In this perspective paper, Trp availability to tumors will be considered and strategies limiting it proposed. One major determinant of Trp availability is the large increase in plasma free (non-albumin-bound) Trp in cancer patients, caused by the low albumin and the high non-esterified fatty acid (NEFA) concentrations in plasma. Albumin infusions, antilipolytic therapy or both could be used, if indicated, as adjuncts to immunotherapy and other therapies. Inhibition of amino acid uptake by tumors is another strategy and α-methyl-DL-tryptophan or other potential inhibitors could fulfill this role. Glucocorticoid receptor antagonists may have a role in preventing glucocorticoid induction of TDO in host liver and tumors expressing it and in undermining the permissive effect of glucocorticoids on IDO1 induction by cytokines. Nicotinamide may be a promising TDO2 inhibitor lacking disadvantages of current inhibitors. Establishing the Trp disposition status of cancer patients and in various tumor types may provide the information necessary to formulate tailored therapeutic approaches to cancer immunotherapy that can also undermine tumoral immune escape.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, Wales, UK
| |
Collapse
|
18
|
Feng Y, Wang Y, Jiang C, Fang Z, Zhang Z, Lin X, Sun L, Jiang W. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells. Life Sci 2017; 181:62-69. [DOI: 10.1016/j.lfs.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 06/03/2017] [Indexed: 11/27/2022]
|
19
|
Palanichamy K, Kanji S, Gordon N, Thirumoorthy K, Jacob JR, Litzenberg KT, Patel D, Chakravarti A. NNMT Silencing Activates Tumor Suppressor PP2A, Inactivates Oncogenic STKs, and Inhibits Tumor Forming Ability. Clin Cancer Res 2016; 23:2325-2334. [PMID: 27810903 DOI: 10.1158/1078-0432.ccr-16-1323] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Purpose: To identify potential molecular hubs that regulate oncogenic kinases and target them to improve treatment outcomes for glioblastoma patients.Experimental Design: Data mining of The Cancer Genome Atlas datasets identified nicotinamide-N-methyl transferase (NNMT) as a prognostic marker for glioblastoma, an enzyme linked to the reorganization of the methylome. We tested our hypothesis that NNMT plays a crucial role by modulating protein methylation, leading to inactivation of tumor suppressors and activation of oncogenes. Further experiments were performed to understand the underlying biochemical mechanisms using glioblastoma patient samples, established, primary, and isogenic cells.Results: We demonstrate that NNMT outcompetes leucine carboxyl methyl transferase 1 (LCMT1) for methyl transfer from principal methyl donor SAM in biological systems. Inhibiting NNMT increased the availability of methyl groups for LCMT1 to methylate PP2A, resulting in the inhibition of oncogenic serine/threonine kinases (STK). Further, NNMT inhibition retained the radiosensitizer nicotinamide and enhanced radiation sensitivity. We have provided the biochemical rationale of how NNMT plays a vital role in inhibiting tumor suppressor PP2A while concomitantly activating STKs.Conclusions: We report the intricate novel mechanism in which NNMT inhibits tumor suppressor PP2A by reorganizing the methylome both at epigenome and proteome levels and concomitantly activating prosurvival STKs. In glioblastoma tumors with NNMT expression, activation of PP2A can be accomplished by FDA approved perphenazine (PPZ), which is currently used to treat mood disorders such as schizophrenia, bipolar disorder, etc. This study forms a foundation for further glioblastoma clinical trials using PPZ with standard of care treatment. Clin Cancer Res; 23(9); 2325-34. ©2016 AACR.
Collapse
Affiliation(s)
- Kamalakannan Palanichamy
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio.
| | - Suman Kanji
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Nicolaus Gordon
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Krishnan Thirumoorthy
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - John R Jacob
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Kevin T Litzenberg
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Disha Patel
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|