1
|
Xiang YY, Liu JH, Yi X, Luo JY, Yu Y, Yi GL. S100 A16 promotes the progression of osteosarcoma by activating the PI3 K/AKT signaling pathway through ANXA2. Sci Rep 2025; 15:19962. [PMID: 40481236 PMCID: PMC12144199 DOI: 10.1038/s41598-025-05293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor. S100A16 gene was reported to highly expressed in several tumor tissues while the relationship between S100A16 and osteosarcoma remains less well-understood. This study aimed to investigate the expression characteristics of S100A16 in osteosarcoma and the mechanism by which it promotes osteosarcoma progression. Firstly, by analyzing databases and assessing mRNA and protein level, we found that the expression of S100A16 was significantly promoted in osteosarcoma, as compared with normal tissue. Then transfection techniques were employed to upregulate and downregulate S100A16 in osteosarcoma cells, the results demonstrated that S100A16 can increase osteosarcoma cell viability, migration and invasion capacities, while decline osteosarcoma cell apoptosis. GSEA (gene set enrichment analysis) revealed that increased expression of S100A16 was enriched in the PI3K/AKT pathway. Cellular experiments showed that the S100A16 promoted osteosarcoma progression by activating the PI3K/AKT signaling pathway, and upregulated expression of ANXA2, a crucial protein in occurrence and development of tumors. We also found that overexpression of ANXA2 can restore the decreased levels of p-PI3K and p-AKT induced by S100A16 inhibition, which indicated that S100A16 stimulates PI3K/AKT pathway activation via ANXA2. To sum up, S100A16 can promotes osteosarcoma progression by activating the PI3K/AKT signaling pathway through ANXA2, suggesting that the S100A16/ANXA2 axis may represent a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital, Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yi
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing-Yao Luo
- The First Affiliated Hospital, Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi Yu
- The First Affiliated Hospital, Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guo-Liang Yi
- The First Affiliated Hospital, Department of Orthopaedics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Vedeler A, Tartaglia GG, Pastore A. Annexin, a Protein for All Seasons: From Calcium Dependent Membrane Metabolism to RNA Recognition. Bioessays 2025:e70019. [PMID: 40350993 DOI: 10.1002/bies.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Annexins are a protein family well known to bind to phospholipids in a calcium-dependent way. They are involved in several different crucial cellular processes such as cell division, calcium signaling, membrane repair, vesicle trafficking, and apoptosis. Although RNA binding for some members of the family was reported long ago, it was only recently that it was shown that a common feature of the family is also the ability to bind RNA, a discovery that has added significantly to our perception of the cellular role of these proteins. In the present review, we discuss the properties of annexins under an updated light and the current knowledge on the RNA binding properties of annexins. We then focus specifically on annexin A11, because this is a less characterized member of the family but, at the same time, a potentially important component of the mRNA transport machinery in neurons. We hope to offer to the reader a more complete picture of the annexins' binding properties and new tools to evaluate the multifaceted functions of this important protein family.
Collapse
Affiliation(s)
- Anni Vedeler
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Annalisa Pastore
- Elettra Sincrotrone Trieste, Basovizza, Italy
- The Wohl Institute, King's College London, London, UK
| |
Collapse
|
3
|
Rezasoltani S, Shams E, Piroozkhah M, Aidi Y, Azizmohammad Looha M, Bagheri P, Behzadi Andouhjerdi R, Sadeghi A, Rejali L, Nazemalhosseini-Mojarad E. FadA antigen of Fusobacterium nucleatum: implications for ceRNA network in colorectal cancer and adenomatous polyps progression. Discov Oncol 2025; 16:58. [PMID: 39826054 PMCID: PMC11741970 DOI: 10.1007/s12672-025-01796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement. MATERIAL AND METHODS The functions of ANXA2 and LINC00460 in CRC have been partially clarified. According to our previous study to identify shared MicroRNA-Interaction-Targets (MITs) between ANXA2 and LINC00460, TargetScanHuman (V7.2) and miRDB databases have been used respectively. The Bioinformatics and Evolutionary Genomics web tool was employed to intersect the sets of shared microRNAs and their common targets. Then, the ANXA2 ceRNA network was constructed. Subsequently, the mRNA, miRNA, and lncRNA expression levels were examined in intestinal biopsy specimens from 30 healthy controls, 30 Adenoma patients, and 30 cases of CRC stage I using qRT-PCR. RESULTS Elevated expression levels of FadA, ANXA2, hsa-let-7a-2, and LINC00460 were observed in CRC specimens, followed by AP cases, in comparison to samples from normal individuals. Application of the Spearman test revealed a strong and significant correlation between FadA and LINC00460 (rS = 0.9311, p < 0.0001). Also, the functional analysis of ANXA2 revealed its impact on CRC progression through JAK-STAT and Hippo signaling pathways. CONCLUSION FadA appears to potentiate CRC progression by inducing the upregulation of LINC00460, consequently leading to the hyperexpression of ANXA2 through the ceRNA network.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH University Hospital, Aachen, Germany
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaser Aidi
- Department of Genetics, Islamic Azad University of Central Tehran Branch, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parmida Bagheri
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
5
|
Christofidis K, Pergaris A, Fioretzaki R, Charalampakis N, Kapetanakis EΙ, Kavantzas N, Schizas D, Sakellariou S. Annexin A2 in Tumors of the Gastrointestinal Tract, Liver, and Pancreas. Cancers (Basel) 2024; 16:3764. [PMID: 39594718 PMCID: PMC11592865 DOI: 10.3390/cancers16223764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a protein that is involved in many physiological and pathological cellular processes. There is compelling evidence that its dysregulated expression, be it up- or downregulation, contributes to the oncogenesis of various neoplasms, including those of the digestive system. The present review summarizes the current knowledge on the role of ANXA2 in the main tumors of the digestive system. The clinical significance of ANXA2 is primordial, due to its potential use as a diagnostic and prognostic biomarker, and as a part of therapeutic protocols. Certain preclinical studies have shown that inhibiting ANXA2 or disrupting its interactions with key molecules can suppress tumor growth, invasion, and metastasis, as well as increase the cancer cells' sensitivity to treatment in various cancers. Further research is needed to fully elucidate the complex role of ANXA2 in the carcinogenesis of tumors of the digestive system, and to translate these findings into clinical applications for improved diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Konstantinos Christofidis
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Pergaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Rodanthi Fioretzaki
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, 11527 Athens, Greece; (R.F.); (D.S.)
| | - Nikolaos Charalampakis
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 18537 Piraeus, Greece;
| | - Emmanouil Ι. Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Nikolaos Kavantzas
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, 11527 Athens, Greece; (R.F.); (D.S.)
| | - Stratigoula Sakellariou
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
| |
Collapse
|
6
|
Peng M, Yang L, Liao J, Le X, Dai F, Sun R, Wu F, Jiang Y, Tian R, Shao B, Zhou L, Wu M, Guo S, Xiang T. The novel DNA methylation marker FIBIN suppresses non-small cell lung cancer metastasis by negatively regulating ANXA2. Cell Signal 2024; 120:111197. [PMID: 38697447 DOI: 10.1016/j.cellsig.2024.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES The clinical T1 stage solid lung cancer with metastasis is a serious threat to human life and health. In this study, we performed RNA sequencing on T1 advanced-stage lung cancer and adjacent tissues to identify a novel biomarker and explore its roles in lung cancer. METHODS Quantitative reversed-transcription PCR, reverse transcription PCR and Western blot, MSP and Methtarget were utilized to evaluate FIBIN expression levels at both the transcriptional and protein levels as well as its methylation status. Differential target protein was evaluated for relative and absolute quantitation by isobaric tags. Co-IP was performed to detect the interactions between target protein. Precise location and expression levels of target proteins were revealed by immunofluorescence staining and component protein extraction using specific kits, respectively. RESULTS We reported that FIBIN was frequently silenced due to promoter hypermethylation in lung cancer. Additionally, both in vitro and in vivo experiments confirmed the significant anti-proliferation and anti-metastasis capabilities of FIBIN. Mechanistically, FIBIN decreased the nuclear accumulation of β-catenin by reducing the binding activity of GSK3β with ANXA2 while promoting interaction between GSK3β and β-catenin. CONCLUSION Our findings firstly identify FIBIN is a tumor suppressor, frequently silenced due to promoter hypermethylation. FIBIN may serve as a predictive biomarker for progression or metastasis among early-stage lung cancer patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- A549 Cells
- Annexin A2/metabolism
- Annexin A2/genetics
- beta Catenin/metabolism
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Glycogen Synthase Kinase 3 beta/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Metastasis
- Promoter Regions, Genetic/genetics
- Glycoproteins/genetics
- Cell Cycle Proteins/genetics
Collapse
Affiliation(s)
- Mingyu Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Le
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fengsheng Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ran Sun
- Department of Oncology, Jiulongpo People's Hospital, Chongqing 400050, China
| | - Fan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Tian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Bianfei Shao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Tingxiu Xiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
7
|
Park IW, Fiadjoe HK, Chaudhary P. Impact of Annexin A2 on virus life cycles. Virus Res 2024; 345:199384. [PMID: 38702018 PMCID: PMC11091703 DOI: 10.1016/j.virusres.2024.199384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Due to the limited size of viral genomes, hijacking host machinery by the viruses taking place throughout the virus life cycle is inevitable for the survival and proliferation of the virus in the infected hosts. Recent reports indicated that Annexin A2 (AnxA2), a calcium- and lipid-binding cellular protein, plays an important role as a critical regulator in various steps of the virus life cycle. The multifarious AnxA2 functions in cells, such as adhesion, adsorption, endocytosis, exocytosis, cell proliferation and division, inflammation, cancer metastasis, angiogenesis, etc., are intimately related to the various clinical courses of viral infection. Ubiquitous expression of AnxA2 across multiple cell types indicates the broad range of susceptibility of diverse species of the virus to induce disparate viral disease in various tissues, and intracellular expression of AnxA2 in the cytoplasmic membrane, cytosol, and nucleus suggests the involvement of AnxA2 in the regulation of the different stages of various virus life cycles within host cells. However, it is yet unclear as to the molecular processes on how AnxA2 and the infected virus interplay to regulate virus life cycles and thereby the virus-associated disease courses, and hence elucidation of the molecular mechanisms on AnxA2-mediated virus life cycle will provide essential clues to develop therapeutics deterring viral disease.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Hope K Fiadjoe
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
8
|
Ahmadi M, Mohajeri Khorasani A, Morshedzadeh F, Saffarzadeh N, Ghaderian SMH, Ghafouri-Fard S, Mousavi P. HLF is a promising prognostic, immunological, and therapeutic biomarker in human tumors. Biochem Biophys Rep 2024; 38:101725. [PMID: 38711550 PMCID: PMC11070826 DOI: 10.1016/j.bbrep.2024.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Despite past research linking HLF mutations to cancer development, no pan-cancer analyses of HLF have been published. As a result, we utilized multiple databases to illustrate the potential roles of HLF in diverse types of cancers. Several databases were used to assess HLF expression in the TCGA cancer samples. Additional assessments were undertaken to investigate the relationship between HLF and overall survival, immune cell infiltration, genetic alterations, promoter methylation, and protein-protein interaction. HLF's putative roles and the relationship between HLF expression and drug reactivity were investigated. HLF expression was shown to be lower in tumor tissues from a variety of malignancies when compared to normal tissues. There was a substantial link found between HLF expression and patient survival, genetic mutations, and immunological infiltration. HLF influenced the pathways of apoptosis, cell cycle, EMT, and PI3K/AKT signaling. Abnormal expression of HLF lowered sensitivity to numerous anti-tumor drugs and small compounds. According to our findings, reduced HLF expression drives cancer growth, and it has the potential to be identified as a vital biomarker for use in prognosis, immunotherapy, and targeted treatment of a range of malignancies.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Saffarzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
9
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Shi S, Zhang Q, Zhang K, Chen W, Xie H, Pan S, Xue Z, You B, Zhao J, You Y. FGF19 promotes nasopharyngeal carcinoma progression by inducing angiogenesis via inhibiting TRIM21-mediated ANXA2 ubiquitination. Cell Oncol (Dordr) 2024; 47:283-301. [PMID: 37782406 PMCID: PMC10899426 DOI: 10.1007/s13402-023-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis. METHODS Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved. RESULTS FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination. CONCLUSION FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.
Collapse
Affiliation(s)
- Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wenhui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ziyi Xue
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jianmei Zhao
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
- Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
11
|
Li Y, Cao H, Qiu D, Wang N, Wang Y, Wen T, Wang J, Zhu H. The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in Helicobacter pylori infection. Cancer Cell Int 2023; 23:272. [PMID: 37974232 PMCID: PMC10652618 DOI: 10.1186/s12935-023-03131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. METHODS EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. RESULTS A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. CONCLUSION This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, 215300, People's Republic of China
| | - Nan Wang
- The School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Tingting Wen
- Department of Pharmacy, First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
12
|
Grindheim AK, Patil SS, Nebigil CG, Désaubry L, Vedeler A. The flavagline FL3 interferes with the association of Annexin A2 with the eIF4F initiation complex and transiently stimulates the translation of annexin A2 mRNA. Front Cell Dev Biol 2023; 11:1094941. [PMID: 37250892 PMCID: PMC10214161 DOI: 10.3389/fcell.2023.1094941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Annexin A2 (AnxA2) plays a critical role in cell transformation, immune response, and resistance to cancer therapy. Besides functioning as a calcium- and lipidbinding protein, AnxA2 also acts as an mRNA-binding protein, for instance, by interacting with regulatory regions of specific cytoskeleton-associated mRNAs. Methods and Results: Nanomolar concentrations of FL3, an inhibitor of the translation factor eIF4A, transiently increases the expression of AnxA2 in PC12 cells and stimulates shortterm transcription/translation of anxA2 mRNA in the rabbit reticulocyte lysate. AnxA2 regulates the translation of its cognate mRNA by a feed-back mechanism, which can partly be relieved by FL3. Results obtained using the holdup chromatographic retention assay results suggest that AnxA2 interacts transiently with eIF4E (possibly eIF4G) and PABP in an RNA-independent manner while cap pulldown experiments indicate a more stable RNA-dependent interaction. Short-term (2 h) treatment of PC12 cells with FL3 increases the amount of eIF4A in cap pulldown complexes of total lysates, but not of the cytoskeletal fraction. AnxA2 is only present in cap analogue-purified initiation complexes from the cytoskeletal fraction and not total lysates confirming that AnxA2 binds to a specific subpopulation of mRNAs. Discussion: Thus, AnxA2 interacts with PABP1 and subunits of the initiation complex eIF4F, explaining its inhibitory effect on translation by preventing the formation of the full eIF4F complex. This interaction appears to be modulated by FL3. These novel findings shed light on the regulation of translation by AnxA2 and contribute to a better understanding of the mechanism of action of eIF4A inhibitors.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sudarshan S. Patil
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Canan G. Nebigil
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, INSERM-University of Strasbourg, Strasbourg, France
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, FMTS, INSERM-University of Strasbourg, Strasbourg, France
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Ning Y, Li Y, Wang H. ANXA2 is a potential biomarker for cancer prognosis and immune infiltration: A systematic pan-cancer analysis. Front Genet 2023; 14:1108167. [PMID: 36713082 PMCID: PMC9877333 DOI: 10.3389/fgene.2023.1108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Background: Annexin A2 (ANXA2) belongs to the Annexin A family and plays a role in epithelial-mesenchymal transition, fibrinolysis, and other physiological processes. Annexin A2 has been extensively implicated in tumorigenesis and development in previous studies, but its precise role in pan-cancer remains largely unknown. Methods: We adopted bioinformatics methods to explore the oncogenic role of Annexin A2 using different databases, including the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) biobank, the Human Protein Atlas (HPA), the Gene Expression Profiling Interaction Analysis (GEPIA) and cBioPortal. We analyzed the differential expression of Annexin A2 in different tumors and its relationship with cancer prognosis, immune cell infiltration, DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI) and mismatch repair (MMR). Furtherly, we conducted a Gene Set Enrichment Analysis (GSEA) to identify the Annexin A2-related pathways. Results: Annexin A2 expression was upregulated in most cancers, except in kidney chromophobe (KICH) and prostate adenocarcinoma (PRAD). Annexin A2 showed a good diagnostic efficacy in twelve types of cancer. The high expression of Annexin A2 was significantly associated with a reduced overall survival, disease-specific survival and progression-free interval in seven cancers. The Annexin A2 expression was variably associated with infiltration of 24 types of immune cells in 32 tumor microenvironments. In addition, Annexin A2 expression was differently associated with 47 immune checkpoints, immunoregulators, DNA methylation, tumor mutation burden, microsatellite instability and mismatch repair in pan-cancer. Gene Set Enrichment Analysis revealed that Annexin A2 was significantly correlated with immune-related pathways in fifteen cancers. Conclusion: Annexin A2 widely correlates with immune infiltration and may function as a promising prognostic biomarker in many tumors, showing its potential as a target for immunotherapy in pan-cancer.
Collapse
Affiliation(s)
- Yijie Ning
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufei Li
- Department of Neurosurgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongqin Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L. Annexin A protein family: Focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 2023; 11:1141331. [PMID: 36936694 PMCID: PMC10020606 DOI: 10.3389/fcell.2023.1141331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, China
| | - Guichun Li
- Department of Traditional Chinese Medicine, The People’s Hospital of Zhaoyuan City, Yantai, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| |
Collapse
|
15
|
Hollås H, Ramirez J, Nominé Y, Kostmann C, Toto A, Gianni S, Travé G, Vedeler A. The cooperative folding of annexin A2 relies on a transient nonnative intermediate. Biophys J 2022; 121:4492-4504. [PMID: 36325614 PMCID: PMC9748365 DOI: 10.1016/j.bpj.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins (Anxs) are a family of highly homologous proteins that bind and aggregate lipid vesicles in the presence of calcium. All members of the family contain a variable N-terminus determining specific functions, followed by a conserved core region responsible for the general calcium-dependent lipid-binding property. The core structure consists of four homologous domains (DI-DIV), each consisting of a right-handed super-helix of five α-helices. We present data from a combination of site-directed mutagenesis, NMR, and circular dichroism showing that the G25-D34 region of the N-terminus as well as the contacts between residues D38A, R63A, and Q67A of AnxA2-DI are crucial for the autonomous folding and stability of DI of AnxA2. However, we also show that the folding of the full-length protein is very robust in that mutations and truncations that disrupted the folding of AnxA2-DI did not abolish the folding of full-length AnxA2, only lowering its thermal stability. This robustness of the folding of full-length AnxA2 is likely to be mediated by the existence of at least one transient nonnative intermediate as suggested by our kinetic data using stopped-flow fluorescence experiments. We also show that hydrophobic amino acids in AnxA2-DI involved in interfacial contacts with AnxA2-DIV are important for the cooperative folding and stability of the full-length protein. Mutating all of the V57E-V98R-G101Y residues in AnxA2-DI did not affect the folding of the domain, only its stability, but prevented the cooperative folding of the full-length protein. Our collective results favor a highly cooperative and robust folding process mediated by alternative intermediate steps. Since AnxA2 is a multifunctional protein involved in several steps of the progression of cell transformation, these data on structure and folding pathways are therefore crucial to designing anticancer drugs targeting AnxA2.
Collapse
Affiliation(s)
- Hanne Hollås
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Juan Ramirez
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Angelo Toto
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Gianni
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France.
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
17
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
18
|
Fan L, Lu C, Fan Y, Tian X, Lu S, Zhang P, Li Z, Xue M, Tao W, Peng F, Chen R, Tang J, Zhao M. High-fat diet promotes colorectal carcinogenesis through SERCA2 mediated serine phosphorylation of Annexin A2. Int J Biochem Cell Biol 2022; 145:106192. [PMID: 35257889 DOI: 10.1016/j.biocel.2022.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC) is a highly common malignancy, being the third leading cause of cancer death worldwide. Recent epidemiological studies have indicated that carcinogenic effect of diet was mainly attributed to high-fat diets. To investigate the mechanism of high-fat diet-induced colorectal cancer, we systematically quantified the phosphoproteome in human HT-29 cells treated with sodium palmitate (PA). p-Annexin A2 (S26) was predicted to be specifically up-regulated by PA. We confirmed that PA-induced Annexin A2 phosphorylation at Ser26 in C57BL/6 J-ApcMin/J mice fed with high-fat diet. Phosphorylation of Annexin A2 at Ser26 promotes PA-induced proliferation of HT-29 cells. Moreover, PA suppressed SERCA activity and SERCA2 expression was compensatorily increased. Mechanistically, SERCA2 can partially reverse Annexin A2 phosphorylation at Ser26 caused by PA through intracellular calcium release. Finally, SERCA2 knockdown inhibited high-fat diet-induced tumor growth and Annexin A2 phosphorylation at Ser26 in SCID mice. In all, our studies demonstrate that high-fat diet promotes colorectal carcinogenesis through SERCA2 mediated serine phosphorylation of Annexin A2.
Collapse
Affiliation(s)
- Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Fan
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Xinyi Tian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sinan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pengfei Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mei Xue
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Peng
- Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ruini Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
Yunos NM, Amin NDM, Jauri MH, Ling SK, Hassan NH, Sallehudin NJ. The In Vitro Anti-Cancer Activities and Mechanisms of Action of 9-Methoxycanthin-6-one from Eurycoma longifolia in Selected Cancer Cell Lines. Molecules 2022; 27:molecules27030585. [PMID: 35163852 PMCID: PMC8838174 DOI: 10.3390/molecules27030585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
An alkaloid compound from the hairy root culture of Eurycoma longifolia has been isolated and characterised as 9-methoxycanthin-6-one. The aims of these studies were to investigate the in vitro anti-cancer activities of 9-methoxycanthin-6-one against ovarian cancer (A2780, SKOV-3), breast cancer (MCF-7), colorectal cancer (HT29), skin cancer (A375) and cervical cancer (HeLa) cell lines by using a Sulphorhodamine B assay, and to evaluate the mechanisms of action of 9-methoxycanthin-6-one via the Hoechst 33342 assay and proteomics approach. The results had shown that 9-methoxycanthin-6-one gave IC50 values of 4.04 ± 0.36 µM, 5.80 ± 0.40 µM, 15.09 ± 0.99 µM, 3.79 ± 0.069 µM, 5.71 ± 0.20 µM and 4.30 ± 0.27 µM when tested in A2780, SKOV-3, MCF-7, HT-29, A375 and HeLa cell lines, respectively. It was found that 9-methoxycanthin-6-one induced apoptosis in a concentration dependent manner when analysed via the Hoechst 33342 assay. 9-methoxycanthine-6-one were found to affect the expressions of apoptotic-related proteins, that were proteins pyruvate kinase (PKM), annexin A2 (ANXA2), galectin 3 (LGAL3), heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), peroxiredoxin 3 (PRDX3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the differential analysis of 2-DE profiles between treated and non-treated 9-methoxycanthine-6-one. Proteins such as acetyl-CoA acyltransferase 2 (ACAA2), aldehyde dehydrogenase 1 (ALDH1A1), capping protein (CAPG), eukaryotic translation elongation factor 1 (EEF1A1), malate dehydrogenase 2 (MDH2), purine nucleoside phosphorylase (PNP), and triosephosphate isomerase 1 (TPI1) were also identified to be associated with A2780 cell death induced by 9-methoxycanthine-6-one. These findings may provide a new insight on the mechanisms of action of 9-methoxycanthin-6-one in exerting its anti-cancer effects in vitro.
Collapse
Affiliation(s)
- Nurhanan Murni Yunos
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
- Correspondence: ; Tel.: +60-3627-97659
| | - Nor Datiakma Mat Amin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| | - Muhammad Haffiz Jauri
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Sui Kiong Ling
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Nor Hasnida Hassan
- Biotechnology Programme, Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia;
| | - Nor Jannah Sallehudin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| |
Collapse
|
20
|
Bai X, Ran J, Zhao X, Liang Y, Yang X, Xi Y. The S100A10-AnxA2 complex is associated with the exocytosis of hepatitis B virus in intrauterine infection. J Transl Med 2022; 102:57-68. [PMID: 34645932 PMCID: PMC8512653 DOI: 10.1038/s41374-021-00681-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Mother-to-child transmission (MTCT) is the major cause of chronic infection of hepatitis B virus (HBV) in patients. However, whether and how HBV crosses the placenta to cause infection in utero remains unclear. In this study, we investigate the mechanism as to how the HBV virions pass through layers of the trophoblast. Our data demonstrate the exocytosis of virions from the trophoblast after exposure to HBV where the endocytosed HBV virions co-localized with an S100A10/AnxA2 complex and LC3, an autophagosome membrane marker. Knockdown of either AnxA2 or S100A10 in trophoblast cells led to a reduction of the amount of exo-virus in Transwell assay. Immunohistochemistry also showed a high expression of AnxA2 and S100A10 in the placental tissue samples of HBV-infected mothers with congenital HBV-positive infants (HBV+/+). We conclude that in HBV intrauterine infection and mother-to-child transmission, a proportion of HBV hijacks autophagic protein secretion pathway and translocate across the trophoblast via S100A10/AnxA2 complex and multivesicular body (MVB)-mediated exocytosis. Our study provides a potential target for the interference of the mechanisms of HBV intrauterine infection and mother-to-child transmission.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- China’s National Key R&D Programs (NKPs) are a new category of projects created after the 2014 reform of the national STI funding system. They have incorporated numerous previously-existing programmes such as MOST’s “863 Programme” for R&D, “Programme 973” for basic research, Key Technologies R&D Programme, and International S&T Cooperation Programme; and NDRC and MIIT’s Industrial Technology R&D Fund. China’s National Key R&D Programmes support R&D in areas of social welfare and people’s livelihood, such as agriculture, energy and resources, environment, and health. They focus in particular on key and strategic technologies, featuring several well-targeted and defined objectives and deliverables to be achieved in a period ranging from three to five years, and reflecting a top-down and industry-university-research cooperation design which integrates basic research, technology application, demonstration and commercialisation.
Collapse
Affiliation(s)
- Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China.
| | - Jinshi Ran
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, No. 866, Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Xianlei Zhao
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, No. 866, Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yun Liang
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China
| | - Xiaohang Yang
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, No. 866, Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Shangcheng District, Hangzhou, Zhejiang, 310001, China.
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, No. 866, Yuhangtang Road, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
21
|
Kalra RS, Soman GS, Parab PB, Mali AM, Varankar SS, Naik RR, Kamble SC, Dhanjal JK, Bapat SA. A monoclonal antibody against annexin A2 targets stem and progenitor cell fractions in tumors. Transl Oncol 2021; 15:101257. [PMID: 34715620 PMCID: PMC8564672 DOI: 10.1016/j.tranon.2021.101257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Development of a novel antibody (termed as mAb150) developed in our lab which targets annexin A2. Although there are earlier reports of another monoclonal antibody with the same target, the epitope recognized by mAb150 is novel. mAb150 is specifically recognized to target the achilles heel of cancer viz. cancer stem cells and progenitors that persist after treatments and potentially give rise to minimal residual disease.
The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Rajkumar S Kalra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Gaurav S Soman
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Pradeep B Parab
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Avinash M Mali
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Sagar S Varankar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Wellcome-MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge, CB2 0AW
| | - Rutika R Naik
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Swapnil C Kamble
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Jaspreet K Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
22
|
Zhao Z, Lu L, Li W. TAGLN2 promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of colorectal cancer cells by activating STAT3 signaling through ANXA2. Oncol Lett 2021; 22:737. [PMID: 34466149 PMCID: PMC8387864 DOI: 10.3892/ol.2021.12998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality worldwide and currently ranks third in the USA in terms of prevalence. Transgelin-2 (TAGLN2) was previously reported to serve as a tumor promoter in various types of cancer. The present study aimed to investigate the role of TAGLN2 in the progression of CRC and to determine the potential underlying mechanism. The expression level of TAGLN2 in CRC cells (HCT116, SNU-C1, LoVo and SW480) were first detected by reverse transcription quantitative PCR and western blotting. Following TAGLN2 knockdown through transfection with short hairpin (sh)RNAs against TAGLN2, CRC cell proliferation was determined using Cell Counting Kit-8 and 5′-ethynyl-2′-deoxyuridine assays. Cell migration and invasion were evaluated using wound healing and Transwell assays, respectively. The expression levels of matrix metalloproteinase (MMP)2, MMP9 and proteins associated with epithelial-mesenchymal transition (EMT), including N-cadherin (N-cad), vimentin, zinc finger E-box binding homeobox 2 (ZEB2) and E-cadherin (E-cad), were also evaluated by western blotting. Furthermore, following TAGLN2 overexpression and the use of signal transducer and activator of transcription 3 (STAT3) inhibitors to treat CRC cells, all the aforementioned biological parameters were evaluated. The potential relationship between annexin 2 (ANXA2) and STAT3 was confirmed by western blotting analysis. The expression level of TAGLN2 was found to be particularly high in CRC cells. Following TAGLN2 knockdown, CRC cell proliferation, migration, invasion and EMT were significantly inhibited. TAGLN2 knockdown also suppressed STAT3 phosphorylation in CRC cells. In addition, the promoting effects of TAGLN2 overexpression on the progression of CRC were reversed by STAT3 inhibitor. Furthermore, ANXA2 was positively associated with STAT3. Taken together, these findings demonstrated that TAGLN2 could promote the proliferation, invasion, migration and EMT of CRC cells by activating STAT3 and regulating ANXA2 expression. This may reveal the underlying mechanism by which TAGLN2 might regulate the progression of CRC and provide potential therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Zhicheng Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
23
|
Strand E, Hollås H, Sakya SA, Romanyuk S, Saraste MEV, Grindheim AK, Patil SS, Vedeler A. Annexin A2 binds the internal ribosomal entry site of c- myc mRNA and regulates its translation. RNA Biol 2021; 18:337-354. [PMID: 34346292 PMCID: PMC8677036 DOI: 10.1080/15476286.2021.1947648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expression and localization of the oncoprotein c-Myc is highly regulated at the level of transcription, mRNA transport, translation, as well as stability of the protein. We previously showed that Annexin A2 (AnxA2) binds to a specific localization element in the 3'untranslated region (UTR) of c-myc mRNA and is involved in its localization to the perinuclear region. In the present study, we demonstrate that AnxA2 binds in a Ca2+-dependent manner to the internal ribosomal entry site (IRES) containing two pseudo-knots in the 5´UTR of the c-myc mRNA. Here, we employ an in vitro rabbit reticulocyte lysate system with chimeric c-myc reporter mRNAs to demonstrate that binding of AnxA2 to the c-myc IRES modulates the expression of c-Myc. Notably, we show that low levels of AnxA2 appear to increase, while high levels of AnxA2 inhibits translation of the chimeric mRNA. However, when both the AnxA2-binding site and the ribosomal docking site in the c-myc IRES are deleted, AnxA2 has no effect on the translation of the reporter mRNA. Forskolin-treatment of PC12 cells results in upregulation of Ser25 phosphorylated AnxA2 expression while c-Myc expression is down-regulated. The effect of forskolin on c-Myc expression and the level of Ser25 phosphorylated AnxA2 was abolished in the presence of EGTA. These findings indicate that AnxA2 regulates both the transport and subsequent translation of the c-myc mRNA, possibly by silencing the mRNA during its transport. They also suggest that AnxA2 act as a switch to turn off the c-myc IRES activity in the presence of calcium.Abbreviations: AnxA2, Annexin A2; β2--µglob, β2-microglobulin; cpm, counts per minute; hnRNP, heterogenous nuclear ribonucleoprotein; IRES, internal ribosomal entry site; ITAF, IRES trans-acting factor; MM, multiple myeloma; PABP, poly(A)-binding protein; PCBP, poly(rC) binding protein; PSF, PTB-associated splicing factor; PTB, polypyrimidine tract binding protein; RRL, rabbit reticulocyte lysate; UTR, untranslated region; YB, Y-box binding protein.
Collapse
Affiliation(s)
- Elin Strand
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Siri Aastedatter Sakya
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Sofya Romanyuk
- Department of Biomedicine, University of Bergen, Bergen, Norway.,City Hospital №40, St. Petersburg, Russia
| | - Mikko E V Saraste
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Quality Control Unit, Thermo Fisher Scientific - Life Technologies, Lillestrøm, Norway
| | | | | | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
MicroRNA-342 Promotes the Malignant-Like Phenotype of Endometrial Stromal Cells via Regulation of Annexin A2. ACTA ACUST UNITED AC 2021; 2021:1328682. [PMID: 34055578 PMCID: PMC8143883 DOI: 10.1155/2021/1328682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022]
Abstract
The relevance of miRNA- (miR-) 342 to endometriosis has been highlighted, while its function in regulating the malignant-like phenotype of endometrial stromal cells which demonstrate epigenetic abnormalities that alter expression of transcription factors, remains unclear. Therefore, we sought to characterize the effects of miR-342 in endometrial stromal cell proliferation by regulating Annexin A2 (ANXA2). We first characterized the levels of miR-342 and ANXA2 in 31 cases of normal endometrium from patients with grade II-III cervical intraepithelial neoplasia or patients with hysterectomy versus ectopic endometrial tissues of 42 patients with endometriosis. miR-342 was upregulated, while ANXA2 was downregulated in ectopic endometrial tissues. Bioinformatics website and dual-luciferase reporter assay revealed that miR-342 negatively modulated ANXA2 expression. Following loss- and gain-of-function approaches, CCK-8, Transwell, and flow cytometry demonstrated that overexpression of miR-342 markedly increased cell proliferation, migration, and invasion but inhibited cell apoptotic ratio of endometrial stromal cells, which was reversed by ANXA2 elevation. Further, overexpressed miR-342 activated the PI3K/AKT/mTOR signaling pathway, as evidenced by upregulated levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Taken together, miR-342 targets ANXA2 to activate the PI3K/AKT/mTOR signaling pathway, thereby promoting the malignant-like phenotype of endometrial stromal cells, highlighting miR-342 inhibition as a promising approach for the treatment of endometriosis.
Collapse
|
25
|
Sawazaki H, Ito K, Asano T, Kuroda K, Horiguchi A, Tsuda H, Asano T. Expressions of P-Glycoprotein, Multidrug Resistance Protein 1 and Annexin A2 as Predictive Factors for Intravesical Recurrence of Bladder Cancer after the Initial Transurethral Resection and Immediate Single Intravesical Instillation of Adriamycin. Asian Pac J Cancer Prev 2021; 22:1459-1466. [PMID: 34048174 PMCID: PMC8408374 DOI: 10.31557/apjcp.2021.22.5.1459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Immediate single instillation of chemotherapy following transurethral resection of bladder tumor (TURBT) is suggested for non-muscle invasive bladder cancer (NMIBC) patients. However, no study has evaluated molecular marker that was involved in intravesical recurrence (IVR) after single instillation of chemotherapy. Therefore, this study aimed to evaluate whether P-glycoprotein, multidrug resistance protein 1 (MRP1), Annexin A2 (ANXA2) or nucleophosmin (NPM) expression predicts IVR after initial TURBT and immediate single intravesical adriamycin instillation. METHODS We retrospectively reviewed consecutive 443 patients who underwent TURBT. Of these, 54 patients who underwent initial TURBT and single instillation of adriamycin for NMIBC were included. The expressions of P-glycoprotein, MRP1, ANXA2 and NPM were evaluated immunohistochemically and were divided into 2 groups (low or high) according to the staining intensity and/or proportion of positive cells. IVR was assessed by Kaplan-Meier method. Cox`s multivaritate analyses were performed to identify independent predictors for IVR. RESULTS Nineteen patients (35.1%) had IVR. High P-glycoprotein expression was significantly correlated with multiplicity, pT stage and high grade. High ANXA2 expression was significantly correlated with high grade. MRP1 and NPM were not correlated with any clinicopathological variables. MRP1 expression and ANXA2 expression were significantly correlated with P-glycoprotein expression. Patients with high P-glycoprotein expression had significantly worse IVR-free survival (IVRFS) than those with low P-glycoprotein expression (P =0.015). The difference in IVRFS rates between patients with high ANXA2 expression and those with low ANXA2 expression was nearly significant (P =0.057). Univariate analyses indicated multiplicity, high grade and high P-glycoprotein expression were significant predictors for IVR. Multivariate analysis indicated high grade was an independent predictor for IVR. CONCLUSIONS High P-glycoprotein expression was associated with IVR. Further study was needed to determine significance of P-glycoprotein expression in IVR after single intravesical adriamycin instillation.
Collapse
Affiliation(s)
- Harutake Sawazaki
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Keiichi Ito
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Takako Asano
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Kenji Kuroda
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College Tokorozawa, Japan.
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College Tokorozawa, Japan.
| |
Collapse
|
26
|
Li Z, Yu L, Hu B, Chen L, Jv M, Wang L, Zhou C, Wei M, Zhao L. Advances in cancer treatment: a new therapeutic target, Annexin A2. J Cancer 2021; 12:3587-3596. [PMID: 33995636 PMCID: PMC8120175 DOI: 10.7150/jca.55173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate therapy that is conceivable for clinical translation.
Collapse
Affiliation(s)
- Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Mingyi Jv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
27
|
Clinical significance of Annexin A2 expression in oral squamous cell carcinoma and its influence on cell proliferation, migration and invasion. Sci Rep 2021; 11:5033. [PMID: 33658625 PMCID: PMC7930260 DOI: 10.1038/s41598-021-84675-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm of the head and neck, with poorer prognosis. There is lack of specific targets for diagnosis and treatment of OSCC at present. Annexin A2 (ANXA2) is involved in cell angiogenesis, invasion, proliferation and metastasis. In this study, the significance and effect of ANXA2 on OSCC and OSCC cells were explored from the clinical and basic study. First, ANXA2 expression in OSCC tissues and adjacent non-cancer tissues of 124 patients were detected, and the correlation between ANXA2 expression and clinical parameters were analyzed. The results found that ANXA2 was highly expressed in OSCC tissues, and was associated with the TNM stage, tumor differentiation, lymph node metastasis and poor survival of OSCC patients. The expression of ANXA2 in OSCC cells were higher than the normal oral cells. And knockdown of ANXA2 by transfecting ANXA2-siRNA could suppress the proliferation, migration, and invasion abilities of OSCC cells. Overall, ANXA2 expression is correlated with poor survival of OSCC patients, and silencing of ANXA2 suppress the proliferation, migration and invasion of OSCC cells.
Collapse
|
28
|
Wang Z, Jiang C, Pang L, Jia W, Wang C, Gao X, Zhang X, Dang H, Ren Y. ANXA2 is a potential marker for the diagnosis of human cervical cancer. Biomark Med 2021; 15:57-67. [PMID: 33315468 DOI: 10.2217/bmm-2020-0629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 01/26/2023] Open
Abstract
Aim: The aim is to study ANXA2 biomarkers for early diagnosis of cervical cancer. Materials & methods: The study used bioinformatics analysis and experimental verification of ANXA2 expression in cervical cancer. Results:ANXA2 expression was higher in cancer tissues than in non-cancer tissues (p = 0.002). ANXA2 was expressed in cell membranes of non-cancer tissues, whereas in cancer tissues it was expressed in both the cell membranes and the cytoplasm. Moreover, ANXA2 expression was more pronounced in squamous cell carcinomas. ANXA2 expression decreased overall survival of patients, and the data suggested that protein expression was associated with invasion and migration of tumors. Conclusion:ANXA2 has high specificity and sensitivity as a detection marker for cervical cancer and can assist in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Chenhao Jiang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Lijuan Pang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Wei Jia
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Chengyan Wang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Xiangting Gao
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Xuxuan Zhang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Hongwei Dang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Yan Ren
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| |
Collapse
|
29
|
Gibbs LD, Mansheim K, Maji S, Nandy R, Lewis CM, Vishwanatha JK, Chaudhary P. Clinical Significance of Annexin A2 Expression in Breast Cancer Patients. Cancers (Basel) 2020; 13:cancers13010002. [PMID: 33374917 PMCID: PMC7792619 DOI: 10.3390/cancers13010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Annexin A2 (AnxA2) is a Ca++-dependent phospholipid-binding protein that is involved in invasion and metastasis of breast cancer. However, the expression of AnxA2 in breast cancer patients has not been reported. Here, we show that the expression of AnxA2 was high in tumor tissues and serum samples of breast cancer patients compared to non-cancer patients. The high expression of serum AnxA2 in breast cancer was associated with tumor grade and poor survival. The expression and diagnostic value of serum AnxA2 was high in triple-negative breast cancer (TNBC) subtypes and associated with the phosphorylation of AnxA2 at tyrosine 23. Overall, this study highlights the diagnostic and prognostic significance of AnxA2 in breast cancer. Abstract Increasing evidence suggests that AnxA2 contributes to invasion and metastasis of breast cancer. However, the clinical significance of AnxA2 expression in breast cancer has not been reported. The expression of AnxA2 in cell lines, tumor tissues, and serum samples of breast cancer patients were analyzed by immunoblotting, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We found that AnxA2 was significantly upregulated in tumor tissues and serum samples of breast cancer patients compared with normal controls. The high expression of serum AnxA2 was significantly associated with tumor grades and poor survival of the breast cancer patients. Based on molecular subtypes, AnxA2 expression was significantly elevated in tumor tissues and serum samples of triple-negative breast cancer (TNBC) patients compared with other breast cancer subtypes. Our analyses on breast cancer cell lines demonstrated that secretion of AnxA2 is associated with its tyrosine 23 (Tyr23) phosphorylation in cells. The expression of non-phosphomimetic mutant of AnxA2 in HCC1395 cells inhibits its secretion from cells compared to wild-type AnxA2, which further suggest that Tyr23 phosphorylation is a critical step for AnxA2 secretion from TNBC cells. Our analysis of AnxA2 phosphorylation in clinical samples further confirmed that the phosphorylation of AnxA2 at Tyr23 was high in tumor tissues of TNBC patients compared to matched adjacent non-tumorigenic breast tissues. Furthermore, we observed that the diagnostic value of serum AnxA2 was significantly high in TNBC compared with other breast cancer subtypes. These findings suggest that serum AnxA2 concentration could be a potential diagnostic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Lee D. Gibbs
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
| | - Kelsey Mansheim
- Department of Pathology, Brookwood Baptist Health, 1130 22nd St S # 1000, Birmingham, AL 35205, USA;
| | - Sayantan Maji
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
| | - Rajesh Nandy
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Cheryl M. Lewis
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
- Center for Diversity and International Programs, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
- Center for Diversity and International Programs, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2045
| |
Collapse
|
30
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
31
|
Xi Y, Ju R, Wang Y. Roles of Annexin A protein family in autophagy regulation and therapy. Biomed Pharmacother 2020; 130:110591. [PMID: 32763821 DOI: 10.1016/j.biopha.2020.110591] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Annexin A is a kind of calcium-dependent phospholipid-binding proteins, which contributes to the formation of the cell membranes and cytoskeleton and played a part as a membrane skeleton to stabilize lipid bilayer. Autophagy is one of the most important programmed cell death mechanisms. And recently some reports suggest that annexin A family protein is associated with autophagy for annexin A can regulate the formation of vesicular lipid membranes and promote cell exocytosis. In this review, we summarized the roles of annexin A protein family in autophagy regulation and targeted medical treatment for better diagnoses and therapies.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yujia Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Expression of Annexin A2 Promotes Cancer Progression in Estrogen Receptor Negative Breast Cancers. Cells 2020; 9:cells9071582. [PMID: 32629869 PMCID: PMC7407301 DOI: 10.3390/cells9071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
When breast cancer progresses to a metastatic stage, survival rates decline rapidly and it is considered incurable. Thus, deciphering the critical mechanisms of metastasis is of vital importance to develop new treatment options. We hypothesize that studying the proteins that are newly synthesized during the metastatic processes of migration and invasion will greatly enhance our understanding of breast cancer progression. We conducted a mass spectrometry screen following bioorthogonal noncanonical amino acid tagging to elucidate changes in the nascent proteome that occur during epidermal growth factor stimulation in migrating and invading cells. Annexin A2 was identified in this screen and subsequent examination of breast cancer cell lines revealed that Annexin A2 is specifically upregulated in estrogen receptor negative (ER-) cell lines. Furthermore, siRNA knockdown showed that Annexin A2 expression promotes the proliferation, wound healing and directional migration of breast cancer cells. In patients, Annexin A2 expression is increased in ER- breast cancer subtypes. Additionally, high Annexin A2 expression confers a higher probability of distant metastasis specifically for ER- patients. This work establishes a pivotal role of Annexin A2 in breast cancer progression and identifies Annexin A2 as a potential therapeutic target for the more aggressive and harder to treat ER- subtype.
Collapse
|
33
|
HO-1 Interactors Involved in the Colonization of the Bone Niche: Role of ANXA2 in Prostate Cancer Progression. Biomolecules 2020; 10:biom10030467. [PMID: 32197509 PMCID: PMC7175266 DOI: 10.3390/biom10030467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. Methods: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. Results: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. Conclusions: ANXA2/HO-1 rises as a critical axis in PCa.
Collapse
|
34
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
35
|
Tu Y, Xie P, Du X, Fan L, Bao Z, Sun G, Zhao P, Chao H, Li C, Zeng A, Pan M, Ji J. S100A11 functions as novel oncogene in glioblastoma via S100A11/ANXA2/NF-κB positive feedback loop. J Cell Mol Med 2019; 23:6907-6918. [PMID: 31430050 PMCID: PMC6787445 DOI: 10.1111/jcmm.14574] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most universal type of primary brain malignant tumour, and the prognosis of patients with GBM is poor. S100A11 plays an essential role in tumour. However, the role and molecular mechanism of S100A11 in GBM are not clear. Here, we found that S100A11 was up‐regulated in GBM tissues and higher S100A11 expression indicated poor prognosis of GBM patients. Overexpression of S100A11 promoted GBM cell growth, epithelial‐mesenchymal transition (EMT), migration, invasion and generation of glioma stem cells (GSCs), whereas its knockdown inhibited these activities. More importantly, S100A11 interacted with ANXA2 and regulated NF‐κB signalling pathway through decreasing ubiquitination and degradation of ANXA2. Additionally, NF‐κB regulated S100A11 at transcriptional level as a positive feedback. We also demonstrated the S100A11 on tumour growth in GBM using an orthotopic tumour xenografting. These data demonstrate that S100A11/ANXA2/NF‐κB positive feedback loop in GBM cells that promote the progression of GBM.
Collapse
Affiliation(s)
- Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Xiaoliu Du
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangchi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Minhong Pan
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Annexin A2 Expression in Aerogenous Metastasis of Pulmonary Invasive Mucinous Adenocarcinoma: A Case Report including Immunohistochemical Analysis. Case Rep Oncol Med 2019; 2019:5064852. [PMID: 31485361 PMCID: PMC6702807 DOI: 10.1155/2019/5064852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Aerogenous metastasis (AM) is a form of lung cancer that spreads in a unique fashion, but its mechanisms are still unclear. Annexin A2 (ANX A2), a membrane-binding protein, promotes cancer invasion and is involved in cell adhesion and polarity. The relationship between ANX A2 and cancers with poor stromal invasion capacity has not been studied. We immunohistochemically analyzed ANX A2 expression in AM observed in a patient with pulmonary invasive mucinous adenocarcinoma. In the primary site, ANX A2 immunopositivity on the cell-cell borders weakened as tumor cells projected and separated into alveolar spaces. In AM, tumor cell aggregates with ANX A2 immunopositivity near the surface and within the cytoplasm attached to alveolar epithelial cells, then engulfed them and formed a protrusion. As tumor cell aggregates adhered to the alveolar wall and formed a single layer, cytoplasmic ANX A2-positive products accumulated in the lateral sides of the tumor cells and exhibited distinct membranous positivity. These results indicated that ANX A2 near the tumor cell surface was related to alveolar wall attachment. Furthermore, the translocation of cytoplasmic ANX A2 to cell-cell borders changed cell morphology, adhesion, and polarity restoration.
Collapse
|
37
|
Koerdt SN, Ashraf APK, Gerke V. Annexins and plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:43-65. [PMID: 31610865 DOI: 10.1016/bs.ctm.2019.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane wound repair is a cell-autonomous process that is triggered by Ca2+ entering through the site of injury and involves membrane resealing, i.e., re-establishment of a continuous plasma membrane, as well as remodeling of the cortical actin cytoskeleton. Among other things, the injury-induced Ca2+ elevation initiates the wound site recruitment of Ca2+-regulated proteins that function in the course of repair. Annexins are a class of such Ca2+-regulated proteins. They associate with acidic phospholipids of cellular membranes in their Ca2+ bound conformation with Ca2+ sensitivities ranging from the low to high micromolar range depending on the respective annexin protein. Annexins accumulate at sites of plasma membrane injury in a temporally controlled manner and are thought to function by controlling membrane rearrangements at the wound site, most likely in conjunction with other repair proteins such as dysferlin. Their role in membrane repair, which has been evidenced in several model systems, will be discussed in this chapter.
Collapse
Affiliation(s)
- Sophia N Koerdt
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany.
| |
Collapse
|
38
|
Kumar S, Kushwaha PP, Gupta S. Emerging targets in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:161-177. [PMID: 35582722 PMCID: PMC8992633 DOI: 10.20517/cdr.2018.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Drug resistance is a complex phenomenon that frequently develops as a failure to chemotherapy during cancer treatment. Malignant cells increasingly generate resistance to various chemotherapeutic drugs through distinct mechanisms and pathways. Understanding the molecular mechanisms involved in drug resistance remains an important area of research for identification of precise targets and drug discovery to improve therapeutic outcomes. This review highlights the role of some recent emerging targets and pathways which play critical role in driving drug resistance.
Collapse
Affiliation(s)
- Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
39
|
Aareskjold E, Grindheim AK, Hollås H, Goris M, Lillehaug JR, Vedeler A. Two tales of Annexin A2 knock-down: One of compensatory effects by antisense RNA and another of a highly active hairpin ribozyme. Biochem Pharmacol 2019; 166:253-263. [PMID: 31158338 DOI: 10.1016/j.bcp.2019.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022]
Abstract
Besides altering its own expression during cell transformation, Annexin A2 is upregulated during the progression of many cancer types and also plays key roles during viral infection and multiplication. Consequently, there has been great interest in Annexin A2 as a potential drug target. The successful design of efficient in vivo delivery systems constitutes an obstacle in full exploitation of antisense and RNA-cleaving technologies for the knock-down of specific targets. Efficiency is dependent on the method of delivery and accessibility of the target. Here, hairpin ribozymes and an antisense RNA against rat annexin A2 mRNA were tested for their efficiencies in a T7-driven coupled transcription/translation system. The most efficient ribozyme and antisense RNA were subsequently inserted into a retroviral vector under the control of a tRNA promoter, in a cassette inserted between retroviral Long Terminal Repeats for stable insertion into host DNA. The Phoenix package system based on defective retroviruses was used for virus-mediated gene transfer into PC12 cells. Cells infected with the ribozyme-containing particles died shortly after infection. However, the same ribozyme showed a very high catalytic effect in vitro in cell lysates, explained by its loose hinge helix 2 region. This principle can be transferred to other ribozymes, such as those designed to cleave the guide RNA in the CRISPR/Cas9 technology, as well as to target specific viral RNAs. Interestingly, efficient down-regulation of the expression of Annexin A2 by the antisense RNA resulted in up-regulation of Annexin A7 as a compensatory effect after several cell passages. Indeed, compensatory effects have previously been observed during gene knock-out, but not during knock-down of protein expression. This highlights the problems in interpreting the phenotypic effects of knocking down the expression of a protein. In addition, these data are highly relevant when considering the effects of the CRISPR/Cas9 approach.
Collapse
Affiliation(s)
- Elin Aareskjold
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Marianne Goris
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Johan R Lillehaug
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
40
|
Annexin A2 interacting with ELMO1 regulates HCC chemotaxis and metastasis. Life Sci 2019; 222:168-174. [PMID: 30853625 DOI: 10.1016/j.lfs.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022]
Abstract
AIMS SDF-1α induced chemotaxis plays an important role in hepatocellular carcinoma metastasis. CXCR4 stimulated by SDF-1α/CXCL12 triggers heterotrimeric G proteins activation, which regulate migration and chemotaxis of hepatocellular carcinoma cells. The pathways linking the chemokine GPCR/Gi signaling to actin polymerization for migration of cancer cells are not known. MATERIALS AND METHODS Through would healing assay, chemotaxis assay, F-actin polymerization assay, confocal assay, immunohistochemical assay, protein identification and coimmunoprecipitation assay, we detected the role and mechanisms of Annexin A2 in hepatocellular carcinoma. KEY FINDINGS In the present study, we firstly investigated the role of Annexin A2 in HepG2 cell chemotaxis and metastasis. Immunohistochemical analysis showed that Annexin A2 was highly expressed in hepatocellular carcinoma tissues. Its expression was closely associated with lymph node and distant metastasis. Knockdown Annexin A2 impaired cancer cell chemotaxis. Co-immunoprecipitation results showed an interaction between Annexin A2 and ELMO1. CXCL12 triggers an ELMO1-dependent membrane translocation of Annexin A2. SIGNIFICANCE Taken together, our results indicated an important role of Annexin A2 in hepatocellular carcinoma tissues metastasis and revealed a novel molecular mechanism of its activation.
Collapse
|
41
|
Taylor JR, Skeate JG, Kast WM. Annexin A2 in Virus Infection. Front Microbiol 2018; 9:2954. [PMID: 30568638 PMCID: PMC6290281 DOI: 10.3389/fmicb.2018.02954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viral life cycles consist of three main phases: (1) attachment and entry, (2) genome replication and expression, and (3) assembly, maturation, and egress. Each of these steps is intrinsically reliant on host cell factors and processes including cellular receptors, genetic replication machinery, endocytosis and exocytosis, and protein expression. Annexin A2 (AnxA2) is a membrane-associated protein with a wide range of intracellular functions and a recurrent host factor in a variety of viral infections. Spatially, AnxA2 is found in the nucleus and cytoplasm, vesicle-bound, and on the inner and outer leaflet of the plasma membrane. Structurally, AnxA2 exists as a monomer or in complex with S100A10 to form the AnxA2/S100A10 heterotetramer (A2t). Both AnxA2 and A2t have been implicated in a vast array of cellular functions such as endocytosis, exocytosis, membrane domain organization, and translational regulation through RNA binding. Accordingly, many discoveries have been made involving AnxA2 in viral pathogenesis, however, the reported work addressing AnxA2 in virology is highly compartmentalized. Therefore, the purpose of this mini review is to provide information regarding the role of AnxA2 in the lifecycle of multiple epithelial cell-targeting viruses to highlight recurrent themes, identify discrepancies, and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Julia R Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Joseph G Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Mass Spectrometry-Based Comprehensive Analysis of Pancreatic Cyst Fluids. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7169595. [PMID: 30627566 PMCID: PMC6304507 DOI: 10.1155/2018/7169595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/18/2018] [Indexed: 01/09/2023]
Abstract
Pancreatic cyst fluids (PCFs) enriched in tumour-derived proteins are considered a potential source of new biomarkers. This study aimed to determine compositional and quantitative differences between the degradome and proteome of PCFs aspirated from different types of pancreatic cyst lesions (PCLs). 91 patients who underwent endoscopic ultrasound-fine needle aspiration under routine clinical diagnosis of PCLs were enrolled. Four cysts were malignant (CAs), and 87 were nonmalignant and consisted of 18 intraductal papillary mucinous neoplasms (IPMNs), 14 mucinous cystic neoplasms (MCNs), nine serous cystic neoplasms (SCNs), 29 pseudocysts (PCs), and 17 unclassified. Profiles of the <5 kDa fraction, the degradome, and the trypsin-digested proteome were analysed using an LTQ-Orbitrap Elite mass spectrometer coupled with a nanoACQUITY LC system. Qualitative analyses identified 796 and 366 proteins in degradome and proteome, respectively, and 689 (77%) and 285 (78%) of them were present in the Plasma Proteome Database. Gene Ontology analysis showed a significant overrepresentation of peptidases and peptidases inhibitors in both datasets. In the degradome fraction, quantitative values were obtained for 6996 peptides originating from 657 proteins. Of these, 2287 peptides were unique to a single type, and 515 peptides, derived from 126 proteins, were shared across cyst types. 32 peptides originating from 12 proteins had differential (adjusted p-value ≤0.05, FC ≥1.5) abundance in at least one of the five cysts types. In proteome, relative expression was measured for 330 proteins. Of them, 33 proteins had significantly (adjusted p-value ≤0.05, FC ≥1.5) altered abundance in at least one of the studied groups and 19 proteins appeared to be unique to a given cyst type. PCFs are dominated by blood proteins and proteolytic enzymes. Although differences in PCF peptide composition and abundance could aid classification of PCLs, the unpredictable inherent PCF proteolytic activity may limit the practical applications of PCF protein profiling.
Collapse
|
43
|
Wang Y, Cheng YS, Yin XQ, Yu G, Jia BL. Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway. Am J Physiol Cell Physiol 2018; 316:C223-C234. [PMID: 30462534 DOI: 10.1152/ajpcell.00242.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin resistance (IR) continues to pose a major threat to public health due to its role in the pathogenesis of metabolic syndrome and its ever-increasing prevalence on a global scale. The aim of the current study was to investigate the efficacy of Anxa2 in obesity-induced IR through the mediation of the NF-κB signaling pathway. Microarray analysis was performed to screen differentially expressed genes associated with obesity. To verify whether Anxa2 was differentially expressed in IR triggered by obesity, IR mouse models were established in connection with a high-fat diet (HFD). In the mouse IR model, the role of differentially expressed Anxa2 in glycometabolism and IR was subsequently detected. To investigate the effect of Anxa2 on IR and its correlation with inflammation, a palmitic acid (PA)-induced IR cell model was established, with the relationship between Anxa2 and the NF-κB signaling pathway investigated accordingly. Anxa2 was determined to be highly expressed in IR. Silencing Anxa2 was shown to inhibit IR triggered by obesity. When Anxa2 was knocked down, elevated expression of phosphorylated insulin receptor substrate 1 (IRS1), IRS1 and peroxisome proliferator-activated receptor coactivator-1a, and glucose tolerance and insulin sensitivity along with 2-deoxy-d-glucose uptake was detected, whereas decreased expression of suppressor of cytokine signaling 3, IL-6, IL-1β, TNF-α, and p50 was observed. Taken together, the current study ultimately demonstrated that Anxa2 may be a novel drug strategy for IR disruption, indicating that Anxa2 gene silencing is capable of alleviating PA or HFD-induced IR and inflammation through its negative regulatory role in the process of p50 nuclear translocation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Yun-Sheng Cheng
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Xiao-Qiang Yin
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Gang Yu
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Ben-Li Jia
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
44
|
Wang Y, Zhou Z, Wang X, Zhang X, Chen Y, Bai J, Di W. TRIM59 Is a Novel Marker of Poor Prognosis and Promotes Malignant Progression of Ovarian Cancer by Inducing Annexin A2 Expression. Int J Biol Sci 2018; 14:2073-2082. [PMID: 30585270 PMCID: PMC6299375 DOI: 10.7150/ijbs.28757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is the fifth common cause of death in woman worldwide. The tripartite motif-containing (TRIM) proteins consist of more than 70 known protein members. Studies have showed that TRIM proteins are involved in cancer and play important roles in cancer cell proliferation, migration, adhesion and metastasis. Recent studies have indicated that TRIM59, as a putative ubiquitin ligase, is up-regulated in some cancers and associated with poor prognosis of gastric cancer. However, the exact roles of TRIM59 in ovarian cancer are still unknown. In this study, we found that TRIM59 expression was increased and positively associated with histological grades (P = 0.000), FIGO stages (P = 0.016), and metastasis (P = 0.027) in ovarian cancer. A integrative data analysis tool revealed that ovarian cancer patients with high TRIM59 expression were correlated with more unfavorable overall and progression-free survival than the rest patients with low TRIM59 expression (P = 0.0024 and P = 7.5×10-6, respectively). Based on the finding in the clinical data, we performed a series of cell line and animal experiments, and found that TRIM59 knockdown could significantly inhibit the ovarian cancer cell proliferation, clone formation, and invasion in vitro and the ovarian cancer growth of the subcutaneous and orthotopic implantation in vivo. Furthermore, TRIM59 was found to interact with Annexin A2 and induce Annexin A2 expression. Our data imply that TRIM59 can serve as a promising prognostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Gynecologic Oncology, Focus Construction Subject of Shanghai Education Department, Shanghai
| | - Zhicheng Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinran Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Gynecologic Oncology, Focus Construction Subject of Shanghai Education Department, Shanghai
| | - Xuping Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Yansu Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
45
|
Ma S, Lu CC, Yang LY, Wang JJ, Wang BS, Cai HQ, Hao JJ, Xu X, Cai Y, Zhang Y, Wang MR. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:183. [PMID: 30081903 PMCID: PMC6091180 DOI: 10.1186/s13046-018-0851-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND ANXA2 (Annexin A2) is a pleiotropic calcium-dependent phospholipid binding protein that is abnormally expressed in various cancers. We previously found that ANXA2 is upregulated in esophageal squamous cell carcinoma (ESCC). This study was designed to investigate the functional significance of ANXA2 dysregulation and underlying mechanism in ESCC. METHODS Proliferation, migration, invasion and metastasis assay were performed to examine the functional roles of ANXA2 in ESCC cells in vitro and in vivo. Real-time RT-PCR, immunoblotting, ChIP, reporter assay, confocal-immunofluorescence staining, co-immunoprecipitation and ubiquitination assay were used to explore the molecular mechanism underlying the actions of deregulated ANXA2 in ESCC cells. RESULTS Overexpression of ANXA2 promoted ESCC cells migration and invasion in vitro and metastasis in vivo through activation of the MYC-HIF1A-VEGF cascade. Notably, ANXA2 phosphorylation at Tyr23 by SRC led to its translocation into the nucleus and enhanced the metastatic potential of ESCC cells. Phosphorylated ANXA2 (Tyr23) interacted with MYC and inhibited ubiquitin-dependent proteasomal degradation of MYC protein. Accumulated MYC directly potentiated HIF1A transcription and then activated VEGF expression. Correlation between these molecules were also found in ESCC tissues. Moreover, dasatinib in combination with bevacizumab or ANXA2-siRNA produced potent inhibitory effects on the growth of ESCC xenograft tumors in vivo. CONCLUSIONS This study provides evidence that highly expressed p-ANXA2 (Tyr23) contributes to ESCC progression by promoting migration, invasion and metastasis, and suggests that targeting the SRC-ANXA2-MYC-HIF1A-MYC axis may be an efficient strategy for ESCC treatment.
Collapse
Affiliation(s)
- Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Chen-Chen Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.,Basic Medical College, Bengbu Medical College, Bengbu, 233003, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Juan-Juan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bo-Shi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
46
|
Zhou W, Zhang Y, Zeng Y, Peng M, Li H, Sun S, Ma B, Wang Y, Ye M, Liu J. Screening and characterization of an Annexin A2 binding aptamer that inhibits the proliferation of myeloma cells. Biochimie 2018; 151:150-158. [PMID: 29906496 DOI: 10.1016/j.biochi.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease and is considered incurable. Annexin A2 (ANXA2) is closely related to the proliferation and adhesion of MM. Using protein-SELEX, we performed a screen for aptamers that bind GST-ANXA2 from a library, and GST protein was used for negative selection. The enrichment of the ssDNA pool was monitored by filter-binding assay during selection. After nine rounds of screening and high-throughput sequencing, we obtained six candidate aptamers that bind to the ANXA2 protein. The affinities of the candidate aptamers for ANXA2 were determined by ELONA. Binding of aptamer wh6 to the ANXA2 protein and to the MM cell was verified by aptamer pulldown experiment and flow cytometry, respectively. Aptamer wh6 binds the ANXA2 protein with good stability and has a dissociation constant in the nanomolar range. The binding specificity of aptamer wh6 was confirmed in vivo in nude mouse xenografts with MM cells and with MM bone marrow aspirates. Furthermore, aptamer wh6 can block MM cell adhesion to ANXA2 and block the proliferation of MM cells induced by ANXA2. In summary, wh6 can be considered a promising candidate tool for MM diagnosis and treatment.
Collapse
Affiliation(s)
- Weihua Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Biochemistry, College of Medicine, Jishou University, Jishou, 416000, China
| | - Yibin Zhang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yayue Zeng
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Minyuan Peng
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Li
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Bianying Ma
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China.
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
47
|
Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci 2018; 25:30. [PMID: 29598816 PMCID: PMC5877395 DOI: 10.1186/s12929-018-0430-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients, poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2 promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy). These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high ANXA2 expression by developing this prospective ANXA2-targeted therapy.
Collapse
|
48
|
Amhimmid Badr S, Waheeb Fahmi M, Mahmoud Nomir M, Mohammad El-Shishtawy M. Calcium channel α2δ1 subunit as a novel biomarker for diagnosis of hepatocellular carcinoma. Cancer Biol Med 2018; 15:52-60. [PMID: 29545968 PMCID: PMC5842334 DOI: 10.20892/j.issn.2095-3941.2017.0167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. The identification of new simple, inexpensive and highly accurate markers for HCC diagnosis and screening is needed. This case-control study evaluates the role of annexin A2 and voltage-gated calcium channels α2δ1 subunit as serum biomarkers for HCC diagnosis. METHODS The study comprised three groups: group 1, 50 patients with an initial diagnosis of HCC associated with chronic hepatitis C virus infection; group 2, 25 patients diagnosed with chronic hepatitis C virus infection and cirrhosis without any evidence of HCC; and group 3, 15 healthy controls. All participants were subjected to clinical and laboratory investigations, and radiological scanning. The serum levels of alpha-fetoprotein (AFP), annexin A2, and the α2δ1 subunit were evaluated by using ELISA technique. RESULTS The serum levels of annexin A2 significantly increased in patients with HCC (10.4±2.5 ng/mL; P<0.001) or with cirrhosis (9.31±1.8 ng/mL;P<0.001) comparing to that of healthy controls (0.296±0.09 ng/mL). However, there was no significant difference in serum annexin A2 levels in patients with HCC comparing to those with cirrhosis. Serum α2δ1 subunit significantly increased in patients with HCC (20.12±3.7 ng/mL) comparing to that in patients with cirrhosis (10.41±3.4 ng/mL,P<0.001) and healthy controls (10.2±2.9 ng/mL,P<0.001). CONCLUSIONS The serum α2δ1 subunit may function as a new biomarker for HCC diagnosis. Conversely, serum annexin A2 has low diagnostic value as an HCC marker, especially in patients with underlying cirrhosis.
Collapse
|
49
|
Kohli S, Bhardwaj A, Kumari R, Das S. SIRT6 Is a Target of Regulation by UBE3A That Contributes to Liver Tumorigenesis in an ANXA2-Dependent Manner. Cancer Res 2017; 78:645-658. [PMID: 29217762 DOI: 10.1158/0008-5472.can-17-1692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023]
Abstract
UBE3A is an E3 ubiquitin ligase well known for its role in the proteasomal degradation of p53 in human papillomavirus (HPV)-associated cancers. Here we report that UBE3A ubiquitylates and triggers degradation of the tumor-suppressive sirtuin SIRT6 in hepatocellular carcinoma. UBE3A ubiquitylated the highly conserved Lys160 residue on SIRT6. FOXO1-mediated transcriptional repression of UBE3A was sufficient to stabilize SIRT6 and to epigenetically repress ANXA2, a key mediator of UBE3A oncogenic function. Thus, UBE3A-mediated SIRT6 degradation promoted the proliferative capacity, migration potential, and invasiveness of cells. In mouse models of hepatocellular carcinoma, SIRT6 downregulation and consequent induction of ANXA2 were critical for UBE3A-mediated tumorigenesis. Furthermore, in clinical specimens, increased UBE3A levels correlated with reduced SIRT6 levels and elevated ANXA2 levels in increasing tumor grades. Overall, our findings show how the tumor suppressor SIRT6 is regulated in hepatocellular carcinoma and establish the mechanism underlying UBE3A-mediated tumorigenesis in this disease.Significance: These findings provide mechanistic insights into regulation of the tumor suppressive sirtuin SIRT6 and its implications for the development of hepatocellular carcinoma. Cancer Res; 78(3); 645-58. ©2017 AACR.
Collapse
Affiliation(s)
- Saishruti Kohli
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India
| | - Abhishek Bhardwaj
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India
| | - Richa Kumari
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
50
|
Luo S, Xie C, Wu P, He J, Tang Y, Xu J, Zhao S. Annexin A2 is an independent prognostic biomarker for evaluating the malignant progression of laryngeal cancer. Exp Ther Med 2017; 14:6113-6118. [PMID: 29285166 DOI: 10.3892/etm.2017.5298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Due to the lack of a definite diagnosis, a frequent recurrence rate and resistance to chemotherapy or radiotherapy, the clinical outcome for patients with advanced laryngeal cancer has not improved over the last decade. Annexin A2 is associated with the invasion and metastasis of cancer cells. In the present study, it was demonstrated using differential proteomics analysis that Annexin A2 is highly expressed in laryngeal carcinoma tissues and this was confirmed using immunohistochemistry, which demonstrated that the expression of Annexin A2 in laryngeal carcinoma tissues was significantly higher than in healthy adjacent tissue. In addition, its potential predictive value in the prognosis of patients with laryngeal carcinoma was evaluated. The results demonstrated that Annexin A2 expression was significantly associated with tumor size, lymph node metastasis, distant metastasis and clinical stage. In addition, higher Annexin A2 expression was associated with a poor prognosis of patients with laryngeal cancer. Thus, the results of the present study indicate that Annexin A2 expression is an independent prognostic biomarker for evaluating the malignant progression of laryngeal cancer.
Collapse
Affiliation(s)
- Shi Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Chubo Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ping Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian He
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yaoyun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Suping Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|