1
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Ainiwaer J, Zhang L, Niyazi M, Awut E, Zheng S, Sheyhidin I, Dai J. Alpha Protein Kinase 2 Promotes Esophageal Cancer via Integrin Alpha 11. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7676582. [PMID: 35813220 PMCID: PMC9259355 DOI: 10.1155/2022/7676582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND As a common disease around the world, esophageal cancer (EC) primarily includes two subclasses: esophageal adenocarcinoma and esophageal squamous cell carcinoma. Mortality has been rising over the years; hence, exploring the mechanism of EC development has become critical. Among the alpha protein kinases, alpha protein kinase 2 (ALPK2) presumably has a connection with EC, but it has never been revealed before. METHODS In this study, IHC analysis was used for ALPK2 expression quantification in ES tissues. TE-1 and Eca-109, which are both human EC cell lines, were used for in vitro analysis of cell proliferation, migration, apoptosis, and colony formation. RESULTS ALPK2 was found to have an abundant expression within EC tissues (P < 0.001), as well as in the two selected human EC cell lines (P < 0.05). The data showed that ALPK2 depletion suppressed EC cell proliferation, migration, and colony formation, meanwhile stimulating apoptosis (P < 0.001). The in vivo experiments also displayed inhibitory effects caused by ALPK2 depletion on EC tumorigenesis (P < 0.001). It was further validated that ALPK2 depletion made the phosphorylation of Akt and mTOR, as well as CDK6 and PIK3CA levels downregulated (P < 0.001). Mechanistically, we identified integrin alpha 11 (ITGA11) as a downstream gene of ALPK2 regulating EC. More importantly, we found that ITGA11 elevation promoted cell proliferation and migration and rescued the suppression effects caused by ALPK2 depletion (P < 0.001). CONCLUSIONS ALPK2 promotes esophageal cancer via integrin its downstream gene alpha 11; ALPK2 can potentially act as a target for the treatment of EC.
Collapse
Affiliation(s)
- Julaiti Ainiwaer
- School of Public Health, Xinjiang Medical University, China
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Liwei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Maidiniyeti Niyazi
- The Clinical Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, China
| | - Edris Awut
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Shutao Zheng
- The Clinical Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, China
| | - Ilyar Sheyhidin
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - JiangHong Dai
- School of Public Health, Xinjiang Medical University, China
| |
Collapse
|
3
|
Jiang J, Han P, Qian J, Zhang S, Wang S, Cao Q, Shao P. Knockdown of ALPK2 blocks development and progression of renal cell carcinoma. Exp Cell Res 2020; 392:112029. [PMID: 32330508 DOI: 10.1016/j.yexcr.2020.112029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/02/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors in the urinary system, whose molecular mechanism is still not clear. ALPK2 is a member of alpha protein kinase family, and its relationship with RCC is never reported. In this study, expression of ALPK2 in tumor tissues or cells of RCC was detected by qPCR, western blotting and immunohistochemical analysis. The effects of ALPK2 knockdown on cell proliferation, colony formation, cell migration and apoptosis were assessed by MTT, colony formation assay, wound-healing assay, Transwell assay and flow cytometry, respectively. The influence of ALPK2 knockdown on tumor growth in vivo was evaluated by mice xenograft models. The results demonstrated that ALPK2 was upregulated in tumor tissues of RCC and its high expression was significantly associated with advanced stage and poor prognosis. Knockdown of ALPK2 could inhibited cell proliferation, colony formation and cell migration of RCC cells, while promoting cell apoptosis. The suppression of tumor growth in vivo by ALPK2 knockdown was also showed by using mice xenograft models. Moreover, the regulation of RCC by ALPK2 may involve Akt, CDK6, Cyclin D1 and PIK3CA signaling. Therefore, our studies suggested that ALPK2 may act as a tumor promotor in the development and progression of RCC, and could be considered as a novel therapeutic target for RCC treatment.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Qian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaobo Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Liu GM, Lu TC, Sun ML, Ji X, Zhao YA, Jia WY, Luo YG. RP11-874J12.4 promotes oral squamous cell carcinoma tumorigenesis via the miR-19a-5p/EBF1 axis. J Oral Pathol Med 2020; 49:645-654. [PMID: 32004389 DOI: 10.1111/jop.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the fifth most frequent cancer worldwide, and the recurrence and migration of OSCC still pose large threats to patients. Long non-coding RNAs (lncRNAs) have recently emerged as crucial players in cancer development, and it is of great significance to understand the regulatory nexus of lncRNAs in OSCC. METHODS Here, we identified a novel lncRNA, RP11-874J12.4, which is ectopically expressed in OSCC and facilitates OSCC. RESULTS RP11-874J12.4 directly binds to and regulates miR-19a-5p. Interestingly, RP11-874J12.4 and miR-19a-5p form a negative regulatory loop that inhibits the expression of miR-19a-5p in OSCC. The expression of an oncogenic transcription factor, EBF1, is unleashed in OSCC due to the low expression of miR-19a-5p, which promotes the growth and migration of OSCC. CONCLUSION Our data illustrate a regulatory axis of RP11-874J12.4/miR-19a-5P/EBF1 and an inhibitory loop with RP11-874J12.4 and miR-19a-5p. These data provide insights into the tumorigenesis of OSCC and the novel drug targets for OSCC.
Collapse
Affiliation(s)
- Guo-Min Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Cheng Lu
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Life Sciences College, Jilin Agricultural University, Changchun, China
| | - Mao-Lei Sun
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Xuan Ji
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Yi-An Zhao
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Wen-Yuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.,Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China
| | - Yun-Gang Luo
- Jilin Provincial Changbai Mountain Medicine Anti-Cancer Engineering Center, The Second Hospital of Jilin University, Changchun, China.,Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Dong W, Wu P, Zhou D, Huang J, Qin M, Yang X, Wan M, Zong Y. Ultrasound-Mediated Gene Therapy of Hepatocellular Carcinoma Using Pre-microRNA Plasmid-Loaded Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:90-107. [PMID: 31668943 DOI: 10.1016/j.ultrasmedbio.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
The PIK3 CA gene encodes the p110α protein subunit and is one of the most efficient cancer genes in solid and hematological tumors including hepatocellular carcinoma (HCC). There are currently ongoing therapies against tumors based on PIK3 CA inhibition. Because microRNAs (miRNAs) play an important role in post-transcriptional regulation and are also involved in the inhibition of PIK3 CA expression to suppress cancer cell proliferation, overexpression of tumor-suppressive miRNA is a promising therapeutic approach for HCC therapy. The successful and localized delivery of miRNA overexpression vectors (pre-miRNA plasmids) is very important in improving the therapeutic efficacy of this miRNA therapy strategy. In the study described here, submicron acoustic phase-shifted nanodroplets were used to efficiently deliver pre-miRNA plasmid in vitro and in vivo for HCC therapy under focused ultrasound (US) activation. Briefly, six miRNAs, inhibiting PIK3 CA and downregulated in HCC, were selected through summary and analysis of the currently existing literature data. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and cell apoptosis assay revealed that pre-miR-139, -203a, -378a and -422a plasmids among the six miRNA overexpression vectors could suppress growth of the hepatoma cell line SMMC-7721. These four pre-miRNA plasmids were then electrostatically adhered to positively charged lipid-shelled nanodroplets to obtain plasmid-loaded nanodroplets (PLNDs). The PLND-generated microbubbles oscillated and even collapsed under US exposure to release the loaded pre-miRNA plasmids and enhance their cellular uptake through consequent sonoporation, that is, formation of small pores on the cell membrane induced by the mechanical effects of PLND cavitation. Fluorescence microscopy results revealed that PLNDs could effectively deliver the aforementioned four pre-miRNA plasmids into SMMC-7721 cells in vitro under 1.2-MHz 60-cycle sinusoid US exposure with a peak negative pressure >5.5 MPa at a 40-Hz pulse repetition frequency. Plasmid delivery efficiency and cell viability positively correlated with the inertial cavitation dose that was determined mainly by peak negative pressure. Furthermore, PLNDs combined with US were evaluated in vivo to deliver these four pre-miRNAs plasmids and verify their therapeutic efficacy in subcutaneous tumor of the mouse xenograft HCC model. The results revealed that the PLNDs loaded with pre-miR-139 and -378a plasmids could effectively suppress tumor growth after US treatment. Thus, combination of pre-miRNA PLNDs with US activation seems to constitute a potential strategy for HCC therapy.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Di Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Jixiu Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mengfan Qin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Xinxing Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China; Department of Ultrasound, First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
6
|
Zeng JH, Lu W, Liang L, Chen G, Lan HH, Liang XY, Zhu X. Prognosis of clear cell renal cell carcinoma (ccRCC) based on a six-lncRNA-based risk score: an investigation based on RNA-sequencing data. J Transl Med 2019; 17:281. [PMID: 31443717 PMCID: PMC6708203 DOI: 10.1186/s12967-019-2032-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms. Methods This study investigated the prognostic significance of differentially expressed lncRNAs by mining high-throughput lncRNA-sequencing data from The Cancer Genome Atlas (TCGA) containing 13,198 lncRNAs from 539 patients. Differentially expressed lncRNAs were assessed using the R packages edgeR and DESeq. The prognostic significance of lncRNAs was measured using univariate Cox proportional hazards regression. ccRCC patients were then categorized into high- and low-score cohorts based on the cumulative distribution curve inflection point the of risk score, which was generated by the multivariate Cox regression model. Samples from the TCGA dataset were divided into training and validation subsets to verify the prognostic risk model. Bioinformatics methods, gene set enrichment analysis, and protein–protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used. Results It was found that the risk score based on 6 novel lncRNAs (CTA-384D8.35, CTD-2263F21.1, LINC01510, RP11-352G9.1, RP11-395B7.2, RP11-426C22.4) exhibited superior prognostic value for ccRCC. Moreover, we categorized the cases into two groups (high-risk and low-risk), and also examined related pathways and genetic differences between them. Kaplan–Meier curves indicated that the median survival time of patients in the high-risk group was 73.5 months, much shorter than that of the low-risk group (112.6 months; P < 0.05). Furthermore, the risk score predicted the 5-year survival of all 539 ccRCC patients (AUC at 5 years, 0.683; concordance index [C-index], 0.853; 95% CI 0.817–0.889). The training set and validation set also showed similar performance (AUC at 5 years, 0.649 and 0.681, respectively; C-index, 0.822 and 0.891; 95% CI 0.774–0.870 and 0.844–0.938). Conclusions The results of this study can be applied to analyzing various prognostic factors, leading to new possibilities for clinical diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Lu
- Department of Pathology, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Hua Lan
- Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiu-Yun Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xu Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People's Hospital, 13 Dancun Road, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
7
|
Zheng CG, Chen BY, Sun RH, Mou XZ, Han F, Li Q, Huang HJ, Liu JQ, Tu YX. miR-133b Downregulation Reduces Vulnerable Plaque Formation in Mice with AS through Inhibiting Macrophage Immune Responses. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:745-757. [PMID: 31146256 PMCID: PMC6539412 DOI: 10.1016/j.omtn.2019.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by accumulating deposition of lipids in the arterial intima. Notably, macrophages participate centrally in the pathogenesis of this deadly disease. In this study, we established AS mouse models in order to investigate the effect of microRNA-133b (miR-133b) on vulnerable plaque formation and vascular remodeling in AS and explore the potential functional mechanisms. The expression of miR-133b was altered or the Notch-signaling pathway was blocked in the AS mouse models in order to evaluate the proliferation, migration, and apoptosis of macrophages. It was observed that miR-133b was upregulated in AS, which might target MAML1 to regulate the Notch-signaling pathway. AS mice with downregulated miR-133b or inhibited Notch-signaling pathway presented with a reduced AS plaque area, a decreased positive rate of macrophages, and an increased positive rate of vascular smooth muscle cells. Moreover, Notch-signaling pathway blockade or miR-133b downregulation inhibited the macrophage viability and migration and accelerated the apoptosis. This study provides evidence that downregulated miR-133b expression may inhibit the immune responses of macrophages and attenuate the vulnerable plaque formation and vascular remodeling in AS mice through the MAML1-mediated Notch-signaling pathway, highlighting miR-133b as a novel therapeutic target for AS.
Collapse
Affiliation(s)
- Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, P.R. China
| | - Bing-Yu Chen
- Centre of Laboratory Medicine, Chun'an First People's Hospital, Hangzhou 311700, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310000, P.R. China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Qian Li
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Hai-Jun Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Jing-Quan Liu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, P.R. China.
| |
Collapse
|
8
|
Grange C, Brossa A, Bussolati B. Extracellular Vesicles and Carried miRNAs in the Progression of Renal Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20081832. [PMID: 31013896 PMCID: PMC6514717 DOI: 10.3390/ijms20081832] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
The formation and maintenance of renal cell carcinomas (RCC) involve many cell types, such as cancer stem and differentiated cells, endothelial cells, fibroblasts and immune cells. These all contribute to the creation of a favorable tumor microenvironment to promote tumor growth and metastasis. Extracellular vesicles (EVs) are considered to be efficient messengers that facilitate the exchange of information within the different tumor cell types. Indeed, tumor EVs display features of their originating cells and force recipient cells towards a pro-tumorigenic phenotype. This review summarizes the recent knowledge related to the biological role of EVs, shed by renal tumor cells and renal cancer stem cells in different aspects of RCC progression, such as angiogenesis, immune escape and tumor growth. Moreover, a specific role for renal cancer stem cell derived EVs is described in the formation of the pre-metastatic niche. We also highlight the tumor EV cargo, especially the oncogenic miRNAs, which are involved in these processes. Finally, the circulating miRNAs appear to be a promising source of biomarkers in RCC.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
| | - Alessia Brossa
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
| | - Benedetta Bussolati
- Molecular Biotechnology Centre, University of Turin, via Nizza 52, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
9
|
Jing ZF, Bi JB, Li ZL, Liu XK, Li J, Zhu YY, Zhang XT, Zhang Z, Li ZH, Kong CZ. miR-19 promotes the proliferation of clear cell renal cell carcinoma by targeting the FRK-PTEN axis. Onco Targets Ther 2019; 12:2713-2727. [PMID: 31043790 PMCID: PMC6463782 DOI: 10.2147/ott.s199238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The non-receptor tyrosine kinase Fyn-related kinase (FRK) has been reported to affect cell proliferation in several cancer types. However, its effect on the proliferation of clear cell renal cell carcinoma (ccRCC) remains largely unknown. Purpose The objective of this study was to investigate the expression pattern and function of FRK in ccRCC. We further determined how FRK interacted with other molecules to regulate ccRCC proliferation. Patients and methods The expression of FRK in ccRCC samples and paired normal renal tissues from 30 patients were analyzed by immunoblotting, immunohistochemistry and quantitative PCR. Then the role of FRK in ccRCC proliferation was analyzed by Cell Counting Kit-8, colony formation assay and EdU incorporation assay. In addition, the miRNA targeting FRK was predicted through a bioinformatic approach and validated by quantitative PCR, immunoblotting and luciferase reporter assay. Finally, the underlying mechanism of FRK regulation of ccRCC proliferation was also determined. Results Low expression of FRK was detected in ccRCC samples and predicted poor survival for ccRCC patients. FRK inhibited the proliferation of ccRCC cells via phosphorylating downstream PTEN. miR-19 was identified as a novel suppressor of FRK in renal cancer cells and it promoted the proliferation of ccRCC by inhibiting the FRK-PTEN axis. Conclusion Our results unravel a new regulatory mechanism involved in ccRCC proliferation and may be useful in the identification of therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Zhi-Fei Jing
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Jian-Bin Bi
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Ze-Liang Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Xian-Kui Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Jun Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Yu-Yan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Xiao-Tong Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Zhen-Hua Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| | - Chui-Ze Kong
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China, ; .,Institute of Urology, China Medical University, Shenyang 110001, People's Republic of China, ;
| |
Collapse
|
10
|
Siligato R, Cernaro V, Nardi C, De Gregorio F, Gembillo G, Costantino G, Conti G, Buemi M, Santoro D. Emerging therapeutic strategies for minimal change disease and focal and segmental glomerulosclerosis. Expert Opin Investig Drugs 2018; 27:839-879. [PMID: 30360670 DOI: 10.1080/13543784.2018.1540587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Minimal change disease (MCD) and Focal and segmental glomerulosclerosis (FSGS) are two of the major causes of nephrotic syndrome (NS) in children and adults. According to KDIGO (Kidney Disease: Improving Global Outcomes) guidelines, the treatment of adult primary MCD and FSGS should be based on immunosuppressants and antiproteinuric drugs. Recently, Rituximab, a humanized monoclonal antibody (mAb) has emerged as a potential treatment for steroid or calcineurin inhibitor-dependent patients; it has however demonstrated lower efficacy in those with nephrotic syndrome that is resistant to the above indicated drugs. AREAS COVERED Analysis of ongoing and already completed clinical trials, retrieved from clinicaltrials.gov, clinicaltrialsregister.eu and PubMed involving new therapies for nephrotic syndrome secondary to MCD and FSGS. EXPERT OPINION The most promising drugs under investigation for MCD and FSGS are mAbs. We are hopeful that new therapeutic options to treat multi-drug resistant MCD and FSGS will emerge from currently ongoing studies. What appears certain is the difficulty in enrolling patients affected by orphan renal diseases and the selection of valid endpoints in clinical trials, such as kidney failure.
Collapse
Affiliation(s)
- Rossella Siligato
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Chiara Nardi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Francesca De Gregorio
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Guido Gembillo
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giuseppe Costantino
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Giovanni Conti
- b Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis, Department of Internal Medicine , Messina , Italy
| |
Collapse
|
11
|
Marquez-Exposito L, Cantero-Navarro E, Lavoz C, Fierro-Fernández M, Poveda J, Rayego-Mateos S, Rodrigues-Diez RR, Morgado-Pascual JL, Orejudo M, Mezzano S, Ruiz-Ortega M. Análisis de la vía Notch como una posible diana terapéutica en la patología renal. Nefrologia 2018; 38:466-475. [DOI: 10.1016/j.nefro.2017.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
|
12
|
|
13
|
Lin Z, Chen B, Wu T, Xu X. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells. Acta Haematol 2018; 139:201-216. [PMID: 29791894 DOI: 10.1159/000488385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Diffuse large B cell lymphoma (DLBCL) is heterogeneous. We aimed to explore how tumor microenvironment promotes lymphoma cell aggressiveness and heterogeneity. METHODS We created a coculture system using human DLBCL cells and mouse bone marrow stromal cells. Proliferative capacity, drug resistance, clonogenicity, and tumorigenicity were compared in lymphoma cells from the coculture system and lymphoma cells cultured alone. Expression of Notch signaling associated genes was evaluated using real-time reverse transcriptase PCR and Western blot. RESULTS Lymphoma cells in the coculture system differentiated into a suspended cell group and an adherent cell group. They acquired a stronger proliferative capacity and drug resistance than lymphoma cells cultured alone, and differences existed between the adherent cell and suspended cell groups. The suspended cell group acquired the most powerful clonogenic and tumorigenic potential. However, Notch3 was exclusively expressed in the adherent lymphoma cell group and the use of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, an inhibitor of Notch pathway, could abolish the emergence of highly aggressive lymphoma cells. CONCLUSION Highly tumorigenic lymphoma cells could be generated by coculture with stromal cells, and it was dependent on Notch3 expression in the adjacent lymphoma cells through interaction with stromal cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Biomarkers
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Coculture Techniques
- Disease Models, Animal
- Disease Progression
- Drug Resistance, Neoplasm
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Signal Transduction/drug effects
- Stromal Cells/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
|
14
|
Ma F, Wang Z, Wang J, Liu X, Hu C. MicroRNA-19a promotes nasopharyngeal carcinoma by targeting transforming growth factor β receptor 2. Exp Ther Med 2017; 14:1419-1426. [PMID: 28810605 PMCID: PMC5526133 DOI: 10.3892/etm.2017.4655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR), a class of small non-coding RNA, function as key regulators in gene expression through directly binding to the 3' untranslated region of their target mRNA, which further leads to translational repression or mRNA degradation. miR-19a, a member of miR-17-92 cluster, has an oncogenic role in a variety of malignant tumors. However, the exact role of miR-19a in nasopharyngeal carcinoma (NPC) has not previously been studied. The present study aimed to investigate the function and mechanism of miR-19a in regulating the viability and invasion of NPC cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data indicated that the expression levels of miR-17-92 cluster members (miR-17, miR-18a, miR-19a and miR-20a) were frequently increased in NPC tissues compared to the normal tissues. It was also demonstrated that miR-19a was significantly upregulated in NPC C666-1 cells compared to NP69 cells (P<0.01). Knockdown of miR-19a led to a significant decrease in the viability and invasion of NPC C666-1 cells (P<0.01), and induced increased protein expression levels of transforming growth factor β receptor 2 (TGFβR2), which was further identified as a direct target gene of miR-19a by using a luciferase reporter assay. Overexpression of TGFβR2 also suppressed the viability and invasion of C666-1 cells, similar to the effects of miR-19a inhibition. Furthermore, knockdown of TGFβR2 reversed the suppressive effects of miR-19a inhibition on C666-1 cell viability and invasion, suggesting that the role of miR-19a in mediating cell viability and invasion is through directly targeting TGFβR2 in NPC cells. In addition, RT-qPCR data demonstrated that the mRNA expression level of TGFβR2 was markedly reduced in NPC tissues and C666-1 cells. In summary, the present study demonstrated an oncogenic role of miR-19a in NPC via mediation of TGFβR2. Therefore, miR-19a may be a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Fang Ma
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiyuan Wang
- Department of Oncology, Tumor Hospital of Hunan, Changsha, Hunan 410013, P.R. China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
15
|
Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, Gu Y, Sun W, You C, Liu Z, Sun F, Wang Y, Fu Z, Ye C, Zhang C, Li J, Chen X. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 2017; 16:53. [PMID: 28257633 PMCID: PMC5336638 DOI: 10.1186/s12943-017-0625-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major worldwide health problem due to its high prevalence and mortality rate. T-cell intracellular antigen 1 (TIA1) is an important tumor suppressor involved in many aspects of carcinogenesis and cancer development. How TIA1 expression is regulated during CRC development remains to be carefully elucidated. METHODS In CRC tissue sample pairs, TIA1 protein and mRNA levels were monitored by Western blot and qRT-PCR, respectively. Combining meta-analysis and miRNA target prediction software, we could predict microRNAs that targeted TIA1. Next, three CRC cell lines (SW480, Caco2 and HT29) were used to demonstrate the direct targeting of TIA1 by miR-19a. In addition, we investigated the biological effects of TIA1 inhibition by miR-19a both in vitro by CCK-8, EdU, Transwell, Ki67 immunofluorescence and Colony formation assays and in vivo by a xenograft mice model. RESULTS In colorectal cancer (CRC), we found that TIA1 protein, but not its mRNA, was downregulated. We predicted that TIA1 was a target of miR-19a and validated that miR-19a binded directly to the 3'-UTR of TIA1 mRNA. miR-19a could promote cell proliferation and migration in CRC cells and accelerated tumor growth in xenograft mice by targeting TIA1. CONCLUSIONS This study highlights an oncomiR role for miR-19a in regulating TIA1 in CRC and suggests that miR-19a may be a novel molecular therapeutic target for CRC.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Fei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Rongjie Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Xiaorui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Shufang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Yuanyuan Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chaoying You
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhijian Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Zheng Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Chao Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
16
|
Ma Q, Peng Z, Wang L, Li Y, Wang K, Zheng J, Liang Z, Liu T. miR-19a correlates with poor prognosis of clear cell renal cell carcinoma patients via promoting cell proliferation and suppressing PTEN/SMAD4 expression. Int J Oncol 2016; 49:2589-2599. [DOI: 10.3892/ijo.2016.3746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 11/06/2022] Open
|
17
|
Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, Smith EMK. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep 2016; 6:30739. [PMID: 27491826 PMCID: PMC4974510 DOI: 10.1038/srep30739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC.
Collapse
Affiliation(s)
- Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Birgitte Rönö
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Martin Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 205 02 Malmö, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Emma M K Smith
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| |
Collapse
|
18
|
Jin L, Li Y, Liu J, Yang S, Gui Y, Mao X, Nie G, Lai Y. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Mol Med Rep 2016; 13:5386-92. [PMID: 27121091 DOI: 10.3892/mmr.2016.5205] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/20/2016] [Indexed: 11/06/2022] Open
Abstract
Several studies have recently explored the role of microRNAs (miRNAs, miRs) in the tumorigenesis of various types of cancer. miRNAs have been reported to be involved in numerous cell processes, including cell apoptosis, proliferation and migration, thus suggesting that miRNAs may have an important role in cancer progression. Downregulation of miR-149-5p has been detected in RCC tissues by microarray profiling; however, its expression and function in RCC has yet to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction was performed to detect the expression levels of miR‑149‑5p in RCC tissues and paired normal tissues. In order to determine whether miR-149-5p was able to regulate cell proliferation, apoptosis or migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometric and wound healing assays were conducted. The results demonstrated that miR‑149‑5p was significantly downregulated in RCC tissues compared with in normal tissues (P<0.05). The restoration of miR-149-5p expression using synthetic mimics suppressed cell proliferation and migration, and promoted cell apoptosis. These results indicated that miR‑149‑5p may act as a tumor suppressor in RCC. The present study is the first, to the best of our knowledge, to identify miR‑149‑5p as a tumor suppressor in RCC. Future studies will be focused on the potential role of miR‑149‑5p as a biomarker for the early detection and prognostic prediction of RCC, and as a therapeutic target in RCC. In addition, further exploration regarding the pathways underlying the effects of miR‑149‑5p in RCC is required.
Collapse
Affiliation(s)
- Lu Jin
- The Second Clinical College, Anhui Medical University, Anhui, Hefei 230032, P.R. China
| | - Yifan Li
- The Second Clinical College, Anhui Medical University, Anhui, Hefei 230032, P.R. China
| | - Jiaju Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guohui Nie
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|