1
|
Pang X, Gu L, Han QY, Xing JQ, Zhao M, Huang SY, Yi JX, Pan J, Hong H, Xue W, Zhou XQ, Su ZH, Zhang XR, Sun LM, Jiang SZ, Luo D, Chen L, Wang ZJ, Yu Y, Xia T, Zhang XM, Li AL, Zhou T, Cai H, Li T. RGS22 maintains the physiological function of ependymal cells to prevent hydrocephalus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:441-453. [PMID: 39400871 DOI: 10.1007/s11427-024-2720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Xue Pang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jia-Qing Xing
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jun-Xi Yi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin-Ran Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zheng-Jie Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yu Yu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Chatzikyriakou P, Brempou D, Quinn M, Fishbein L, Noberini R, Anastopoulos IN, Tufton N, Lim ES, Obholzer R, Hubbard JG, Moonim M, Bonaldi T, Nathanson KL, Izatt L, Oakey RJ. A comprehensive characterisation of phaeochromocytoma and paraganglioma tumours through histone protein profiling, DNA methylation and transcriptomic analysis genome wide. Clin Epigenetics 2023; 15:196. [PMID: 38124114 PMCID: PMC10734084 DOI: 10.1186/s13148-023-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational modifications and DNA methylation levels, alongside clinical phenotypes. RESULTS Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation was compared between tumours from individuals who developed metastatic disease versus those that did not. The majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermediate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pituitary tumour-transforming gene PTTG1. CONCLUSIONS Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated histone marks in Cluster 1 PPGLs.
Collapse
Affiliation(s)
- Prodromos Chatzikyriakou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Comprehensive Cancer Centre, King's College London, London, SE5 8AF, UK
| | - Dimitria Brempou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Mark Quinn
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Lauren Fishbein
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Ioannis N Anastopoulos
- Department of Biomolecular Engineering, UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicola Tufton
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eugenie S Lim
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rupert Obholzer
- Department of ENT and Skull Base Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Johnathan G Hubbard
- Department of Endocrine Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Mufaddal Moonim
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
3
|
Pan Z, Zheng Z, Ye W, Chen C, Ye S. Overexpression of GNA13 correlates with poor prognosis in esophageal squamous cell carcinoma after esophagectomy. Int J Biol Markers 2022; 37:289-295. [PMID: 35706395 DOI: 10.1177/03936155221106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study aimed to explore the expression and clinical implication of guanine nucleotide-binding protein alpha 13 (GNA13) in esophageal squamous cell carcinoma (ESCC). METHODS We first employed western blot analysis to test the GNA13 protein expression level in ESCC tissues. Subsequently, we used immunohistochemistry assays to detect the GNA13 in ESCC specimens from 173 patients who underwent esophagectomy. Survival analysis was performed to define the impact of GNA13 expressions on the prognosis of the ESCC patients based on the clinical and follow-up data. RESULTS The GNA13 protein was shown to be considerably higher in ESCC tissues than in normal esophageal tissues. The level of expression was closely related to the tumor, node, TNM stage, and tumor size. More importantly, ESCC patients with high GNA13 expression carried an increased risk of tumor recurrence compared to those with low GNA13 expression. In addition, a high GNA13 expression level could independently predict worse overall survival and disease-free survival in ESCC. CONCLUSIONS GNA13 could be a novel prognostic biomarker for ESCC patients after esophagectomy.
Collapse
Affiliation(s)
- Zichun Pan
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Wen Ye
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Yang P, Qiao Y, Meng M, Zhou Q. Cancer/Testis Antigens as Biomarker and Target for the Diagnosis, Prognosis, and Therapy of Lung Cancer. Front Oncol 2022; 12:864159. [PMID: 35574342 PMCID: PMC9092596 DOI: 10.3389/fonc.2022.864159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is the leading type of malignant tumour among cancer-caused death worldwide, and the 5-year survival rate of lung cancer patients is only 18%. Various oncogenes are abnormally overexpressed in lung cancer, including cancer/testis antigens (CTAs), which are restrictively expressed in the male testis but are hardly expressed in other normal tissues, if at all. CTAs are aberrantly overexpressed in various types of cancer, with more than 60 CTAs abnormally overexpressed in lung cancer. Overexpression of oncogenic CTAs drives the initiation, metastasis and progression of lung cancer, and is closely associated with poor prognosis in cancer patients. Several CTAs, such as XAGE, SPAG9 and AKAP4, have been considered as biomarkers for the diagnosis and prognostic prediction of lung cancer. More interestingly, due to the high immunogenicity and specificity of CTAs in cancer, several CTAs, including CT45, BCAP31 and ACTL8, have been targeted for developing novel therapeutics against cancer. CTA-based vaccines, chimeric antigen receptor-modified T cells (CAR-T) and small molecules have been used in lung cancer treatment in pre-clinical and early clinical trials, with encouraging results being obtained. However, there are still many hurdles to be overcome before these therapeutics can be routinely used in clinical lung cancer therapy. This review summarises the recent rapid progress in oncogenic CTAs, focusing on CTAs as biomarkers for lung cancer diagnosis and prognostic prediction, and as targets for novel anti-cancer drug discovery and lung cancer therapy. We also identify challenges and opportunities in CTA-based cancer diagnosis and treatment. Finally, we provide perspectives on the mechanisms of oncogenic CTAs in lung cancer development, and we also suggest CTAs as a new platform for lung cancer diagnosis, prognostic prediction, and novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Rasheed SAK, Subramanyan LV, Lim WK, Udayappan UK, Wang M, Casey PJ. The emerging roles of Gα12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene 2022; 41:147-158. [PMID: 34689178 PMCID: PMC8732267 DOI: 10.1038/s41388-021-02069-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
G12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade. Despite these strong associations, Gα12/13 proteins are underappreciated in the field of cancer. As our understanding of G protein involvement in oncogenic signaling has evolved, it has become clear that Gα12/13 signaling is pleotropic and activates specific downstream effectors in different tumor types. Further, the expression of Gα12/13 proteins is regulated through a series of transcriptional and post-transcriptional mechanisms, several of which are frequently deregulated in cancer. With the ever-increasing understanding of tumorigenic processes driven by Gα12/13 proteins, it is becoming clear that targeting Gα12/13 signaling in a context-specific manner could provide a new strategy to improve therapeutic outcomes in a number of solid tumors. In this review, we detail how Gα12/13 proteins, which were first discovered as proto-oncogenes, are now known to drive several "classical" hallmarks, and also play important roles in the "emerging" hallmarks, of cancer.
Collapse
Affiliation(s)
| | | | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Udhaya Kumari Udayappan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke Univ. Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Xiao D, Gao HX. Mechanism of miR-107-targeting of regulator of G-protein signaling 4 in hepatocellular carcinoma. Oncol Lett 2019; 18:5145-5154. [PMID: 31612026 PMCID: PMC6781751 DOI: 10.3892/ol.2019.10857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the mechanism of microRNA (miR)-107 in targeting regulator of G-protein signaling 4 (RGS4) in hepatic carcinoma. SK-HEP-1 cells were transfected with miR-107 mimics and control mimics. Reverse transcription-quantitative PCR was performed to determine the miR-107 expression levels, and following miR-107 upregulation, MTT, colony formation, transwell and wound-healing assays were performed to assess cell proliferation, colony-forming ability, invasion and migration, respectively. In addition, the effect of miR-107 upregulation on the cell cycle and apoptosis in SK-HEP-1 cells was evaluated using flow cytometry. Western blot analysis was performed to measure the protein expression levels of RGS4, epidermal growth factor receptor (EGFR), CXC chemokine receptor type 4 (CXCR4) and matrix metalloproteinase (MMP)-2 and −9. Expression level changes and the association between miR-107 and RGS4 in HCC cells were assessed using dual luciferase analysis. The results indicated that the overexpression of miR-107 in HCC cells suppressed cellular proliferation, invasion, migration and colony-forming ability, but promoted apoptosis and G1 phase arrest. Furthermore, miR-107 mimics notably increased the protein expression level of RGS4, but significantly downregulated that of EGFR, CXCR4 and MMP-2 and −9. Together, these findings suggest that targeting this potential mechanism of miR-107 may be beneficial in the treatment of patients with HCC.
Collapse
Affiliation(s)
- Di Xiao
- Department of Liver Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Hai-Xia Gao
- Department of ICU, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Rare copy number variants in the genome of Chinese female children and adolescents with Turner syndrome. Biosci Rep 2019; 39:BSR20181305. [PMID: 30530863 PMCID: PMC6328875 DOI: 10.1042/bsr20181305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023] Open
Abstract
Turner syndrome (TS) is a congenital disease caused by complete or partial loss of one X chromosome. Low bone mineral status is a major phenotypic characteristic of TS that can not be fully explained by X chromosome loss, suggesting other autosomal-linked mutations may also exist. Therefore, the present study aimed to detect potential genetic mutations in TS through examination of copy number variation (CNV). Seventeen patients with TS and 15 healthy volunteer girls were recruited. Array-based comparative genomic hybridization (a-CGH) was performed on whole blood genomic DNA (gDMA) from the 17 TS patients and 15 healthy volunteer girls to identify potential CNVs. The abnormal CNV of one identified gene (CARD11) was verified by quantitative PCR. All cases diagnosed had TS based on genotype examination and physical characteristics, including short stature and premature ovarian failure. Three rare CNVs, located individually at 7p22.3, 7p22.2, and Xp22.33, where six genes (TTYH3, AMZ1, GNA12, BC038729, CARD11, and SHOX (stature homeobox)) are located, were found in TS patients. Quantitative PCR confirmed the CNV of CARD11 in the genome of TS patients. Our results indicate that CARD11 gene is one of the mutated genes involved in TS disease. However, this CNV is rare and its contribution to TS phenotype requires further study.
Collapse
|
8
|
Zhang Z, Tan X, Luo J, Cui B, Lei S, Si Z, Shen L, Yao H. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells. Cancer Med 2018; 7:5611-5620. [PMID: 30267476 PMCID: PMC6246959 DOI: 10.1002/cam4.1783] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/15/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
GNA13 has been found overexpressed in various types of cancer, which is related to tumor metastasis and progression. However, the biological functions of GNA13 in colorectal cancer (CRC) progression remain unclear. This study aimed to explore the role of GNA13 in CRC and investigate the mechanism of how GNA13 promotes tumor growth. Interestingly, our findings showed that GNA13 is commonly upregulated in CRC, where these events are associated with a worse histologic grade and poor survival. Increased expression levels of GNA13 promoted cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas GNA13 silencing abrogated these malignant phenotypes. In addition, overexpressing GNA13 in cancer cells increased the levels of the chemokines CXCL1, CXCL2, and CXCL4, which contributed to CRC proliferation and colony formation. Moreover, our mechanistic investigations suggest that the NF-κB/p65 signaling pathway was activated by the increase in GNA13 levels. Inhibiting the NF-κB/p65 pathway with an inhibitor decreased GNA13-induced migration, invasion and CXCL chemokine level increases, indicating the critical role of NF-κB/p65 signaling in mediating the effects of GNA13 in CRC. Together, these results demonstrate a key role of GNA13 overexpression in CRC that contributes to malignant behavior in cancer cells, at least in part through stimulating angiogenesis and increasing the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL4.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiao Tan
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing Luo
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Beibei Cui
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sanlin Lei
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhongzhou Si
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liangfang Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongliang Yao
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Vishnoi M, Boral D, Liu H, Sprouse ML, Yin W, Goswami-Sewell D, Tetzlaff MT, Davies MA, Oliva ICG, Marchetti D. Targeting USP7 Identifies a Metastasis-Competent State within Bone Marrow-Resident Melanoma CTCs. Cancer Res 2018; 78:5349-5362. [PMID: 30026332 PMCID: PMC6139068 DOI: 10.1158/0008-5472.can-18-0644] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/12/2018] [Accepted: 07/13/2018] [Indexed: 02/03/2023]
Abstract
Systemic metastasis is the major cause of death from melanoma, the most lethal form of skin cancer. Although most patients with melanoma exhibit a substantial gap between onset of primary and metastatic tumors, signaling mechanisms implicated in the period of metastatic latency remain unclear. We hypothesized that melanoma circulating tumor cells (CTC) home to and reside in the bone marrow during the asymptomatic phase of disease progression. Using a strategy to deplete normal cell lineages (Lin-), we isolated CTC-enriched cell populations from the blood of patients with metastatic melanoma, verified by the presence of putative CTCs characterized by melanoma-specific biomarkers and upregulated gene transcripts involved in cell survival and prodevelopment functions. Implantation of Lin- population in NSG mice (CTC-derived xenografts, i.e., CDX), and subsequent transcriptomic analysis of ex vivo bone marrow-resident tumor cells (BMRTC) versus CTC identified protein ubiquitination as a significant regulatory pathway of BMRTC signaling. Selective inhibition of USP7, a key deubiquinating enzyme, arrested BMRTCs in bone marrow locales and decreased systemic micrometastasis. This study provides first-time evidence that the asymptomatic progression of metastatic melanoma can be recapitulated in vivo using patient-isolated CTCs. Furthermore, these results suggest that USP7 inhibitors warrant further investigation as a strategy to prevent progression to overt clinical metastasis.Significance: These findings provide insights into mechanism of melanoma recurrence and propose a novel approach to inhibit systematic metastatic disease by targeting bone marrow-resident tumor cells through pharmacological inhibition of USP7.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5349/F1.large.jpg Cancer Res; 78(18); 5349-62. ©2018 AACR.
Collapse
Affiliation(s)
- Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Haowen Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas
| | | | - Michael T Tetzlaff
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
10
|
Li X, Song H, Liu Z, Bi Y. miR-1260b promotes cell migration and invasion of hepatocellular carcinoma by targeting the regulator of G-protein signaling 22. Biotechnol Lett 2017; 40:57-62. [PMID: 29038925 DOI: 10.1007/s10529-017-2455-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To investigate whether miR-1260b can regulate migration and invasion of hepatocellular carcinoma (HCC) by targeting RGS22. RESULTS miR-1260b was up-regulated in HCC tissues compared with their corresponding non-cancerous tissues. Over-expression of miR-1260b increased migration and invasion of HepG2 and SMMC-7721 cells associated with HCC. Regulator of G-protein signaling 22 (RGS22) was identified as a directly target of miR-1260b and was inhibited by miR-1260b. Knockdown of RGS22 increased proliferation of HCC cells. CONCLUSIONS The new identified miR-1260b/RGS22 axis provides useful therapeutic methods for treatment of HCC deepening on our understanding of underlying mechanisms of HCC tumorigenesis.
Collapse
Affiliation(s)
- Xiaoying Li
- Three Subjects of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Hongxia Song
- Ozone Treatment Center of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Zhirong Liu
- Three Subjects of Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Yunsheng Bi
- Department of Pharmaceutical, General Hospital of Jinan Military Region, No. 25, Shifan Road, Jinan, 250031, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Xu Y, Rong J, Duan S, Chen C, Li Y, Peng B, Yi B, Zheng Z, Gao Y, Wang K, Yun M, Weng H, Zhang J, Ye S. High expression of GNA13 is associated with poor prognosis in hepatocellular carcinoma. Sci Rep 2016; 6:35948. [PMID: 27883022 PMCID: PMC5121652 DOI: 10.1038/srep35948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Guanine nucleotide binding protein alpha 13 (GNA13) has been found to play critical roles in the development of several human cancers. However, little is known about GNA13 expression and its clinical significance in hepatocellular carcinoma (HCC). In our study, GNA13 was reported to be significantly up-regulated in HCC tissues, and this was correlated with several clinicopathological parameters, including tumor multiplicity (P = 0.004), TNM stage (P = 0.002), and BCLC stage (P = 0.010). Further Cox regression analysis suggested that GNA13 expression was an independent prognostic factor for overall survival (P = 0.014) and disease-free survival (P = 0.005). Moreover, we found that overexpression of GNA13 couldn’t promote cell proliferation in vitro, but could significantly increase the invasion ability of HCC cells. Together, our study demonstrates GNA13 may be served as a prognostic biomarker for HCC patients after curative hepatectomy, in which high expression of GNA13 suggests poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Yi
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kebing Wang
- Department of Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Ultrasound, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|