1
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
2
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
3
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
4
|
Zheng BX, Long W, Zheng W, Zeng Y, Guo XC, Chan KH, She MT, Leung ASL, Lu YJ, Wong WL. Mitochondria-Selective Dicationic Small-Molecule Ligand Targeting G-Quadruplex Structures for Human Colorectal Cancer Therapy. J Med Chem 2024; 67:6292-6312. [PMID: 38624086 DOI: 10.1021/acs.jmedchem.3c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 μM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wende Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yaoxun Zeng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
6
|
Liu Y, Li Z, Li W, Chen X, Yang L, Lu S, Zhou S, Li M, Xiong W, Zhang X, Liu Y, Zhou J. Discovery of β-sitosterol's effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages. Int Immunopharmacol 2024; 126:111283. [PMID: 38035407 DOI: 10.1016/j.intimp.2023.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Diabetes care, particularly for diabetic foot ulcers (DFUs)-related complications, increases treatment costs substantially. Failure to provide timely and appropriate treatment for severe DFUs significantly increases amputation risk. Neovascularization and macrophage polarization play an important role in diabetic wound healing during different stages of the wound repair process. Therefore, a new treatment method that promotes neovascularization and macrophage polarization may accelerate diabetic wound healing. β-sitosterol possesses anti-inflammatory, lipid-lowering, and antidiabetic properties. However, its therapeutic potential in diabetic wound healing remains underexplored. This study evaluated the healing effects of β-sitosterol on diabetic ulcer wounds in rats. We found that β-sitosterol can promote angiogenesis, alternatively activated macrophages (M2 macrophage) proliferation, and collagen synthesis in diabetic wounds. Transcriptomics analysis and proteomics analysis revealed that MAPK, mTOR and VEGF signaling pathways were enriched in β-sitosterol-treated wounds. Molecular docking revealed Ndufb5 maybe the target of β-sitosterol-treated wounds. Our findings confirm the significant diabetic wound healing effects of β-sitosterol in a rat model. β-sitosterol treatment to diabetic wounds accelerates wound healing through promoting M2 macrophage proliferation and angiogenesis. Interestingly, we also found that the process of M2 macrophage proliferation accompanies angiogenesis. Thus, β-sitosterol may be a promising therapeutic approach to enhance diabetic wound healing and reduce amputation in diabetes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Zenan Li
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Weidong Li
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xuan Chen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Liping Yang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Shengli Lu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuai Zhou
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Meng Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China
| | - Wu Xiong
- Department of Burns and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xi Zhang
- Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yu Liu
- Hunan University of Chinese Medicine, College of Integrated Chinese and Western Medicine, Changsha 410007, China; Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, China.
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
7
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Hong Z, Tie Q, Zhang L. Targeted inhibition of the GRK2/HIF-1α pathway is an effective strategy to alleviate synovial hypoxia and inflammation. Int Immunopharmacol 2022; 113:109271. [PMID: 36461590 DOI: 10.1016/j.intimp.2022.109271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and hypoxia-inducible factor-1α (HIF-1α) play key roles in rheumatoid arthritis (RA). Several studies have demonstrated that HIF-1α expression is positively regulated by GRK2, suggesting its posttranscriptional effects on HIF-1α. In this study, we review the role of HIF-1α and GRK2 in RA pathophysiology, focusing on their proinflammatory roles in immune cells and fibroblast-like synoviocytes (FLS).We then introduce several drugs that inhibit GRK2 and HIF-1α, and briefly outline their molecular mechanisms. We conclude by presenting gaps in knowledge and our prospects for the pharmacological potential of targeting these proteins and the relevant downstream signaling pathways.Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and HIF-1α in RA.
Collapse
Affiliation(s)
- Zhongyang Hong
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Qingsong Tie
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Musial C, Knap N, Zaucha R, Bastian P, Barone G, Lo Bosco G, Lo-Celso F, Konieczna L, Belka M, Bączek T, Gammazza AM, Kuban-Jankowska A, Cappello F, Nussberger S, Gorska-Ponikowska M. Induction of 2-hydroxycatecholestrogens O-methylation: A missing puzzle piece in diagnostics and treatment of lung cancer. Redox Biol 2022; 55:102395. [PMID: 35841627 PMCID: PMC9289866 DOI: 10.1016/j.redox.2022.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17β-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts as an APT1 inhibitor enhancing protein palmitoylation and oxidative stress phenomena in the lung cancer cell. In order to support our data, metabolomics of blood serum from NSCLC patients was also performed. Moreover, computational analysis suggests that 2-ME as compared to other estrogen metabolism intermediates is relatively safe in terms of its possible non-receptor bioactivity within healthy human cells due to a very low electrophilic potential and hence no substantial risk of spontaneous covalent modification of biologically protective nucleophiles. We propose that 2-ME can be used as a selective tumor biomarker in the course of certain types of lung cancers and possibly as a therapeutic adjuvant or neoadjuvant.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Renata Zaucha
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Paulina Bastian
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128, Palermo, Italy
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, 90133, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy
| | - Fabrizio Lo-Celso
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, 90128, Palermo, Italy
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy; Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, 90139, Palermo, Italy; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
10
|
Fan XX, Sun WY, Li Y, Tang Q, Li LN, Yu X, Wang SY, Fan AR, Xu XQ, Chang HS. Honokiol improves depression-like behaviors in rats by HIF-1α- VEGF signaling pathway activation. Front Pharmacol 2022; 13:968124. [PMID: 36091747 PMCID: PMC9453876 DOI: 10.3389/fphar.2022.968124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that the pathogenesis of depression is closely linked to impairments in neuronal synaptic plasticity. Honokiol, a biologically active substance extracted from Magnolia Officinalis, has been proven to exert significant antidepressant effects. However, the specific mechanism of action remains unclear. In this study, PC12 cells and chronic unpredictable mild stress (CUMS) model rats were used to explore the antidepressant effects and potential mechanisms of honokiol in vitro and in rats. In vitro experiment, a cell viability detection kit was used to screen the concentration and time of honokiol administration. PC12 cells were administered with hypoxia-inducible factor-1α (HIF-1α) blocker, 2-methoxyestradiol (2-ME), and vascular endothelial growth factor receptor 2 (VEGFR-2) blocker, SU5416, to detect the expression of HIF-1α, VEGF, synaptic protein 1 (SYN 1), and postsynaptic density protein 95 (PSD 95) by western blotting. In effect, we investigated whether the synaptic plasticity action of honokiol was dependent on the HIF-1α-VEGF pathway. In vivo, behavioral tests were used to evaluate the reproducibility of the CUMS depression model and depression-like behaviors. Molecular biology techniques were used to examine mRNA and protein expression of the HIF-1α-VEGF signaling pathway and synaptic plasticity-related regulators. Additionally, molecular docking techniques were used to study the interaction between honokiol and target proteins, and predict their binding patterns and affinities. Experimental results showed that honokiol significantly reversed CUMS-induced depression-like behaviors. Mechanically, honokiol exerted a significant antidepressant effect by enhancing synaptic plasticity. At the molecular level, honokiol can activate the HIF-1α-VEGF signaling pathway in vitro and in vivo, as well as promote the protein expression levels of SYN 1 and PSD 95. Taken together, the results do not only provide an experimental basis for honokiol in the clinical treatment of depression but also suggest that the HIF-1α-VEGF pathway may be a potential target for the treatment of depression.
Collapse
Affiliation(s)
- Xiao-Xu Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Yan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ang-Ran Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Qing Xu
- Experiment Center, Encephalopathy Department, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| | - Hong-Sheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Hong-Sheng Chang, ; Xiang-Qing Xu,
| |
Collapse
|
11
|
Zhang C, Gao J, Zhu S. Hypoxia-inducible factor-1α promotes proliferation of airway smooth muscle cells through miRNA-103-mediated signaling pathway under hypoxia. In Vitro Cell Dev Biol Anim 2021; 57:944-952. [PMID: 34888746 DOI: 10.1007/s11626-021-00607-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 10/19/2022]
Abstract
The hypoxia-inducible factor-1α (HIF-1α) activated during asthma development plays a causative role in the abnormal proliferation of airway smooth muscle (ASM) cells and consequential airway remodeling. Although the underlying mechanisms of HIF-1α activity have not been fully revealed, HIF-1α-regulated miRNA signaling is considered important for disrupted differentiation and proliferation of local cells in various tissues under inflammation. We aimed to identify the key miRNA signaling involved in HIF-1α regulation of the proliferation of ASM cells. This study was based on primary ASM cells isolated from adult male rats. Three percent O2 and 21% O2 were set as hypoxic and normoxic condition for ASM cell treatment, respectively. Knockdown of HIF-1α was performed through transfection of pSUPER-shHIF-1α plasmid. Overexpression and knockdown of miRNA-103 were performed through transfection of miRNA-103 mimic or inhibitor, respectively. Levels of HIF-1α, PTEN, and PCNA were determined with Western blot and RT-qPCR. Hypoxia increased HIF-1α and miRNA-103 expression and proliferation in ASM cells. Knockdown of HIF-1α suppressed hypoxia-induced upregulation of proliferation and miRNA-103 expression in ASM cells. Knockdown of miRNA-103 displayed similar effects as knockdown of HIF-1α in ASM cells under hypoxia, while overexpression of miRNA-103 played the opposite role. Additionally, increased or decreased expression of PTEN was also detected when HIF-1α/miRNA-103 was knocked down under hypoxia or miRNA-103 was overexpressed under normoxia, respectively. Our results suggest that HIF-1α promotes the proliferation of ASM cells via upregulating miRNA-103 expression under hypoxia, and PTEN is involved in the miRNA-103-mediated signaling pathway.
Collapse
Affiliation(s)
- Cantang Zhang
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyang Zhu
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
12
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
13
|
El-Zein R, Thaiparambil J, Abdel-Rahman SZ. 2-methoxyestradiol sensitizes breast cancer cells to taxanes by targeting centrosomes. Oncotarget 2020; 11:4479-4489. [PMID: 33400733 PMCID: PMC7721614 DOI: 10.18632/oncotarget.27810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Centrosomes amplification is a hallmark of cancer. We hypothesize that 2-methoxyestradiol (2-ME) sensitizes breast cancer (BC) cells to taxanes by targeting amplified centrosomes. We assessed the extent by which 2-ME together with paclitaxel (PTX) induces centrosome alterations with subsequent mitotic catastrophe in different BC subtypes. 2-ME induced a significant reduction in PTX IC50 values in all cells tested ranging from 28-44% (P < 0.05). Treatment with both PTX and 2-ME significantly increased the number of misaligned metaphases compared to PTX alone (34%, 100% and 52% for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). The number of cells with multipolar spindle formation was significantly increased (81%, 220% and 285% for MCF7, MDA-MB231 and SUM 149, respectively; P < 0.05). PTX and 2-ME treatment significantly increased interphase declustering in cancer cells (56% for MCF7, 208% for MDA-MB231 and 218% for SUM149, respectively; P < 0.05) and metaphase declustering (1.4-fold, 1.56-fold and 2.48-fold increase for MCF7, MDA-MB231 and SUM149, respectively; P < 0.05). This report is the first to document centrosome declustering as a mechanism of action of 2-ME and provides a potential approach for reducing taxane toxicity in cancer treated patients.
Collapse
Affiliation(s)
- Randa El-Zein
- Houston Methodist Cancer Center, Houston, TX 77030, USA
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77555, USA
| | | | - Sherif Z. Abdel-Rahman
- Department of Obstetrics and Gynecology, Maternal-Fetal Pharmacology and Biodevelopment Laboratories, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Antitumor Therapy under Hypoxic Microenvironment by the Combination of 2-Methoxyestradiol and Sodium Dichloroacetate on Human Non-Small-Cell Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3176375. [PMID: 33149807 PMCID: PMC7603622 DOI: 10.1155/2020/3176375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/07/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022]
Abstract
A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 μM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 μl/DCA 40 mM, even in hypoxic conditions.
Collapse
|
15
|
Ma Z, Xiang X, Li S, Xie P, Gong Q, Goh BC, Wang L. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin Cancer Biol 2020; 80:379-390. [PMID: 33002608 DOI: 10.1016/j.semcancer.2020.09.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Rapid progress in molecular cancer biology coupled with the discovery of novel oncology drugs has opened new horizons for cancer target discovery. As one of the crucial signaling pathways related to tumorigenesis, hypoxia-inducible factor-1 (HIF-1) coordinates the activity of many transcription factors and their downstream molecules that impact tumor growth and metastasis. Accumulating evidence suggests that the transcriptional responses to acute hypoxia are mainly attributable to HIF-1α. Moreover, the overexpression of HIF-1α in several solid cancers has been found to be strongly associated with poor prognosis. Thus, pharmacological targeting of the HIF-1 signaling pathways has been considered as a new strategy for cancer therapy in the recent years. Although over the past decade, tremendous efforts have been made in preclinical studies to develop new HIF-1 inhibitors from natural products (reservoirs of novel therapeutic agents), to date, these efforts have not been successfully translated into clinically available treatments. In this review, we provide new insights into the bio-pharmacological considerations for selecting natural compounds as potential HIF-1 inhibitors to accelerate anti-cancer drug development. In addition, we highlighted the importance of assessing the dependency of cancer on HIF1A to shortlist cancer types as suitable disease models. This may subsequently lead to new paradigms for discovering more HIF-1 inhibitors derived from natural products and facilitate the development of potent therapeutic agents targeting specific cancer types.
Collapse
Affiliation(s)
- Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shiya Li
- Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peng Xie
- School of Pharmacy, Fudan University, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Quan Gong
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China.
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
16
|
Elzayat MAM, Bayoumi AMA, Abdel-Bakky MS, Mansour AM, Kamel M, Abo-Saif A, Allam S, Salama A, Salama SA. Ameliorative effect of 2-methoxyestradiol on radiation-induced lung injury. Life Sci 2020; 255:117743. [PMID: 32371064 DOI: 10.1016/j.lfs.2020.117743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
AIMS Radiation-induced lung injury (RILI) is a serious complication of radiation therapy. Development of an effective drug that selectively protects normal lung tissues and sensitizes tumor cells to radiotherapy is an unmet need. 2-Methoxyestradiol (2ME2) possesses polypharmacological properties, which qualifies it as an effective radioprotector. Our aim is to explore the potential protective effects of 2ME2 against early and late stages of RILI and the underlying mechanisms. MAIN METHODS BALB/c mice were either treated with 2ME2 (50 mg/kg/day i.p., for 4 weeks); or received a single dose of 10 Gy ionizing radiation (IR) delivered to the lungs; or 10 Gy IR and 2ME2. Animal survival and pulmonary functions were evaluated. Immune-phenotyping of alveolar macrophages (AM) in the broncho-alveolar lavage fluids (BALF) was determined by flow cytometry. ELISA was used to evaluate the expression levels of TNF-α, TGF-β; and IL-10 in BALF. Lung tissues were used for histopathological examination or immunofluorescence staining for CD68 (pan-macrophage marker), Arginase-1 (Arg1, M2-specific marker), inducible nitric oxide synthase (iNOS, M1-specific marker) and HIF-1α. VEGF and γH2AX expression in lung tissues were detected by western blot. KEY FINDINGS The results demonstrated that 2ME2 improved the survival, lung functions and histopathological parameters of irradiated mice. Additionally, it attenuated the radiation-induced AM polarization and reduced the pneumonitis and fibrosis markers in lung tissues. Significant reduction of TNF-α and TGF-β with concomitant increase in IL-10 concentrations were observed. Moreover, the expression of HIF-1α, VEGF and γH2AX declined. SIGNIFICANCE 2ME2 is a promising radioprotectant with fewer anticipated side effects.
Collapse
Affiliation(s)
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-minia, Egypt.
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
| | - Marwa Kamel
- Department of Tumor Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Ali Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology, Faculty of Medicine (Boys), Al-Azhar University, Cairo, Egypt.
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt..
| | - Abeer Salama
- Department of Pharmacology, National Research Centre, Doki, Giza, Egypt.
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
17
|
Witkowska A, Mirończuk-Chodakowska I, Terlikowska K, Kulesza K, Zujko M. Coffee and its Biologically Active Components: Is There a Connection to Breast, Endometrial, and Ovarian Cancer? - a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/120017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L. Pursuing for the better lung cancer therapy effect: Comparison of two different kinds of hyaluronic acid and nitroimidazole co-decorated nanomedicines. Biomed Pharmacother 2020; 125:109988. [PMID: 32059173 DOI: 10.1016/j.biopha.2020.109988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer remains the leading cause of cancer associated deaths worldwide. Compared with traditional chemotherapy for non-small cell lung cancer (NSCLC), specific targeted therapies are better choices for advanced patients to improve their survival. In this study, we attempted to fabricate Nitroimidazoles (NI) and Hyaluronic acid (HA) co-decorated, cisplatin (DDP) loaded polymeric nanoparticles (PNPs) (NI/HA-DDP-PNPs) and lipid-polymer hybrid nanoparticles (LPNs) (NI/HA-DDP-LPNs) for the facilitated drug delivery at lung tumor regions (hypoxic regions). In vitro cytotoxicity and cellular uptake; In vivo anti-tumor activity and in vivo tissue biodistribution of PNPs and LPNs were evaluated and compared in lung carcinoma cells and xenograft. Hydrodynamic size of NI/HA-DDP-LPNs was 185.6 ± 4.7 nm, which is larger than that of NI/HA-DDP-PNPs (136.7 ± 3.5 nm). The zeta potential of NI/HA-DDP-PNPs (-31.2 ± 2.7 mV) was more negative than NI/HA-DDP-LPNs (-22.3 ± 2.1 mV). The peak plasma concentration (Cmax) achieved from NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 35.2 ± 1.6 and 37.3 ± 1.7 μg/mL. The half-life (T1/2) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 12.03 ± 0.75 and 11.78 ± 0.89 h. Area Under Curve (AUC) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs showed no significant difference while greater than other groups. NI/HA-DDP-LPNs exhibited excellent antitumor effect against drug-resistant human lung cancer A549/DDP cells in vitro and in vivo, better than that of NI/HA-DDP-PNPs. Considering that the low toxicity of NI/HA-DDP-LPNs and NI/HA-DDP-PNPs, NI/HA-DDP-LPNs could be a more promising system for lung cancer targeted therapy.
Collapse
Affiliation(s)
- Ge Chen
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Haowen Deng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zilong Tang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
19
|
Kamm A, Przychodzeń P, Kuban–Jankowska A, Marino Gammazza A, Cappello F, Daca A, Żmijewski MA, Woźniak M, Górska–Ponikowska M. 2-Methoxyestradiol and Its Combination with a Natural Compound, Ferulic Acid, Induces Melanoma Cell Death via Downregulation of Hsp60 and Hsp90. JOURNAL OF ONCOLOGY 2019; 2019:9293416. [PMID: 32082378 PMCID: PMC7012217 DOI: 10.1155/2019/9293416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Melanoma is an aggressive type of skin cancer with one of the highest mortality rates. Notably, its incidence in the last few decades has increased faster than any other cancer. Therefore, searching for novel anticancer therapies is of great clinical importance. In the present study, we investigated the anticancer potential of 2-methoxyestradiol, potent chemotherapeutic, in the A375 melanoma cellular model. In order to furthermore evaluate the anticancer efficacy of 2-methoxyestradiol, we have additionally combined the treatment with a naturally occurring polyphenol, ferulic acid. The results were obtained using the melanoma A375 cellular model. In the study, we used MTT assay, flow cytometry, and western blot techniques. Herein, we have evidenced that the molecular mechanism of action of 2-methoxyestradiol and ferulic acid is partly related to the reduction of Hsp60 and Hsp90 levels and the induction of nitric oxide in the A375 melanoma cell model, while no changes were observed in Hsp70 expression after 2-methoxyestradiol and ferulic acid treatment separately or in combination. This is especially important in case of chemoresistance mechanisms because the accumulation of Hsp70 reduces induction of cancer cell death, thus decreasing antitumour efficacy.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paulina Przychodzeń
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Antonella Marino Gammazza
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Agnieszka Daca
- Department of Pathology and Rheumatology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Magdalena Górska–Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Lebelo MT, Joubert AM, Visagie MH. Warburg effect and its role in tumourigenesis. Arch Pharm Res 2019; 42:833-847. [PMID: 31473944 DOI: 10.1007/s12272-019-01185-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022]
Abstract
Glucose is a crucial molecule in energy production and produces different end products in non-tumourigenic- and tumourigenic tissue metabolism. Tumourigenic cells oxidise glucose by fermentation and generate lactate and adenosine triphosphate even in the presence of oxygen (Warburg effect). The Na+/H+-antiporter is upregulated in tumourigenic cells resulting in release of lactate- and H+ ions into the extracellular space. Accumulation of lactate- and proton ions in the extracellular space results in an acidic environment that promotes invasion and metastasis. Otto Warburg reported that tumourigenic cells have defective mitochondria that produce less energy. However, decades later it became evident that these mitochondria have adapted with alterations in mitochondrial content, structure, function and activity. Mitochondrial biogenesis and mitophagy regulate the formation of new mitochondria and degradation of defective mitochondria in order to combat accumulation of mutagenic mitochondrial deoxyribonucleic acid. Tumourigenic cells also produce increase reactive oxygen species (ROS) resulting from upregulated glycolysis leading to pathogenesis including cancer. Moderate ROS levels exert proliferative- and prosurvival signaling, while high ROS quantities induce cell death. Understanding the crosstalk between aberrant metabolism, redox regulation, mitochondrial adaptions and pH regulation provides scientific- and medical communities with new opportunities to explore cancer therapies.
Collapse
Affiliation(s)
- Maphuti T Lebelo
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Anna M Joubert
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| |
Collapse
|
21
|
Ba MY, Xia LW, Li HL, Wang YG, Chu YN, Zhao Q, Hu CP, He XT, Li TX, Liang KY, Zhang YH, Yang L, Xie WH, Yang H, Sun MR. Concise synthesis of 2-methoxyestradiol from 17β-estradiol through the C(sp 2)-H hydroxylation. Steroids 2019; 146:99-103. [PMID: 30951759 DOI: 10.1016/j.steroids.2019.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
Abstract
A four-step route for the synthesis of 2-methoxyestradiol (5) starting from 17β-estradiol (1) has been achieved with a 51% overall yield. The key step was the ruthenium-catalyzed ortho-C(sp2)-H bond hydroxylation of aryl carbamates. Using dimethyl carbamate as the directing group, [RuCl2(p-cymene)]2 as the catalyst, PhI(OAc)2 as the oxidant and trifluoroacetate/trifluoroacetic anhydride (1:1) as the co-solvent, the hydroxyl group could be singly installed at the 2-position of 3-dimethylcarbamoyloxyestradiol (2) with 65% yield. Subsequent methylation of hydroxy and removal of dimethyl carbamate afforded 2-methoxyestradiol (5).
Collapse
Affiliation(s)
- Meng-Yu Ba
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Li-Wen Xia
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Hong-Liang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ying-Ge Wang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ya-Nan Chu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Qing Zhao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Chao-Ping Hu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Xiao-Tong He
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Tian-Xiao Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Kai-Yue Liang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ya-Han Zhang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Liu Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Hao Xie
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New of New Drug Research and Safety Evaluation, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Tao H, Mei J, Tang X. The anticancer effects of 2-methoxyestradiol on human huh7 cells in vitro and in vivo. Biochem Biophys Res Commun 2019; 512:635-640. [PMID: 30914193 DOI: 10.1016/j.bbrc.2019.02.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is associated with a poor prognosis. 2-methoxyestradiol (2-ME) is currently under preclinical evaluation as a treatment for many malignancies, but the utility of the drug in terms of HCC treatment remains unclear. Here, we explored the effect of 2-ME on human huh7 cell proliferation and apoptosis and discuss the possible molecular mechanisms involved. The MTT assay showed that proliferation was markedly inhibited by 2-ME (at 5, 10, 15, and 20 μmol/L) in a time- and dose-dependent manner. Moreover, flow cytometry indicated that 2-ME induced cell cycle arrest at the G2/M phase, and early apoptosis. We used Western blotting and PCR to detect the expression of vascular endothelial growth factor (VEGF) and Bcl-2; 2-ME decreased the mRNA/protein expression levels of both effectors. Furthermore, 2-ME remarkably suppressed xenograft tumor growth in nude mice, and no visible toxicity was observed in either the liver or kidneys. Immunohistochemically, the Bcl-2 and VEGF expression levels were significantly lower than those of controls. Thus, 2-ME inhibited huh7 cell proliferation, promoted apoptosis, and suppressed xenograft tumor growth in nude mice, perhaps reflecting the effects of the drug on VEGF and Bcl-2 expression.
Collapse
Affiliation(s)
- Hai Tao
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei province, PR China
| | - Juanjuan Mei
- Gastroenterology Department, Wuhan 672 Integrated Traditional Chinese and Western Medicine Hospital, Wuhan, 430079, Hubei Province, PR China
| | - Xiaoyan Tang
- General Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei province, PR China.
| |
Collapse
|
23
|
Docherty CK, Nilsen M, MacLean MR. Influence of 2-Methoxyestradiol and Sex on Hypoxia-Induced Pulmonary Hypertension and Hypoxia-Inducible Factor-1-α. J Am Heart Assoc 2019; 8:e011628. [PMID: 30819028 PMCID: PMC6474940 DOI: 10.1161/jaha.118.011628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Background Women are at greater risk of developing pulmonary arterial hypertension, with estrogen and its downstream metabolites playing a potential role in the pathogenesis of the disease. Hypoxia-inducible factor-1-α (HIF 1α) is a pro-proliferative mediator and may be involved in the development of human pulmonary arterial hypertension . The estrogen metabolite 2-methoxyestradiol (2 ME 2) has antiproliferative properties and is also an inhibitor of HIF 1α. Here, we examine sex differences in HIF 1α signaling in the rat and human pulmonary circulation and determine if 2 ME 2 can inhibit HIF 1α in vivo and in vitro. Methods and Results HIF 1α signaling was assessed in male and female distal human pulmonary artery smooth muscle cells ( hPASMC s), and the effects of 2 ME 2 were also studied in female hPASMC s. The in vivo effects of 2 ME 2 in the chronic hypoxic rat (male and female) model of pulmonary hypertension were also determined. Basal HIF 1α protein expression was higher in female hPASMC s compared with male. Both factor-inhibiting HIF and prolyl hydroxylase-2 (hydroxylates HIF leading to proteosomal degradation) protein levels were significantly lower in female hPASMC s when compared with males. In vivo, 2 ME 2 ablated hypoxia-induced pulmonary hypertension in male and female rats while decreasing protein expression of HIF 1α. 2 ME 2 reduced proliferation in hPASMC s and reduced basal protein expression of HIF 1α. Furthermore, 2 ME 2 caused apoptosis and significant disruption to the microtubule network. Conclusions Higher basal HIF 1α in female hPASMC s may increase susceptibility to developing pulmonary arterial hypertension . These data also demonstrate that the antiproliferative and therapeutic effects of 2 ME 2 in pulmonary hypertension may involve inhibition of HIF 1α and/or microtubular disruption in PASMC s.
Collapse
MESH Headings
- 2-Methoxyestradiol/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Female
- Humans
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/etiology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Sex Factors
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Craig K. Docherty
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| | - Margaret Nilsen
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| | - Margaret R. MacLean
- Research Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowUnited Kingdom
| |
Collapse
|
24
|
Meng L, Yang X, Xie X, Wang M. Mitochondrial NDUFA4L2 protein promotes the vitality of lung cancer cells by repressing oxidative stress. Thorac Cancer 2019; 10:676-685. [PMID: 30710412 PMCID: PMC6449242 DOI: 10.1111/1759-7714.12984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for a significant proportion of cancer-related deaths and lacks an effective treatment strategy. NSCLC tissues are generally found in a low oxygen environment. The NDUFA4L2 protein, located in the mitochondria, is encoded by the nucleus genome and is considered a crucial mediator that regulates cell survival. A better understanding of the mechanism of NDUFA4L2 in NSCLC survival in hypoxic environments is essential to design new therapeutic methods. METHODS Twenty NSCLC and corresponding paired non-tumorous lung tissue samples were collected. NSCLC cell lines were cultured in hypoxic conditions to investigate the mechanism of NDUFA4L2 in NSCLC. The role of NDUFA4L2 was confirmed by using Western blotting, reactive oxygen species measurement, flow cytometry, immunofluorescence analysis, and wound healing and colony formation assays. RESULTS The expression of HIF-1α and mitochondrial NDUFA4L2 increased in NSCLC cell lines cultured in hypoxic conditions (1% O2 ). NDUFA4L2 was drastically overexpressed in human NSCLC tissues and cell lines cultured in hypoxic conditions. HIF-1α regulated the expression of NDUFA4L2. Knockdown of NDUFA4L2 notably increased mitochondrial reactive oxygen species production, which suppressed the viability of NSCLC. CONCLUSION In conclusion, overexpression of NDUFA4L2 is a key factor for maintaining NSCLC growth, suggesting that mitochondrial NDUFA4L2 may be a potential target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Lifei Meng
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Yang
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
2-Methoxyestradiol attenuates liver fibrosis in mice: implications for M2 macrophages. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:381-391. [PMID: 30535572 DOI: 10.1007/s00210-018-1577-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a major health problem worldwide due to its serious complications including cirrhosis and liver cancer. 2-Methoxyestradiol (2-ME) is an end metabolite of estradiol with anti-proliferative, antioxidant, and anti-inflammatory activities. However, the protective role of 2-ME in liver fibrosis has not been fully investigated. The aim of this study was to determine the protective effect of 2-ME in carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Animals were injected intraperitoneally with CCl4 twice weekly for 6 weeks. 2-ME 50 mg/kg or 100 mg/kg was administrated intraperitoneally every day over the same period. Our data showed that 2-ME reduced the extent of liver toxicity and fibrosis due to CCl4 exposure. It restored the elevated serum liver enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels and ameliorated oxidative status. In addition, 2-ME significantly reduced collagen deposition and alpha-smooth muscle actin (α-SMA) protein expressions. Furthermore, 2-ME markedly lowered macrophage infiltration and macrophage alternative activation marker chitinase-like molecules (CHI3L3/YM1). The results of this study indicate an important protective activity of 2-ME in liver fibrosis and highlight the role of macrophage recruitment and alternative activation as a possible target.
Collapse
|
26
|
Li Y, Wu L, Yu M, Yang F, Wu B, Lu S, Tu M, Xu H. HIF-1α is Critical for the Activation of Notch Signaling in Neurogenesis During Acute Epilepsy. Neuroscience 2018; 394:206-219. [PMID: 30394322 DOI: 10.1016/j.neuroscience.2018.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that hypoxia-inducible factors (specifically, HIF-1α) and Notch signaling are involved in epileptogenesis and that cross-coupling exists between HIF-1α and Notch signaling in other diseases, including tumors and ischemia. However, the exact molecular mechanisms by which HIF-1α and Notch signaling affect the development of epilepsy, especially regarding neurogenesis, remain unclear. In the present study, we investigated the role of HIF-1α in neurogenesis and whether Notch signaling is involved in this process during epileptogenesis by assessing hippocampal apoptosis, neuronal injury, and the proliferation and differentiation of neural stem cells (NSCs) in four groups, including control, epilepsy, epilepsy+2-methoxyestradiol (2ME2) and epilepsy+GSI-IX (DAPT) groups. Our data demonstrated that HIF-1α mediated neurogenesis during acute epilepsy, which required the participation of Notch signaling. The immunoprecipitation data illustrated that HIF-1α activated Notch signaling by physically interacting with the Notch intracellular domain (NICD) in epilepsy. In conclusion, our results suggested that HIF-1α-Notch signaling enhanced neurogenesis in acute epilepsy and that neurogenesis during epileptogenesis was reduced once this pathway was blocked; thus, members of this pathway might be potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Yushuang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Lei Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Fei Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Shuting Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Mengqi Tu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
27
|
2-Methoxyestradiol Attenuates Testosterone-Induced Benign Prostate Hyperplasia in Rats through Inhibition of HIF-1 α/TGF- β/Smad2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4389484. [PMID: 30154949 PMCID: PMC6093036 DOI: 10.1155/2018/4389484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disorder in the male population. 2-Methoxyestradiol (2ME) is an end metabolite of estrogens with pleiotropic pharmacological properties. This study aimed to explore the potential ameliorative effects of 2ME against testosterone-induced BPH in rats. 2-Methoxyestradiol (50 and 100 mg/kg, dissolved in DMSO) prevented the rise in prostatic index and weight in comparison to testosterone-alone-treated animals for 2 weeks. Histological examination indicated that 2ME ameliorated pathological changes in prostate architecture. This was confirmed by the ability of 2ME to decrease the glandular epithelial height when compared to the testosterone group. Also, 2ME improved testosterone-induced oxidative stress as it inhibited the rise in lipid peroxide content and the exhaustion of superoxide dismutase (SOD) activity. The beneficial effects of 2ME against the development of BPH were substantiated by assessing proliferation markers, preventing the rise in cyclin D1 protein expression and enhancing Bax/Bcl2 mRNA ratio. It significantly reduced prostate content of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), nuclear factor κB (NF-κB), and transforming growth factor β (TGF-β). In addition, 2ME reduced hypoxia-inducible factor 1-α (HIF-1α) and phospho-Smad2 (p-Smad2) protein expression compared to the testosterone group. In conclusion, 2ME attenuates experimentally induced BPH by testosterone in rats through, at least partly, inhibition of HIF-1α/TGF-β/Smad2 axis.
Collapse
|
28
|
Jia Z, Wang X, Wang X, Wei P, Li L, Wu P, Hong M. Calycosin alleviates allergic contact dermatitis by repairing epithelial tight junctions via down-regulating HIF-1α. J Cell Mol Med 2018; 22:4507-4521. [PMID: 29993193 PMCID: PMC6111858 DOI: 10.1111/jcmm.13763] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/28/2022] Open
Abstract
Calycosin, a bioactive component derived from Astragali Radix (AR; Huang Qi), has been shown to have an effect of anti‐allergic dermatitis with unknown mechanism. This study aims to investigate the mechanism of calycosin related to tight junctions (TJs) and HIF‐1α both in FITC‐induced mice allergic contact dermatitis and in IL‐1β stimulated HaCaT keratinocytes. Th2 cytokines (IL‐4, IL‐5 and IL‐13) were detected by ELISA. The epithelial TJ proteins (occludin, CLDN1 and ZO‐1), initiative key cytokines (TSLP and IL‐33) and HIF‐1α were assessed by Western blot, real‐time PCR, immunohistochemistry or immunofluorescence. Herein, we have demonstrated that allergic inflammation and the Th2 cytokines in ACD mice were reduced significantly by calycosin treatment. Meanwhile, calycosin obviously decreased the expression of HIF‐1α and repaired TJs both in vivo and in vitro. In HaCaT keratinocytes, we noted that IL‐1β induced the deterioration of TJs, as well as the increased levels of TSLP and IL‐33, which could be reversed by silencing HIF‐1α. In addition, administration of 2‐methoxyestradiolin (2‐ME), a HIF‐1α inhibitor,significantly repaired the TJs and alleviated the allergic inflammation in vivo. Furthermore, TJs were destroyed by DMOG or by overexpressing HIF‐1α in HaCaT keratinocytes, and simultaneously, calycosin down‐regulated the expression of HIF‐1α and repaired the TJs in this process. These results revealed that calycosin may act as a potential anti‐allergy and barrier‐repair agent via regulating HIF‐1α in AD and suggested that HIF‐1α and TJs might be possible therapy targets for allergic dermatitis.
Collapse
Affiliation(s)
- Zhirong Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pan Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianqu Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Abstract
BACKGROUND Oxygen (O2) homeostasis is an indispensable requirement of eukaryotes. O2 concentration in cellular milieu is defined as normoxia (∼21% O2), physoxia (∼1-13% O2) or hypoxia (∼0.1-1% O2). Hypoxia, a striking micro-environmental feature in tumorigenesis, is countered by tumor cells via induction of O2 governed transcription factor, hypoxia inducible factor-1 (HIF-1). Post discovery, HIF-1 has emerged as a promising anticancer therapeutic target during the last two decades. Recent reports have highlighted that enhanced levels of HIF-1 correlate with tumor metastasis leading to poor patient prognosis. MATERIAL AND METHODS A systematic search in PubMed and SciFinder for the literature on HIF-1 biology and therapeutic importance in cancer was carried out. RESULTS This review highlights the initial description as well as the recent insights into HIF-1 biology and regulation. We have focused on emerging data regarding varied classes of HIF-1 target genes affecting various levels of crosstalk among tumorigenic pathways. We have emphasized on the fact that HIF-1 acts as a networking hub coordinating activities of multiple signaling molecules influencing tumorigenesis. Emerging evidences indicate role of many HIF-induced proteomic and genomic alterations in malignant progression by mediating a myriad of genes stimulating angiogenesis, anaerobic metabolism and survival of cancer cells in O2-deficient microenvironment. CONCLUSIONS Better understanding of the crucial role of HIF-1 in carcinogenesis could offer promising new avenues to researchers and aid in elucidating various open issues regarding the use of HIF-1 as an anticancer therapeutic target. In spite of large efforts in this field, many questions still remain unanswered. Hence, future investigations are necessary to devise, assess and refine methods for translating previous research efforts into novel clinical practices in cancer treatment.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
30
|
Zhao H, Jiang H, Li Z, Zhuang Y, Liu Y, Zhou S, Xiao Y, Xie C, Zhou F, Zhou Y. 2-Methoxyestradiol enhances radiosensitivity in radioresistant melanoma MDA-MB-435R cells by regulating glycolysis via HIF-1α/PDK1 axis. Int J Oncol 2017; 50:1531-1540. [PMID: 28339028 PMCID: PMC5403226 DOI: 10.3892/ijo.2017.3924] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 02/06/2023] Open
Abstract
HIF-1α overexpression is associated with radio-resistance of various cancers. A radioresistant human melanoma cell model MDA-MB-435R (435R) was established by us previously. Compared with the parental cells MDA-MB-435 (435S), an elevated level of HIF-1α expression in 435R cells was demonstrated in our recent experiments. Therefore, in the current study, we sought to determine whether selective HIF-1α inhibitors could radiosensitize the 435R cells to X-ray, and to identify the potential mechanisms. Our data demonstrated that inhibition of HIF-1α with 2-methoxyestradiol (2-MeOE2) significantly enhanced radiosensitivity of 435R cells. 2-MeOE2 increased DNA damage and ratio of apoptosis cells induced by irradiation. Whereas, cell proliferation and the expression of pyruvate dehydrogenase kinase 1 (PDK1) were decreased after 2-MeOE2 treatment. The change of expression of GLUT1, LDHA and the cellular ATP level and extracellular lactate production indicates that 2-MeOE2 suppressed glycolytic state of 435R cells. In addition, the radioresistance, glycolytic state and cell proliferation of 435R cells were also decreased after inhibiting pyruvate dehydrogenase kinase 1 (PDK1) with dichloroacetate (DCA). DCA could also increase DNA damage and ratio of apoptotic cells induced by irradiation. These results also suggest that inhibition of HIF-1α with 2-MeOE2 sensitizes radioresistant melanoma cells 435R to X-ray irradiation through targeting the glycolysis that is regulated by PDK1. Selective inhibitors of HIF-1α and glycolysis are potential drugs to enhance radio sensitivity of melanoma cells.
Collapse
Affiliation(s)
- Hong Zhao
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Huangang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Yafei Zhuang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Yinyin Liu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Shuliang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Youde Xiao
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
31
|
Massaro RR, Faião-Flores F, Rebecca VW, Sandri S, Alves-Fernandes DK, Pennacchi PC, Smalley KSM, Maria-Engler SS. Inhibition of proliferation and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. Pharmacol Res 2017; 119:242-250. [PMID: 28212889 DOI: 10.1016/j.phrs.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
Despite the recent advances in the clinical management of melanoma, there remains a need for new pharmacological approaches to treat this cancer. 2-methoxyestradiol (2ME) is a metabolite of estrogen that has shown anti-tumor effects in many cancer types. In this study we show that 2ME treatment leads to growth inhibition in melanoma cells, an effect associated with entry into senescence, decreased pRb and Cyclin B1 expression, increased p21/Cip1 expression and G2/M cell cycle arrest. 2ME treatment also inhibits melanoma cell growth in colony formation assay, including cell lines with acquired resistance to BRAF and BRAF+MEK inhibitors. We further show that 2ME is effective against melanoma with different BRAF and NRAS mutational status. Moreover, 2ME induced the retraction of cytoplasmic projections in a 3D spheroid model and significantly decreased cell proliferation in a 3D skin reconstruct model. Together our studies bring new insights into the mechanism of action of 2ME allowing melanoma targeted therapy to be further refined. Continued progress in this area is expected to lead to improved anti-cancer treatments and the development of new and more effective clinical analogues.
Collapse
Affiliation(s)
- R R Massaro
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Faião-Flores
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - V W Rebecca
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S Sandri
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - D K Alves-Fernandes
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - P C Pennacchi
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - K S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, USA
| | - S S Maria-Engler
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|