1
|
Kubatka P, Bojkova B, Nosalova N, Huniadi M, Samuel SM, Sreenesh B, Hrklova G, Kajo K, Hornak S, Cizkova D, Bubnov R, Smokovski I, Büsselberg D, Golubnitschaja O. Targeting the MAPK signaling pathway: implications and prospects of flavonoids in 3P medicine as modulators of cancer cell plasticity and therapeutic resistance in breast cancer patients. EPMA J 2025. [DOI: 10.1007/s13167-025-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
Abstract
Cancer drug resistance poses a significant challenge in oncology, primarily driven by cancer cell plasticity, which promotes tumor initiation, progression, metastasis, and therapeutic evasion in many different cancers. Breast cancers (BCs) are a prominent example of that, with an estimated 2.3 million new cases and 670,000 BC-related deaths registered worldwide annually. Triple-negative BC is especially challenging for treatments demonstrating particularly aggressive disease course, an early manifestation of metastatic disease, frequent drug-resistant cancer types, and poor individual outcomes. Although chemosensitizing agents have been developed, their clinical utility in oncology remains unproven. The mitogen-activated protein kinase (MAPK) pathway is considered a critical regulator of intracellular and extracellular signaling highly relevant for both — genetic and epigenetic modifications. Dysregulation of the MAPK signaling pathways plays a significant role in conferring chemoresistance in BC. Contextually, targeting the MAPK pathway represents a promising strategy for overcoming drug resistance and enhancing the therapeutic efficacy of anticancer agents in BC treatment. On the other hand, flavonoids, a prominent class of phytochemicals, are key modulators of MAPK signaling. Flavonoids interact with the ERK, JNK, p38, and ERK5 pathways of the MAPK signaling cascade and present a promising avenue for developing novel anti-cancer therapies and re-sensitizing agents for the treatment of BC. Compounds such as quercetin, kaempferol, genistein, luteolin, myricetin, EGCG, baicalein, baicalin, nobiletin, morin, delphinidin, acacetin, isorhamnetin, apigenin, silymarin, among others, have been identified as specific modulators of MAPK signaling, exerting complex downstream effects in BC cells increasing therewith drug efficacy and suppressing tumor growth and aggressivity. These properties reflect mechanisms of great clinical relevance to overcome therapeutic resistance in overall BC management. This article highlights corresponding mechanisms and provides clinically relevant illustrations in the framework of 3P medicine for primary (protection of individuals at high risk against health-to-disease transition) and secondary care (protection against metastatic BC progression). 3PM novelty makes good use of patient phenotyping and stratification, predictive multi-level diagnostics, and application of Artificial Intelligence (AI) tools to the individualized interpretation of big data — all proposed for cost-effective treatments tailored to individualized patient profiles with clear benefits to patients and advanced BC management.
Collapse
|
2
|
Trivedi A, Hasan A, Ahmad R, Siddiqui S, Srivastava A, Misra A, Mir SS. Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals. Chin J Integr Med 2024; 30:75-84. [PMID: 37340205 DOI: 10.1007/s11655-023-3701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 06/22/2023]
Abstract
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Collapse
Affiliation(s)
- Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aparna Misra
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India.
| |
Collapse
|
3
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
4
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
5
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161:114460. [PMID: 36870282 DOI: 10.1016/j.biopha.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.
Collapse
|
7
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
8
|
Myricetin-induced apoptosis in triple-negative breast cancer cells through inhibition of the PI3K/Akt/mTOR pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:248. [PMID: 36209343 DOI: 10.1007/s12032-022-01856-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 10/10/2022]
Abstract
Breast cancer is still a severe origin of malignant demise in females, and its prevalence is rising worldwide. Triple-negative breast cancer (TNBC) is a diversified aggressive breast tumor distinguished by inadequate prognosis, early recurrence, high invasion, and extremely metastasized disease. Chemotherapy is being used to treat it; however, it has low efficacy. On the other hand, with the growing number of corroborations on subtypes of TNBC and molecular biology of tumors, significant advancement in TNBC targeted treatment has been made. Myricetin (MYR), a polyhydroxyflavonol compound widely found in nature, has been shown to possess anticancer effects in various cancers. Though, the mechanisms and impacts of MYR on metastasis of TNBC remain unclear. Early and late apoptotic cell death and cell proliferation inhibition were observed in MYR-treated TNBC cells. MYR modulated cell cycle, pro-angiogenic, and invasion effects via the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB/also known as AKT) signaling pathways. Moreover, it regulates the expression of MAPK, PI3K/AKT/mTOR, IκB/NF-κB, Hippo, STAT3, GSK-3β, Nrf2/HO-1, TLR, eNOS / NO, ACE, and AChE. Here, we review the anticancer effects of MYR for TNBC and target the PI3K/AKT/mTOR pathway as a therapeutic target for the fruitful treatment of TNBC to summarize MYR's therapeutic potential.
Collapse
|
9
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
10
|
Abbas MW, Hussain M, Akhtar S, Ismail T, Qamar M, Shafiq Z, Esatbeyoglu T. Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris-In Vitro and In Vivo Studies. Antioxidants (Basel) 2022; 11:1160. [PMID: 35740057 PMCID: PMC9219970 DOI: 10.3390/antiox11061160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Tribulus terrestris L. belongs to the family Zygophyllaceae and integral part of various ancient medicinal systems including Chinese, Indian, and European to combat various health ailments. The aim of the present study was to assess the phytochemical constituents, in vitro antioxidant activity using DPPH, FRAP, and H2O2 assays, in vitro anticancer activity using MTT assay, and in vitro and in vivo anti-inflammatory properties of T. terrestris. The acute and sub-acute toxicity of extracts exhibiting most biological potential was examined using murine models. Liquid-liquid partitioning followed by RP-HPLC sub-fraction of crude extract was performed. After that, ESI-MS/MS analysis was done for the timid identification of bioactive metabolites responsible for bioactivities of sub-fractions and HPLC analysis to quantify the compounds using external standards. Among all extracts, T. terrestris methanol extract was noted to hold maximum phenolic (341.3 mg GAE/g) and flavonoid (209 mg QE/g) contents, antioxidant activity in DPPH (IC50 71.4 µg/mL), FRAP (35.3 mmol/g), and H2O2 (65.3% inhibition) assays, anti-inflammatory activities in vitro at 400 µg/mL (heat-induced hemolysis, % inhibition 68.5; egg albumin denaturation, % inhibition 75.6%; serum albumin denaturation, % inhibition 80.2), and in vivo at 200 mg/kg (carrageenan-induced paw edema, % inhibition 69.3%; formaldehyde-induced paw edema, % inhibition 71.3%) and anticancer activity against breast cancer cell (MCF-7) proliferation (IC50 74.1 µg/mL). Acute and sub-acute toxicity studies recorded with no change in body weight, behavior, hematological, serum, and histopathological parameters in treated rats with T. terrestris methanol extracts when compared to control group. Fraction B obtained through liquid-liquid partitioning resulted in more bioactive potential as compared to the parent methanol extract. RP-HPLC analysis of fraction B resulted with four sub-fractions (TBTMF1-TBTMF4), wherein TBTMF3 delineated notable bioactive capabilities as compared to other fractions and parent methanol extract. ESI-MS/MS analysis of TBTMF3 resulted with tentative identification of myricetin, rutin, liquitrigenin, physcion, and protodioscin. It can be stated that T. terrestris is a potential bearing herb and findings of current study further verify the claims made in ancient medicinal systems. However, after investigation of each identified compound, it must be considered for drug discovery.
Collapse
Affiliation(s)
- Malik Waseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.W.A.); (Z.S.)
| | - Mazhar Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.W.A.); (Z.S.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (S.A.); (T.I.)
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.W.A.); (Z.S.)
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|
11
|
Myricetin Induces Apoptosis and Protective Autophagy through Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3115312. [PMID: 35677365 PMCID: PMC9168098 DOI: 10.1155/2022/3115312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Myricetin, a natural flavonoid, exhibits diverse biological activities, including antitumor effects. The present study aimed to investigate the effects of myricetin on hepatocellular carcinoma (HCC) cells and explore the underlying molecular mechanisms. Our results showed that myricetin significantly inhibited cell proliferation and induced apoptosis in HCC cells. The apoptosis induced by myricetin was associated with the activation of endoplasmic reticulum (ER) stress. In addition, autophagy was enhanced in response to ER stress. Inhibition of autophagy by RNA interference or chemical inhibitors resulted in increased apoptosis in myricetin-treated HCC cells. The in vivo experiment also showed that myricetin effectively reduced tumor growth in an HCC xenograft model and that combination treatment with an autophagy inhibitor significantly enhanced this effect. These results indicated that myricetin induced apoptosis in HCC cells through the activation of ER stress. Protective autophagy was also upregulated during this process. Simultaneous inhibition of autophagy enhanced the anti-HCC activity of myricetin. Myricetin might be a promising drug candidate for HCC therapy, and the combined use of myricetin with autophagy inhibitors could be an effective therapeutic strategy.
Collapse
|
12
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
13
|
Antiinflammatory and Anticancer Properties of Grewia asiatica Crude Extracts and Fractions: A Bioassay-Guided Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2277417. [PMID: 35386306 PMCID: PMC8979695 DOI: 10.1155/2022/2277417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/09/2023]
Abstract
The study was an extension of our earlier work on antiinflammatory and anticancer properties of G. asiatica fruit. We aimed to develop a bioassay guided multistep purification technique for producing bioactive fractions of G. asiatica crude extracts. Dried fruit powder was sequentially fractionated with 100% dichloromethane, 100% methanol (MeOH), and 50% MeOH. Active extracts were subjected to liquid-liquid partitioning followed by subfractionation using RP-HPLC. Antioxidant, antiinflammatory, and anticancer activities of the fruit extracts, and their potent fractions were evaluated in vitro, while identification of compounds from the bioactive fractions was performed by ESI-MS/MS analysis. The amount of the identified compounds present was confirmed using external standards adopting a simple, accurate, and rapid analytical HPLC method. The results showed that 100% and 50% MeOH extracts possessed bioactivity; one of which (the 50% MeOH extract) displayed potent activity in all in vitro bioassays. MeOH extract (50%) derived fraction C and hydroalcoholic fraction 5 (GAHAF5) were observed to possess higher antioxidant, antiinflammatory, and in vitro anticancer activity. IC50 of GAHAF5 against MCF-7, HEp-2, and NCI-H522 cancer cells was recorded as 26.2, 51.4, and 63 μg/mL, respectively. ESI-MS/MS and HPLC analysis identified catechin, chlorogenic acid, caffeic acid, and morin as potential bioactive compounds in the GAHAF5 fraction with concentrations of 1230, 491, 957, and 130 μg/g, respectively. The findings indicated that G. asiatica bioactive fractions possessed antiinflammatory activity in vitro and were cytotoxic against breast cancer, lung cancer, and laryngeal cancer cell lines.
Collapse
|
14
|
Han SH, Lee JH, Woo JS, Jung GH, Jung SH, Han EJ, Park YS, Kim BS, Kim SK, Park BK, Choi C, Jung JY. Myricetin induces apoptosis through the MAPK pathway and regulates JNK‑mediated autophagy in SK‑BR‑3 cells. Int J Mol Med 2022; 49:54. [PMID: 35234274 PMCID: PMC8904074 DOI: 10.3892/ijmm.2022.5110] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myricetin, a flavonoid found in fruits and vegetables, is known to have antioxidant and anticancer effects. However, the anticancer effects of myricetin on SK-BR-3 human breast cancer cells have not been elucidated. In the present study, the anticancer effects of myricetin were confirmed in human breast cancer SK-BR-3 cells. As the concentration of myricetin increased, the cell viability decreased. DAPI (4′,6-diamidino-2-phenylindole) and Annexin V/PI staining also revealed a significant increase in apoptotic bodies and apoptosis. Western blot analysis was performed to confirm the myricetin-induced expression of apoptosis-related proteins. The levels of cleaved PARP and Bax proteins were increased, and that of Bcl-2 was decreased. The levels of proteins in the mitogen-activated protein kinase (MAPK) pathway were examined to confirm the mechanism of myricetin-induced apoptosis, and it was found that the expression levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated mitogen-activated protein kinases (p-p38) were increased, whereas that of phosphorylated extracellular-regulated kinase (p-ERK) was decreased. It was also demonstrated that myricetin induced autophagy by promoting autophagy-related proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC 3) and beclin 1. In addition, 3-methyladenine (3-MA) was used to evaluate the association between cell viability and autophagy in cells treated with myricetin. The results showed that simultaneous treatment with 3-MA and myricetin promoted the apoptosis of breast cancer cells. Furthermore, treatment with a JNK inhibitor reduced cell viability, promoted Bax expression, and reduced the expression of p-JNK, Bcl-2, and LC 3-II/I. These results suggest that myricetin induces apoptosis via the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. In conclusion, myricetin shows potential as a natural anticancer agent in SK-BR-3 cells.
Collapse
Affiliation(s)
- So-Hee Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Jae-Han Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Joong-Seok Woo
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Gi-Hwan Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Young-Seok Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Byung-Kwon Park
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung‑ang University, Ansung, Gyeonggi-do 17546, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Chungcheongnamdo 32439, Republic of Korea
| |
Collapse
|
15
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
16
|
Sousa C, Duarte D, Silva-Lima B, Videira M. Repurposing Natural Dietary Flavonoids in the Modulation of Cancer Tumorigenesis: Decrypting the Molecular Targets of Naringenin, Hesperetin and Myricetin. Nutr Cancer 2021; 74:1188-1202. [PMID: 34739306 DOI: 10.1080/01635581.2021.1955285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the past few years flavonoids have been gaining more attention regarding their (still un) exploited anticancer properties. Flavonoids are natural compounds present in fruits, vegetables, and seeds, meaning that they are already present in the daily life of every person, with a described broad-spectrum of pharmacological activities, including anticancer, anti-inflammatory and antioxidant. In the present review we discuss the anticancer activity of three important flavonoids - myricetin (MYR) (flavanol group), hesperetin (HESP) and naringenin (NAR) (flavanone group). Although some mechanisms underlying their activities remain still unclear, they can act as potential inhibitors of key tumorigenic signaling pathways, such as PI3K/Akt/mTOR, p38 MAPK and NF-κB. Simultaneously, they can reset the levels of pro-apoptotic proteins that belong to the Bcl-2 and caspase family and decrease the intracellular levels of ROS and pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. Together with their synergetic effect they have the potential to become key elements in the prevention and/or treatment of several types of cancer, with the major improvement to the patient life quality, due to their non-existent toxicity.
Collapse
Affiliation(s)
- Carolina Sousa
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Denise Duarte
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Silva-Lima
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Videira
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, El‐Ghorab A, Ahmad I, Pezzani R, Arshad MU, Bacha U, Shariarti MA, Rauf A, Muhammad N, Shah ZA, Zengin G, Islam S. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr 2021; 9:5854-5868. [PMID: 34646551 PMCID: PMC8498061 DOI: 10.1002/fsn3.2513] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myricetin is a critical nutritive component of diet providing immunological protection and beneficial for maintaining good health. It is found in fruits, vegetables, tea, and wine. The families Myricaceae, Polygonaceae, Primulaceae, Pinaceae, and Anacardiaceae are the richest sources of myricetin. Different researchers explored the therapeutic potential of this valuable constituent such as anticancer, antidiabetic, antiobesity, cardiovascular protection, osteoporosis protection, anti-inflammatory, and hepatoprotective. In addition to these, the compound has been tested for cancer and diabetic mellitus during clinical trials. Health benefits of myricetin are related to its impact on different cell processes, such as apoptosis, glycolysis, cell cycle, energy balance, lipid level, serum protein concentrations, and osteoclastogenesis. This review explored the potential health benefits of myricetin with a specific emphasis on its mechanism of action, considering the most updated and novel findings in the field.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Zaffar Mehmood
- School of Life SciencesForman Christian College (A Chartered University)LahorePakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVictoriaAustralia
| | - Ahmed El‐Ghorab
- College of Science, Chemistry DepartmentJouf UniversitySakakaSaudi Arabia
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Raffaele Pezzani
- Endocrinology UnitDepartment of Medicine (DIMED)University of PadovaPadovaItaly
- AIROBAssociazione Italiana per la Ricerca Oncologica di BasePadovaItaly
| | - Muhammad Umair Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Umar Bacha
- School of Health Sciences (SHS)University of Management and TechnologyJohar Town, LahorePakistan
| | - Mohammad Ali Shariarti
- Department of Technology of Food ProductionsK.G. RazumovskyMoscow State University of Technologies and Management (the First Cossack University)MoscowRussian Federation
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Naveed Muhammad
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Zafar Ali Shah
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Gokhan Zengin
- Department of BiologyScience FacultySelcuk UniversityKonyaTurkey
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
18
|
Xia W, Gong E, Lin Y, Li T, Lian F, Zheng B, Liu RH. Comparison of phytochemical profiles, antioxidant and antiproliferative activities in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits. J Food Sci 2021; 86:4691-4703. [PMID: 34549442 DOI: 10.1111/1750-3841.15899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 01/28/2023]
Abstract
Here, we examined the phytochemical profiles, antioxidant activity (AA), and antiproliferative activity (APA) of four Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts. They were found to be rich in total phenolics content (TPC; 186.45 ± 5.42 to 498.94 ± 8.25 mg of gallic acid equiv./100 g FW) and total flavonoids content (TFC; 126.28 ± 4.18 to 194.35 ± 12.03 mg of catechin equiv./100 g FW). For all varieties, the free flavonoid/phenolic/anthocyanin contents were higher than that the bound fractions. Wild pink bayberry (WPB) displayed the highest values of TPC and TFC, and also showed the highest total antioxidant activity (TAA) as revealed by peroxyl radical scavenging capacity (PSC) (451.47 ± 8.01 µmol Vit. C equiv./100 g FW), and free cellular antioxidant activity (CAA) (184.99 ± 6.11 µmol quercetin equiv./100 g FW, no PBS wash; 117.78 ± 2.34 µmol quercetin equiv./100 g FW, PBS wash) assays. Bayberry extracts had a marked reduction in the APA of HepG2 cells, and WPB exhibited the lowest EC50 (8.50 ± 0.83 mg/ml) value, which was probably associated with cell cycle arrest and apoptosis induction. PRACTICAL APPLICATION: Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit is rich in natural phenolic compounds, which might be a functional ingredient in food and nutraceutical products. Our findings would provide a logical strategy to promote the comprehensive utilization of phenolics in bayberry fruit with both health and economy benefits.
Collapse
Affiliation(s)
- Wen Xia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ersheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyun Lin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Fengli Lian
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Gregoriou G, Neophytou CM, Vasincu A, Gregoriou Y, Hadjipakkou H, Pinakoulaki E, Christodoulou MC, Ioannou GD, Stavrou IJ, Christou A, Kapnissi-Christodoulou CP, Aigner S, Stuppner H, Kakas A, Constantinou AI. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob ( Ceratonia siliqua L.) Pods Using Different Solvents. Molecules 2021; 26:5017. [PMID: 34443605 PMCID: PMC8401790 DOI: 10.3390/molecules26165017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
Extracts derived from the Ceratonia siliqua L. (carob) tree have been widely studied for their ability to prevent many diseases mainly due to the presence of polyphenolic compounds. In this study, we explored, for the first time, the anti-cancer properties of Cypriot carobs. We produced extracts from ripe and unripe whole carobs, pulp and seeds using solvents with different polarities. We measured the ability of the extracts to inhibit proliferation and induce apoptosis in cancer and normal immortalized breast cells, using the MTT assay, cell cycle analysis and Western Blotting. The extracts' total polyphenol content and anti-oxidant action was evaluated using the Folin-Ciocalteu method and the DPPH assay. Finally, we used LC-MS analysis to identify and quantify polyphenols in the most effective extracts. Our results demonstrate that the anti-proliferative capacity of carob extracts varied with the stage of carob maturity and the extraction solvent. The Diethyl-ether and Ethyl acetate extracts derived from the ripe whole fruit had high Myricetin content and also displayed specific activity against cancer cells. Their mechanism of action involved caspase-dependent and independent apoptosis. Our results indicate that extracts from Cypriot carobs may have potential uses in the development of nutritional supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Gregoria Gregoriou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| | - Christiana M. Neophytou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
- European University Research Center, Nicosia 2404, Cyprus
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Yiota Gregoriou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| | - Haria Hadjipakkou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Marios C. Christodoulou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Georgia D. Ioannou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | - Ioannis J. Stavrou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
- Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Atalanti Christou
- Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus; (H.H.); (E.P.); (M.C.C.); (G.D.I.); (I.J.S.); (A.C.); (C.P.K.-C.)
| | | | - Siegfried Aigner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria; (S.A.); (H.S.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria; (S.A.); (H.S.)
| | - Antonis Kakas
- Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus;
| | - Andreas I. Constantinou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.G.); (Y.G.); (A.I.C.)
| |
Collapse
|
20
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
21
|
Nguyen NYT, Pham NSL, Dang PH, Huu DMN, Dang HP, Tran QL. Two new meroterpenoids from the aerial parts of Ampelopsis cantoniensis (Vitaceae). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1152-1158. [PMID: 31769308 DOI: 10.1080/10286020.2019.1694007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
From EtOAc-soluble fraction of the aerial parts of Ampelopsis cantoniensis (Vitaceae), two new meroterpenoids named ampechromonol A (1) and ampechromonol B (2), together with five known compounds (3-7), were isolated. Their structures were elucidated based on NMR spectroscopic analysis. The plausible biosynthesis pathway for the formation of two new meroterpenoids was proposed. This research is the first isolation of meroterpenoids from Ampelopsis genus. Compounds 1 and 2 showed weak cytotoxicity against MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Nhi Y Thi Nguyen
- Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| | - Ngoc Son Le Pham
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Phu Hoang Dang
- Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| | - Duc Minh Nguyen Huu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huu Phuc Dang
- Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Quan Le Tran
- Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Soleimani M, Sajedi N. Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pac J Cancer Prev 2020; 21:3697-3704. [PMID: 33369470 PMCID: PMC8046314 DOI: 10.31557/apjcp.2020.21.12.3697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Using nutraceuticals in cancer therapy is a strategy contributing with other approaches to promote apoptosis in cancer cells. Myricetin is a polyphenol flavonoid that forms main ingredients of various type of foods and beverages. The inducing properties of myricetin in apoptosis is reported by several investigations. The present study aimed to assess apoptotic effects of myricetin on T47D breast cancer cells and to evaluate part of the mechanisms of action. Materials and Methods: T47D breast cancer cells were assigned into five groups: control (cells in normal condition), myricetin (cells treated with myricetin IC50 concentration) in two different incubation times (24, 48 and 72 hours). MTT assay, annexin v assay, flow cytometry, caspase-3 assay and Real-time PCR were used to evaluate apoptosis in breast cancer cells. Results: The expression rate of apoptotic genes caspase-3, caspase-8, caspase-9, the ratio of BAX /Bcl-2 as well as the expression of P53, BRCA1, GADD45 genes were increased significantly after treatment of T47D breast cancer cells with myricetin. Annexin v assay confirmed significant expression of annexin as were displyed by flow cytometry. Conclusion: Myricetin enhances apoptosis in T47D breast cancer cells by evoking both extrinsic and intrinsic apoptotic pathways. myricetin may practices its apoptotic properties on T47D cells through inducing BRCA1- GADD45 pathway.
Collapse
Affiliation(s)
- Mitra Soleimani
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Iran
| | - Nayereh Sajedi
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
23
|
Sajedi N, Homayoun M, Mohammadi F, Soleimani M. Myricetin Exerts its Apoptotic Effects on MCF-7 Breast Cancer Cells through Evoking the BRCA1-GADD45 Pathway. Asian Pac J Cancer Prev 2020; 21:3461-3468. [PMID: 33369440 PMCID: PMC8046300 DOI: 10.31557/apjcp.2020.21.12.3461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Myricetin is a polyphenol flavonoid with nutraceutical values which is abundantly found as the main ingredient of various foods and beverages. It has been reported that the function of myricetin is to trigger apoptosis in several types of cancers. The present study intended to investigate the apoptotic effects of myricetin on MCF-7 breast cancer cells and to assess its possible mechanisms of action. MATERIALS AND METHODS MCF-7 breast cancer cells were assigned to four groups: Control (cells in normal condition); myricetin (cells treated with the IC50 dosage of myricetin) in three different incubation times (24, 48, and 72 h). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V assay, flow cytometry, real-time polymerase chain reaction (PCR), and caspase-3 assay were used to estimate the apoptosis function of myricetin in breast cancer. RESULTS The expression levels of apoptosis-related genes caspase-3, caspase-8, caspase-9, and the BAX /Bcl-2 ratio as well as the expression of p53, BRCA1, GADD45 genes were significantly increased following the treatment of MCF-7 breast cancer cells with myricetin. The annexin V assay demonstrated the significant expression of annexin which was also detected by flow cytometry. CONCLUSION Myricetin efficiently induces apoptosis in MCF-7 breast cancer cells by evoking both extrinsic and intrinsic apoptotic pathways. Myricetin may exert its apoptotic effects on MCF-7 cells by inducing the BRCA1- GADD45 pathway. .
Collapse
Affiliation(s)
- Nayereh Sajedi
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mansour Homayoun
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Iran.
| | | | - Mitra Soleimani
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Iran.
| |
Collapse
|
24
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
25
|
A review on myricetin as a potential therapeutic candidate for cancer prevention. 3 Biotech 2020; 10:211. [PMID: 32351869 DOI: 10.1007/s13205-020-02207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Myricetin, one of the most extensively studied polyphenols, is present abundantly in various fruits and vegetables and exhibits diverse pharmacological properties. The multifaceted biological action of myricetin against tumor heterogeneity makes it an impressive anticancer agent whose efficacy has been confirmed by an overwhelming number of studies. Myricetin shows its therapeutic potential by targeting and modulating the expression of various molecular target which are involved in inflammation, cell proliferation, apoptosis, angiogenesis, invasion, and metastasis. Myricetin deters tumor progression by inducing apoptosis via both intrinsic and extrinsic pathway, activating/inactivating several signaling pathways, and reactivating various tumor suppressor genes. This comprehensive review represents the effect of myricetin on various hallmarks of cancer with insight into the molecular mechanism employed by myricetin to mitigate cell proliferation, angiogenesis, metastasis, and induce apoptosis. In addition, enhanced bioavailability of myricetin through conjugation and its increased efficacy as an anticancer agent when used in combination are also highlighted.
Collapse
|
26
|
Park S, Song G, Lim W. Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J Nutr Biochem 2019; 78:108328. [PMID: 31952013 DOI: 10.1016/j.jnutbio.2019.108328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecological condition prevalent among reproductive-aged women. Although active research and studies have been carried out to discover new drugs, surgery and hormone therapy are still the gold standard for endometriosis treatment. Nowadays, various flavonoids are considered long-term supplements for different diseases. Myricetin, a flavonol, has antiproliferative, anti- or pro-oxidant, and anticancer effects in gynecological diseases. Here, we reveal for the first time, to our knowledge, the antigrowth effects of myricetin in endometriosis. Myricetin inhibited cell proliferation and cell cycle progression of human VK2/E6E7 and End1/E6E7 cells and induced apoptosis, with the loss of mitochondrial membrane potential and accumulation of reactive oxygen species and calcium ions. Additionally, myricetin decreased the activation of AKT and ERK1/2 proteins, whereas it induced p38 activation in both cell lines. Moreover, myricetin decreased lesion size in the endometriosis mouse model via Ccne1 inhibition. Thus, myricetin has antiproliferative effects on endometriosis through cell cycle regulation.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
27
|
Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 2019; 120:109506. [PMID: 31586904 DOI: 10.1016/j.biopha.2019.109506] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Myricetin (3, 5, 7, 3', 4', 5'-hexahydroxyflavone) is a natural flavonol compound found in a large variety of plants, including berries, oranges, grapes, herbs, teas, and wine. In the last decade, a convergence of evidence has demonstrated that myricetin has good biological activity as an anti-tumor, anti-inflammatory, and anti-oxidation agent. In studies involving various types of cancer cells, myricetin has been shown to suppress cancer cell invasion and metastasis, to induce cell cycle arrest and apoptosis of cancer cells, and to inhibit their proliferation. These findings have raised interest in myricetin as a potential tumor inhibitor in human patients. In this review, evidence of myricetin's anti-tumor activity and its underlying molecular mechanisms published in the last decade are summarized.
Collapse
|
28
|
Li M, Chen J, Yu X, Xu S, Li D, Zheng Q, Yin Y. Myricetin Suppresses the Propagation of Hepatocellular Carcinoma via Down-Regulating Expression of YAP. Cells 2019; 8:cells8040358. [PMID: 30999669 PMCID: PMC6523269 DOI: 10.3390/cells8040358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
Myricetin is a naturally occurring flavonoid with protective effects against a variety of cancers. However, the molecular mechanism of myricetin against hepatocellular carcinoma (HCC) has still not been fully elucidated. Previous studies have indicated that YAP is essential for cancer initiation and progression. However, whether YAP contributes to the anti-cancer effects of myricetin remains unclear. Herein, we aimed to investigate the effect of myricetin on HCC, and identify the underlying mechanisms. We report that myricetin induced apoptosis and proliferation inhibition in HepG2 and Huh-7 cells. Myricetin inhibited expression of YAP by promoting its phosphorylation and subsequent degradation. Myricetin inhibited YAP expression by stimulating kinase activation of LATS1/2. Knockdown expression of LATS1/2 by shRNA attenuated myricetin-induced phosphorylation and degradation of YAP. Furthermore, myricetin sensitized HCC cells to cisplatin treatment through inhibiting YAP and its target genes, both in vitro and in vivo. The identification of the LATS1/2-YAP pathway as a target of myricetin may help with the design of novel strategies for human HCC prevention and therapy.
Collapse
Affiliation(s)
- Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Jinliang Chen
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Xiaofei Yu
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Sen Xu
- Key Laboratory of Tumour Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Defang Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Qiusheng Zheng
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China.
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
29
|
Stoll S, Bitencourt S, Laufer S, Inês Goettert M. Myricetin inhibits panel of kinases implicated in tumorigenesis. Basic Clin Pharmacol Toxicol 2019; 125:3-7. [PMID: 30624861 DOI: 10.1111/bcpt.13201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
Myricetin is a flavonoid with several biological properties, including antioxidant and anti-inflammatory features. Its protective effect in chronic diseases may occur through the inhibition of protein kinases that trigger inflammation and carcinogenesis pathways. Considering the influence of kinases on such pathological disorders, it is crucial to study compounds that inhibit these proteins. This study aims to evaluate the inhibitory potential of 14 flavonoids on TNF-α release in human whole blood as well as the inhibitory potential of myricetin towards kinases involved in tumorigenesis. Our results showed that, out of all flavonoids, myricetin had the highest inhibitory effect on TNF-α level. In addition, myricetin showed potential as a multi-anti-kinase compound, reducing the activity of 7 kinases by >70% and of 9 kinases by >90%. Together these data demonstrate the great inhibitory activity of myricetin on tumorigenic kinases and potential for the development of new therapeutics.
Collapse
Affiliation(s)
- Stefani Stoll
- Cell Culture Laboratory, Postgraduate Program in Biotechnology, University of Taquari Valley (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Cell Culture Laboratory, Postgraduate Program in Biotechnology, University of Taquari Valley (Univates), Lajeado, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Program in Biotechnology, University of Taquari Valley (Univates), Lajeado, Brazil
| |
Collapse
|
30
|
Wei Y, Zhou S, Hao T, Zhang J, Gao Y, Qian S. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci 2018; 129:21-30. [PMID: 30590119 DOI: 10.1016/j.ejps.2018.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 01/11/2023]
Abstract
The current study aims to improve the dissolution and oral bioavailability of a BCS IV drug docetaxel (DOC) by coamorphization with a natural P-gp inhibitor myricetin (MYR). A single-phase coamorphous form of DOC with MYR in a 1:1 molar ratio was prepared by solvent-evaporation method and characterized by differential scanning calorimetry, thermogravimetric analysis and powder X-ray diffraction. In comparison to crystalline DOC, amorphous DOC showed similar equilibrium aqueous solubility, temporary improvement in the intrinsic dissolution rate (IDR) and supersaturated dissolution; while coamorphous DOC-MYR exhibited a persistent enhanced IDR and prolonged highly supersaturated dissolution. In addition, coamorphous DOC-MYR demonstrated significantly superior physical stability compared to amorphous DOC under the long-term storage condition and accelerated condition. Compared with oral administration of crystalline DOC to rats, amorphous DOC showed a significant increase in Cmax (2.6-fold) and a marginal increase in AUC (1.3-fold) of DOC; but coamorphous DOC-MYR performed a 3.9-fold higher Cmax and 3.1-fold higher AUC. In conclusion, coamorphization of DOC with MYR was a promising approach to enhance both dissolution and oral absorption of poorly soluble and permeable DOC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengyan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyun Hao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Bender O, Llorent-Martínez EJ, Zengin G, Mollica A, Ceylan R, Molina-García L, Fernández-de Córdova ML, Atalay A. Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS One 2018; 13:e0197815. [PMID: 29864137 PMCID: PMC5986121 DOI: 10.1371/journal.pone.0197815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
The genus Hypericum is one of the most popular genera in both traditional medicine and scientific platform. This study is designed to provide conceptual insights on the biological potential and chemical characterization of H. salsugineum, which is endemic to Turkey. The qualitative and quantitative phenolic content of the extracts was characterized by HPLC-ESI-MSn. Biological efficiency was investigated by enzyme inhibitory assays (cholinesterases, tyrosinase, amylase, and glucosidase) and anti-cancer efficacy tests (anti-proliferative activities with the iCELLigence technology, colony formation and wound healing scratch assays). Phenolic acids (3-O-caffeoylquinic, 5-O-caffeoylquinic, and 4-O-caffeoylquinic acids) were the predominant group in the studied extracts, although several flavonoids were also detected and quantified. The extracts exhibited good inhibitory effects on tyrosinase and glucosidase, while they had weak ability against cholinesterases and amylase. Computational studies were also performed to explain the interactions between the major phenolics and these enzymes. The extracts displayed significant anti-cancer effects on breast carcinoma cell lines. Our findings suggest that Hypericum salsugineum could be valued as a potential source of biologically-active compounds for designing novel products.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Gokhan Zengin
- Deparment of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti-Italy
| | - Ramazan Ceylan
- Deparment of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Lucia Molina-García
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, Jaén, Spain
| | | | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
33
|
Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol 2018; 118:154-167. [PMID: 29742465 DOI: 10.1016/j.fct.2018.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
Abstract
Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H2O2) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferiprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H2O2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction.
Collapse
Affiliation(s)
- Allison Knickle
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna L Greenshields
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Surgery, Faculty of Medicine, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
34
|
Yang Z, Wang H, Xia L, Oyang L, Zhou Y, Zhang B, Chen X, Luo X, Liao Q, Liang J. Overexpression of PAK1 Correlates with Aberrant Expression of EMT Markers and Poor Prognosis in Non-Small Cell Lung Cancer. J Cancer 2017; 8:1484-1491. [PMID: 28638464 PMCID: PMC5479255 DOI: 10.7150/jca.18553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
Objective: p21-activated kinases (PAKs) are serine/threonine protein kinases. PAK1 and epithelial-mesenchymal transition (EMT) are key therapeutic targets in cancer. The clinical significance of PAK1 and its potential association with EMT phenotype in non-small cell lung cancer (NSCLC) was investigated. Methods: Immunohistochemistry was used to detect the expression of PAK1, and mesenchymal and epithelial markers (vimentin, N-cadherin, and E-cadherin) in 186 cases of NSCLC tissues and 50 cases of tumor-adjacent normal tissues. The correlation of PAK1 with the clinicopathological characteristics, prognosis, and mesenchymal and epithelial markers in NSCLC were analyzed. Results: Compared with the non-tumor tissues, PAK1, vimentin, and N-cadherin levels were markedly elevated in NSCLC tissues, whereas the E-cadherin levels were significantly decreased (P<0.05). The aberrant expression of PAK1 was significantly associated with TNM stage and metastasis (P<0.001). Patients who displayed high expression of PAK1 may achieve a poorer progression-free survival (PFS) and overall survival (OS), compared to those with low expression of PAK1 (P=0.001 and P<0.001). Univariate and multivariate analysis showed that high expression of PAK1 was an independent predictor of poor prognosis [hazard ratio (HR) =2.121, P<0.001, HR=1.928, P=0.001, respectively]. In addition, significant correlations were observed between the EMT markers and OS or PFS (P<0.01). Interestingly, PAK1 expression was positively correlated with vimentin and N-cadherin levels (r=0.473, P<0.001; r=0.526, P<0.001, respectively) and negatively correlated with E-cadherin levels (r=-0.463, P<0.001) in NSCLC tissues. Conclusion: PAK1 may promote NSCLC progression and metastasis through EMT, thereby exhibiting the potential of an efficient prognostic predictor in NSCLC patients.
Collapse
Affiliation(s)
- Zhiying Yang
- Department of Histology and Embryology, Medical College, Hunan normal University, Changsha 410013, PR China
| | - Heran Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Baihua Zhang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xiaoyan Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jianping Liang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
35
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|