1
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Ni J, Hong J, Li Q, Zeng Q, Xia R. Long non-coding RNA CRNDE suppressing cell proliferation is regulated by DNA methylation in chronic lymphocytic leukemia. Leuk Res 2021; 105:106564. [PMID: 33857783 DOI: 10.1016/j.leukres.2021.106564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Long non-coding RNA CRNDE and DNA methylation play a vital role in the occurrence and development of chronic lymphocytic leukemia (CLL). This study attempted to investigate the biological role of CRNDE methylation in CLL. The expression and methylation levels of CRNDE in CLL cell lines (MEC-1 and HG3) before or after methylation inhibitor (5-Aza-2'-deoxycytidine, 5-Aza-CdR) treatment was detected by quantitative real-time PCR or methylation-Specific PCR. The relationship among CRNDE, miR-28 and NDRG2 was verified by luciferase reporter assay. The effect of CRNDE overexpression and 5-Aza-CdR treatment on cell proliferation and apoptosis of MEC-1 and HG3 cells were assessed by CCK8 and flow cytomery. Compared with normal B lymphocytes, CRNDE was down-regulated and the methylation level of CRNDE was increased in MEC-1 and HG3 cells. Then, 5-Aza-CdR treatment caused an increase of CRNDE expression in MEC-1 and HG3 cells by demethylation. The overexpression or demethylation of CRNDE inhibited cell proliferation and promoted apoptosis in MEC-1 and HG3 cells by up-regulating CRNDE expression. Moreover, CRNDE functioned as a competing endogenous RNA to repress miR-28, which controlled its down-stream target NDRG2. CRNDE overexpression inhibited cell proliferation and promoted apoptosis via miR-28/NDRG2 axis in CLL. In conclusion, our data elaborated that CRNDE expression was regulated by DNA methylation, and the protective effect of CRNDE on CLL was attributed to the inhibition of proliferation in CLL via miR-28/NDRG2 axis. Thus, this work highlights a novel competing endogenous RNA circuitry involving key regulators of CLL.
Collapse
Affiliation(s)
- Jing Ni
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jian Hong
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qingsheng Li
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qingshu Zeng
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ruixiang Xia
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
3
|
Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W, Kang W. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6940953. [PMID: 33344645 PMCID: PMC7725562 DOI: 10.1155/2020/6940953] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Plumbagin (PLB), a natural naphthoquinone constituent isolated from the roots of the medicinal plant Plumbago zeylanica L., exhibited anticancer activity against a variety of cancer cell lines including breast cancer, hepatoma, leukemia, melanoma, prostate cancer, brain tumor, tongue squamous cell carcinoma, esophageal cancer, oral squamous cell carcinoma, lung cancer, kidney adenocarcinoma, cholangiocarcinoma, gastric cancer, lymphocyte carcinoma, osteosarcoma, and canine cancer. PLB played anticancer activity via many molecular mechanisms, such as targeting apoptosis, autophagy pathway, cell cycle arrest, antiangiogenesis pathway, anti-invasion, and antimetastasis pathway. Among these signaling pathways, the key regulatory genes regulated by PLB were NF-kβ, STAT3, and AKT. PLB also acted as a potent inducer of reactive oxygen species (ROS), suppressor of cellular glutathione, and novel proteasome inhibitor, causing DNA double-strand break by oxidative DNA base damage. This review comprehensively summarizes the anticancer activity and mechanism of PLB.
Collapse
Affiliation(s)
- Zhenhua Yin
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Juanjuan Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Lin Chen
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Qingfeng Guo
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Baocheng Yang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Wei Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Wenyi Kang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Mancilla IA, Coatti GC, Biazi BI, Zanetti TA, Baranoski A, Marques LA, Corveloni AC, Lepri SR, Mantovani MS. Molecular pathways related to the control of proliferation and cell death in 786-O cells treated with plumbagin. Mol Biol Rep 2019; 46:6071-6078. [PMID: 31456160 DOI: 10.1007/s11033-019-05042-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Plumbagin (PLB) is a phytochemical being used for centuries in traditional medicines. Recently, its capacity to inhibit the development of human tumors has been observed, through the induction of apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Here we evaluated the mechanism of action of PLB in the kidney adenocarcinoma 786-O cell line, which are metabolizing cells important for toxicology studies. After the treatment with PLB, we observed increased apoptosis and cell cycle arrest in S and G2/M phases, starting at 5 µM. In addition, PLB was cytotoxic, genotoxic and induced loss of cell membrane integrity. Regarding gene expression, treatment with 7.5 µM PLB reduced the amount of MTOR, BCL2 and ATM transcripts, and increased CDKN1A (p21) transcripts. Phosphorylation levels of yH2AX was increased and MDM2 protein level was reduced following the treatment with PLB, demonstrating its genotoxic effect. Our results suggest that PLB acts in molecular pathways related to the control of proliferation and cell death in 786-O cells.
Collapse
Affiliation(s)
- Igor Alves Mancilla
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center. Institute of Biosciences, University of São Paulo-USP, Rua do Matão-Travessa 13, n. 106, São Paulo, Brazil
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University-UEL, Rodovia Celso Garcia Cid, Pr 445 km 380, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Chien CM, Yang JC, Wu PH, Wu CY, Chen GY, Wu YC, Chou CK, Tseng CH, Chen YL, Wang LF, Chiu CC. Phytochemical naphtho[1,2-b] furan-4,5‑dione induced topoisomerase II-mediated DNA damage response in human non-small-cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:109-119. [PMID: 30668360 DOI: 10.1016/j.phymed.2018.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phytochemical naphtho[1,2-b] furan-4,5‑dione (NFD) presenting in Avicennia marina exert anti-cancer effects, but little is known regarding about DNA damage-mediated apoptosis in non-small-cell lung carcinoma (NSCLC). PURPOSE To examine whether NFD-induced apoptosis of NSCLC cells is correlated with the induction of DNA damage, and to investigate its underlying mechanism. STUDY DESIGN The anti-proliferative effects of NFD were assessed by MTS Assay Kit FACS assay, and in vivo nude mice xenograft assay. The DNA damage related proteins, the Bcl-2 family and pro-apoptotic factors were examined by immunofluorescence assay, q-PCR, and western blotting. The activity of NF-κB p65 in nuclear extracts was detected using a colorimetric DNA-binding ELISA assay. The inhibitory activity of topoisomerase II (TOPO II) was evaluated by molecular docking and TOPO II catalytic assay. RESULTS NFD exerted selective cytotoxicity against NSCLC H1299, H1437 and A549 cells rather than normal lung-embryonated cells MRC-5. Remarkably, we found that NFD activated the hull marker and modulator of DNA damage repairs such as γ-H2AX, ATM, ATR, CHK1, and CHK2 probably caused by the accumulation of intracellular reactive oxygen species (ROS) and inhibition of TOPO II activity. Furthermore, the suppression of transcription factor NF-κB by NFD resulted in significantly decreased levels of pro-survival proteins including Bcl-2 family Bcl-2, Bcl-xL and Mcl-1 and the endogenous inhibitors of apoptosis XIAP and survivin in H1299 cells. Moreover, the nude mice xenograft assay further validated the suppression of H1299 growth by NFD, which is the first report for evaluating the anti-cancer effect of NFD in vivo. CONCLUSION These findings provide a novel mechanism indicating the inhibition of TOPO II activity and NF-κB signaling by NFD, leading to DNA damage and apoptosis of NSCLC tumor cells.
Collapse
Affiliation(s)
- Ching-Ming Chien
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; BioActive Lipid Research Center, BenQ Medical Center, Suzhou, Jiangsu Province, China; Research Center for Natural Products & Drug development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pin-Hsuan Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Research Center for Natural Products & Drug development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chon-Kit Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Tripathi SK, Panda M, Biswal BK. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem Toxicol 2019; 125:566-582. [PMID: 30685472 DOI: 10.1016/j.fct.2019.01.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 12/24/2022]
Abstract
Plumbagin is a naphthoquinone derived yellow crystalline phytochemical. Plumbagin has a wide range of biological effects including cytotoxicity against cancer cells both in vitro and in vivo. Due to the pleiotropic nature of plumbagin, it shows the anticancer effect by targeting several molecular mechanisms including apoptosis and autophagic pathways, cell cycle arrest, anti-angiogenic pathways, anti-invasion and anti-metastasis pathways. Among many signaling pathways the key regulatory genes regulated by plumbagin are NF-kβ, STAT3, and AKT, etc. Plumbagin is also a potent inducer of ROS, suppressor of cellular glutathione, and causes DNA strand break by oxidative DNA base damages. In vivo studies suggested that plumbagin significantly reduces the tumor weight and volume in dose-dependent manner without any side effects in tested model organisms. Another exciting aspect of plumbagin is the ability to re-sensitize the chemo and radioresistant cancer cells when used in combination or alone. Nano encapsulation of plumbagin overcomes the poor water solubility and bioavailability obstacles, enhancing the pharmaceutical relevance with better therapeutic efficacy. Moreover, plumbagin can be introduced as a future phytotherapeutic anticancer drug after fully satisfied preclinical and clinical trials.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India.
| |
Collapse
|
7
|
Palkina N, Komina A, Aksenenko M, Moshev A, Savchenko A, Ruksha T. miR-204-5p and miR-3065-5p exert antitumor effects on melanoma cells. Oncol Lett 2018; 15:8269-8280. [PMID: 29844810 PMCID: PMC5958817 DOI: 10.3892/ol.2018.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-204-5p was previously identified to be downregulated in melanoma compared with melanocytic nevi. This observation prompted a functional study on miR-204-5p and the newly-identified miR-3065-5p, two miRNAs suggested to be tumor-suppressive oncomiRs. Application of miR-204-5p mimics or inhibitors resulted in a decrease or increase, respectively, in melanoma cell proliferation and colony formation. miR-204-5p mimics hindered invasion, whereas miR-204-5p inhibitors stimulated cancer cell migration. Modulation of miR-3065-5p led to a decrease in melanoma cell proliferation, altered cell cycle distribution and increased expression levels of its target genes HIPK1 and ITGA1, possibly due to functional modifications identified in these cells. miR-204-5p and miR-3065-5p demonstrated antitumor capacities that may need to be taken into account in the development of melanoma treatment approaches.
Collapse
Affiliation(s)
- Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maria Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Andrei Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
8
|
Ren J, Liu S, Wan J, Kang E, Chen Z. Effect of hyperbaric oxygen on the process of hypertrophic scar formation in rabbit ears. J Cosmet Dermatol 2018; 17:1240-1249. [PMID: 29504250 DOI: 10.1111/jocd.12468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jizhen Ren
- Department of Plastic and cosmetic surgery Affiliated Hospital of Qingdao University Qingdao China
| | - Sumei Liu
- Department of Qingdao Health School Qingdao China
| | - Jin'e Wan
- Department of Plastic and cosmetic surgery Affiliated Hospital of Qingdao University Qingdao China
| | - Enhao Kang
- Department of Plastic and cosmetic surgery Affiliated Hospital of Qingdao University Qingdao China
| | - Zhenyu Chen
- Department of Plastic and cosmetic surgery Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
9
|
Liu Y, Cai Y, He C, Chen M, Li H. Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:423-441. [DOI: 10.1142/s0192415x17500264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been shown that plumbagin, a bioactive naphthoquinone isolated from three major plant families viz. Plumbaginaceae, Ebenceae and Droseraceae, definitively exhibits anticancer potential in diverse cancer cells both in vitro and in vivo. Plumbagin shows antineoplastic effects via multi-channel molecular mechanisms, including the induction of apoptosis and autophagy, the disruption of the cell cycle, the inhibition of invasion and metastasis, and anti-angiogenesis. Plumbagin inhibits the growth of cancer cells mainly through the modulation of the signals of PI3K/Akt/mTOR, AMPK, Ras, and so on. The pharmaceutical applications of plumbagin combined with nanocarriers to achieve better therapeutic efficiency are discussed in this review Among them, liposomes, nanoparticles, microspheres, micelles, and nisosomes are used in cancer treatment. The anticancer study of plumbagin in vivo is also summarized in this review. On the whole, we aim to review the research progress of plumbagin both in pharmacological and pharmaceutical filed, which may provide some reference for further research of plumbagin.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| |
Collapse
|