1
|
Zhou Z, Li T, Zhang Y, Zhou X, Song X, Ji S, Huang Y, Zhang Y, Ruan Y. PCBP2 promotes immune evasion via cGAS-STING pathway in biochemical recurrence of prostate cancer. APL Bioeng 2025; 9:016112. [PMID: 40051782 PMCID: PMC11884866 DOI: 10.1063/5.0250173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
Immunotherapy resistance is a significant obstacle in the treatment of prostate cancer (PCa), primarily due to immune evasion mechanisms. This study aims to explore cancer-intrinsic immune evasion-related genes (CIERGs) in PCa and develop a predictive signature for biochemical recurrence (BCR). Bulk RNA-seq data and single-cell RNA-sequencing (scRNA-seq) were obtained from TCGA and Gene Expression Omnibus database. The scRNA-seq data analysis revealed higher immune evasion scores in tumor cells compared to normal cells. Differentially expressed genes from TCGA-PRAD and GSE70769 cohorts were intersected with 182 core immune evasion genes, followed by univariate Cox regression, identifying 48 CIERGs significantly associated with BCR. Nonnegative matrix factorization (NMF) clustering revealed two immune evasion-related PCa subtypes. A risk signature based on CIERGs was developed using LASSO regression, and a nomogram was created to predict BCR-free survival. Among the 48 identified CIERGs, poly(C)-binding protein 2 (PCBP2) emerged as a key risk factor associated with poor prognosis in PCa, and its function was validated in vitro. NMF clustering identified two subtypes, with the C1 subtype having a poorer prognosis. Gene Set Variation Analysis highlighted enrichment in cell cycle, extracellular matrix receptor interaction, and transforming growth factor-beta signaling pathways in the C1 subtype. A CIERGs-based risk signature, including six key genes, was developed and validated, with the nomogram showing high predictive accuracy. In vitro experiments showed PCBP2 promotes PCa cell proliferation, migration, and invasion by inhibiting the cyclic GMP-AMP synthase-STING pathway. The CIERGs signature provides a precise prediction of BCR, with PCBP2 emerging as a potential therapeutic target due to its inhibition of the cGAS-STING pathway in PCa.
Collapse
Affiliation(s)
- Zeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehao Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Song
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Ji
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Huang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen Z, Zhong W, Zhang R, Li G, Zhang Y, Zhang M. Down-regulation of PCBP2 suppresses the invasion and migration of trophoblasts via the WNT5A/ROR2 pathway in preeclampsia†. Biol Reprod 2024; 111:1142-1155. [PMID: 39115369 DOI: 10.1093/biolre/ioae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired extravillous trophoblast (EVT) invasion and resulted poor placentation play a vital role in the development of preeclampsia (PE). However, the underlying mechanisms of dysregulated EVTs remain unclear. This study aimed to explore the role of poly (C)-binding protein 2 (PCBP2), a multifunctional RNA-binding protein, in the pathogenesis of PE and to investigate the detailed signaling pathway. Using qRT-PCR, western blot, and immunohistochemistry, we confirmed that the expression of PCBP2 significantly decreased in placentas from 18 early-onset PE and 30 late-onset PE in comparison to those from 30 normotensive pregnancies. Besides, more significant suppression of PCBP2 was observed in the early-onset type. After transfection of HTR-8/SVneo with small-interfering RNA specific to PCBP2, the cellular biological behaviors including vitality, immigration, invasiveness, and apoptosis were evaluated by CCK-8 assay, wound-healing assay, transwell assay, and flow cytometry respectively. RNA-seq was applied to screen differentially expressed genes in HTR-8/SVneo upon PCBP2 silencing. GO and KEGG analysis indicated that WNT signaling pathway and the related processes such as extracellular matrix remodeling and cell adhesion were among the most enriched pathways or processes. Meanwhile, the alternative splicing of WNT5A regulated by PCBP2 was also identified by RIP-seq. Based on HTR-8/SVneo and villous explant, the regulatory roles of PCBP2 on trophoblast were confirmed to be mediated by WNT5A. Besides, it revealed that ROR2/JNK/MMP2/9 pathway was a vital pathway downstream WNT5A in trophoblast cells. In conclusion, this study suggests that down-regulated PCBP2 impaired the functions of EVTs via suppression of WNT5A-mediating ROR2/JNK/MMPs pathway, which may eventually contribute to the development of PE.
Collapse
Affiliation(s)
- Zhenlie Chen
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 1, Henger Rd. Shanwei, 516621, P. R. China
| | - Wen Zhong
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
| | - Ruiqing Zhang
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
| | - Guigui Li
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, No. 169, East Lake Rd., Wuhan 430071, Hubei Province, P. R. China
| |
Collapse
|
3
|
Qu T, Cha L, Liu H, Tian L, Hu X, Zou H, Feng Y, Sun C, Cao J, Guo W, Qiu F, Zhou B. Circ_0005397 inhibits ferroptosis of pancreatic cancer cells by up-regulating PCBP2 through KAT6A/H3K9Ac. FASEB J 2024; 38:e70028. [PMID: 39235355 DOI: 10.1096/fj.202401151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Pancreatic cancer is a highly aggressive and lethal carcinoma. Circular RNAs (circRNAs) serve key regulatory functions in pancreatic cancer. Ferroptosis was induced by erastin treatment and analyzed by examining malondialdehyde (MDA), iron, Fe2+ and glutathione (GSH). C11-BODIPY 581/591 was used to stain cells for analyzing lipid peroxidation. RNA immunoprecipitation, pull-down and chromatin immunoprecipitation assays were applied to evaluate intermolecular interaction. Mice received subcutaneous injection of pancreatic cancer cells as a model of subcutaneous tumor for in vivo tests. Circ_0005397 was abundantly expressed in pancreatic cancer, and its upregulation was associated with low survival of patients with pancreatic cancer. Circ_0005397 expression was induced by EIF4A3. PCBP2 was highly expressed in pancreatic cancer, and circ_0005397 and PCBP2 were positively correlated in patients with pancreatic cancer. Circ_0005397 knockdown sensitized pancreatic carcinoma cells to ferroptosis via downregulating PCBP2. Circ_0005397 promoted PCBP2 transcription via facilitating the binding of KAT6A and H3K9ac to PCBP2 promoter. Silencing of circ_0005397 reduced tumor growth by enhancing erastin-induced ferroptosis in vivo. EIF4A3-induced circ_0005397 inhibited erastin-induced ferroptosis in pancreatic cancer by promoting PCBP2 expression through KAT6A and H3K9ac.
Collapse
Affiliation(s)
- Tengfei Qu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lichao Cha
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongliang Liu
- Department of Hepatobiliary Surgery, Qingdao Women's and Children's Hospital, Qingdao, China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weidong Guo
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Li Y, Liu L. UKLF/PCBP2 axis governs the colorectal cancer development by transcriptionally activating SLC39A4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119755. [PMID: 38768927 DOI: 10.1016/j.bbamcr.2024.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3'-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Lina Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
5
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
6
|
Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res 2023; 28:306. [PMID: 37649103 PMCID: PMC10466881 DOI: 10.1186/s40001-023-01300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
Collapse
Affiliation(s)
- Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| |
Collapse
|
7
|
Lin CY, Omoscharka E, Liu Y, Cheng K. Establishment of a Rat Model of Alcoholic Liver Fibrosis with Simulated Human Drinking Patterns and Low-Dose Chemical Stimulation. Biomolecules 2023; 13:1293. [PMID: 37759693 PMCID: PMC10526499 DOI: 10.3390/biom13091293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Although alcohol is a well-known causal factor associated with liver diseases, challenges remain in inducing liver fibrosis in experimental rodent models. These challenges include rodents' natural aversion to high concentrations of alcohol, rapid alcohol metabolism, the need for a prolonged duration of alcohol administration, and technical difficulties. Therefore, it is crucial to establish an experimental model that can replicate the features of alcoholic liver fibrosis. The objective of this study was to develop a feasible rat model of alcoholic liver fibrosis that emulates human drinking patterns and combines low-dose chemicals within a relatively short time frame. We successfully developed an 8-week rat model of alcoholic liver fibrosis that mimics chronic and heavy drinking patterns. Rats were fed with a control liquid diet, an alcohol liquid diet, or alcohol liquid diet combined with multiple binges via oral gavage. To accelerate the progression of alcoholic liver fibrosis, we introduced low-dose carbon tetrachloride (CCl4) through intraperitoneal injection. This model allows researchers to efficiently evaluate potential therapeutics in preclinical studies of alcoholic liver fibrosis within a reasonable time frame.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Evanthia Omoscharka
- Department of Pathology, University Health/Truman Medical Center, School of Medicine, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
8
|
Wang Q, Li X, Chen Y, Gong J, Hu B. Classification and survival prediction in early-stage cirrhosis by gene expression profiling. J Viral Hepat 2023; 30:116-128. [PMID: 36355440 DOI: 10.1111/jvh.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/12/2022]
Abstract
Liver cirrhosis has been increasingly diagnosed at an early stage owing to the non-invasive diagnostic techniques. However, it is difficult to identify patients at high risk of disease progression. Screening cirrhotic patients with poor prognosis who are most in need of surveillance is still challenging. Gene expression data GSE15654 and GSE14520 were downloaded for performing unsupervised clustering analysis. The prognostic differences between the different clusters were explored by Cox regression. Integrative analysis of gene expression signature, immune cell enrichments and clinical characterization was performed for different clusters. Two distinctive subclasses were identified in HCV-related GSE15654, and Kaplan-Meier analysis indicated that subtype 2 had lower survival rates than subtype 1 (p = 0.0399). Further analysis revealed subtype 2 had a higher density of follicular T helper cells, resting natural killer cells and M0, M2 macrophages while subtype 1 with a higher fraction of naive B cells, memory B cells, resting memory CD 4 T cells, activated natural killer cells and monocytes. 226 differentially expressed genes were identified between the two subtypes, and Reactome analysis showed the mainly enriched pathways were biological oxidations and fatty acid metabolism. Five hub genes (AKT1, RPS16, CDC42, CCND1 and PCBP2) and three significant modules were extracted from the PPI network. The results were validated in HBV-related GSE14520 cohort. We identified two subtypes of patients with different prognosis for hepatitis C-related early-stage liver cirrhosis. Bioinformatics analysis of the gene expression and immune cell profile may provide fresh insight into understanding the prognosis difference.
Collapse
Affiliation(s)
- Qingliang Wang
- Department of General Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojie Li
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqiong Chen
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Kong W, Yin G, Zheng S, Liu X, Zhu A, Yu P, Zhang J, Shan Y, Ying R, Jin H. Long noncoding RNA (lncRNA) HOTAIR: Pathogenic roles and therapeutic opportunities in gastric cancer. Genes Dis 2022; 9:1269-1280. [PMID: 35873034 PMCID: PMC9293693 DOI: 10.1016/j.gendis.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the first malignant cancers in the world and a large number of people die every year due to this disease. Many genetic and epigenetic risk factors have been identified that play a major role in gastric cancer. HOTAIR is an effective epigenetic agent known as long noncoding RNA (lncRNA). HOTAIR has been described to have biological functions in biochemical and cellular processes through interactions with many factors, leading to genomic stability, proliferation, survival, invasion, migration, metastasis, and drug resistance. In the present article, we reviewed the prognostic value of the molecular mechanisms underlying the HOTAIR regulation and its function in the development of Gastric Cancer, whereas elucidation of HOTAIR–protein and HOTAIR–DNA interactions can be helpful in the identification of cancer processes, leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Sixin Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Huicheng Jin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
11
|
Chen Y, Qin H, Zheng L. Research progress on RNA-binding proteins in breast cancer. Front Oncol 2022; 12:974523. [PMID: 36059653 PMCID: PMC9433872 DOI: 10.3389/fonc.2022.974523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and has a high incidence rate and mortality. Abnormal regulation of gene expression plays an important role in breast cancer occurrence and development. RNA-binding proteins (RBPs) are one kind of the key regulators for gene expression. By interacting with RNA, RBPs are widely involved in RNA cutting, transport, editing, intracellular localization, and translation regulation. RBPs are important during breast cancer occurrence and progression by engaging in many aspects, like proliferation, migration, invasion, and stemness. Therefore, comprehensively understanding the role of RBPs in breast cancer progression can facilitate early diagnosis, timely treatment, and long-term survival and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
GPX2 stabilized by PCBP2 induces autophagy to protect Het-1A esophageal cells from apoptosis and inflammation. Cell Signal 2022; 97:110397. [DOI: 10.1016/j.cellsig.2022.110397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
|
13
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
14
|
Zhang CM, Song LD, Wang JW, Ye HB, Chen S. Role of miR-490-3p in blocking bladder cancer growth through targeting the RNA-binding protein PCBP2. Kaohsiung J Med Sci 2022; 38:30-37. [PMID: 34622526 DOI: 10.1002/kjm2.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
MiR-490-3p is regarded as a tumor suppressor in many cancers, but whether miR-490-3p is involved in the development of bladder cancer remains unknown. BALB/c nude mice (male, 15-20 g) were used to investigate the role of MiR-490-3p in bladder cancer. The relationship between miR-490-3p and PCBP2 involved in bladder cancer regulation were determined. Cell viability, proliferation, and cell cycle were estimated by cell counting kit-8 (CCK-8) assay, 5-bromo-2'-deoxyuridine (BrdU) detection, and flow cytometry analysis, respectively. In animal experiments, lentivirus was transfected into bladder cancer cells to overexpress miR-490-3p, which were then injected into mice and the change of tumor volume was assessed. Principal findings: The expression of MiR-490-3p was decreased in bladder cancer cells. Overexpression of miR-490-3p inhibited bladder cancer cell viability and proliferation. Moreover, overexpression of miR-490-3p caused cell cycle arrest in bladder cancer cells. The inhibitory effect of miR-490-3p on bladder cancer cells growth could be counteracted by enhancing PCBP2 expression. In vivo, bladder cancer growth in mice was blocked by miR-490-3p upregulation. MiR-490-3p suppressed bladder cancer growth and bladder cancer cell proliferation by down-regulating PCBP2 expression.
Collapse
Affiliation(s)
- Cun-Ming Zhang
- Department of Urinary Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Li-De Song
- Department of Urinary Surgery, Zhuji People's Hospital, Shaoxing City, Zhejiang Province, China
| | - Jun-Wei Wang
- Department of Urinary Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Hai-Bo Ye
- Department of Urinary Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang Province, China
| | - Song Chen
- Department of Urinary Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang Province, China
| |
Collapse
|
15
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
16
|
Upregulation of a novel LncRNA AC104958.2 stabilized by PCBP2 promotes proliferation and microvascular invasion in hepatocellular carcinoma. Exp Cell Res 2021; 407:112791. [PMID: 34418457 DOI: 10.1016/j.yexcr.2021.112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) were reported to be involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Microvascular invasion (MVI) is an independent predictor for early recurrence and overall survival in postoperative patients with HCC. However, the mechanisms how lncRNAs affect HCC and MVI remain elusive. By RNA sequencing (RNA-seq) in a series of 65 HCC samples and 30 paired adjacent non-tumor liver tissue, we identified a novel lncRNA AC104958.2 that was significantly upregulated in HCC tissues and associated with MVI. Overexpression of AC104958.2 obviously elevated cell viability, metastasis, invasion and epithelial-mesenchymal transition (EMT), while knockout of AC104958.2 mediated by CRISPR/Cas9 technique showed the opposite effects. In addition, the interaction between AC104958.2 and Poly (rC) binding protein 2 (PCBP2) was identified by RNA pull down and mass spectrometry (MS), which was further validated by RNA immunoprecipitation (RIP). PCBP2 was also upregulated in HCC and associated with MVI. High expression of both AC104958.2 and PCBP2 was correlated with tumor size, TNM stage and MVI in HCC. Overexpression of PCBP2 greatly increased the cell viability, metastasis, invasion and EMT. Moreover, actinomycin D assay showed that overexpression of PCBP2 enhanced the RNA stability of AC104958.2. In conclusion, our study showed that a novel lncRNA AC104958.2 exerted oncogenic roles in HCC and might be a promising biomarker and therapeutic target.
Collapse
|
17
|
Razpotnik R, Nassib P, Kunej T, Rozman D, Režen T. Identification of Novel RNA Binding Proteins Influencing Circular RNA Expression in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:7477. [PMID: 34299096 PMCID: PMC8307310 DOI: 10.3390/ijms22147477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are increasingly recognized as having a role in cancer development. Their expression is modified in numerous cancers, including hepatocellular carcinoma (HCC); however, little is known about the mechanisms of their regulation. The aim of this study was to identify regulators of circRNAome expression in HCC. Using publicly available datasets, we identified RNA binding proteins (RBPs) with enriched motifs around the splice sites of differentially expressed circRNAs in HCC. We confirmed the binding of some of the candidate RBPs using ChIP-seq and eCLIP datasets in the ENCODE database. Several of the identified RBPs were found to be differentially expressed in HCC and/or correlated with the overall survival of HCC patients. According to our bioinformatics analyses and published evidence, we propose that NONO, PCPB2, PCPB1, ESRP2, and HNRNPK are candidate regulators of circRNA expression in HCC. We confirmed that the knocking down the epithelial splicing regulatory protein 2 (ESRP2), known to be involved in the maintenance of the adult liver phenotype, significantly changed the expression of candidate circRNAs in a model HCC cell line. By understanding the systemic changes in transcriptome splicing, we can identify new proteins involved in the molecular pathways leading to HCC development and progression.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Petra Nassib
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia;
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.R.); (P.N.); (D.R.)
| |
Collapse
|
18
|
Yuan C, Chen M, Cai X. Advances in poly(rC)-binding protein 2: Structure, molecular function, and roles in cancer. Biomed Pharmacother 2021; 139:111719. [PMID: 34233389 DOI: 10.1016/j.biopha.2021.111719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Poly(rC)-binding protein 2 (PCBP2) is an RNA-binding protein that is characterized by its ability to interact with poly(C) with high affinity in a sequence-specific manner. PCBP2 contains three K homology domains, which are consensus RNA-binding domains that play a role in recognizing and combining with RNA and DNA. The specific structure and localization of PCBP2 lay the foundation for its multiple roles in transcriptional, posttranscriptional, and translational processes, even in iron metabolism. Numerous studies have indicated that PCBP2 expression is increased in many cancer types. PCBP2 is considered as an oncogene that promotes tumorigenesis, development of cancer cells, and metastasis. Here, we summarized the current evidence regarding PCBP2 in the proliferation, migration, invasion of cancer cells, and drug resistance, aiming to clarify the molecular mechanisms of PCBP2 in cancer. Results from this review suggest that an in-depth study of PCBP2 in cancer may provide novel biomarkers for prognostic or therapeutic purposes.
Collapse
Affiliation(s)
- Chendong Yuan
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Mingxiang Chen
- Department of Cardiovascular surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, Yubei 401120, China.
| | - Xiaolu Cai
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
19
|
Yang H, Yao F, Davis PF, Tan ST, Hall SRR. CD73, Tumor Plasticity and Immune Evasion in Solid Cancers. Cancers (Basel) 2021; 13:cancers13020177. [PMID: 33430239 PMCID: PMC7825701 DOI: 10.3390/cancers13020177] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumors are ecosystems composed of cancer cells and non-tumor stroma together in a hypoxic environment often described as wounds that do not heal. Accumulating data suggest that solid tumors hijack cellular plasticity possibly to evade detection by the immune system. CD73-mediated generation of the purine nucleoside adenosine, is an important biochemical constituent of the immunosuppressive tumor microenvironment. In this review, the association between CD73 expression and features associated with cellular plasticity involving stemness, epithelial-to-mesenchymal transition and metastasis together with immune infiltration is summarized for a wide range of solid tumor types. Our analyses demonstrate that CD73 correlates with signatures associated with cellular plasticity in solid tumors. In addition, there are strong associations between CD73 expression and type of infiltrating lymphocytes. Collectively, the observations suggest a biomarker-based stratification to identify CD73-adenosinergic rich tumors may help identify patients with solid cancers who will respond to a combinatorial strategy that includes targeting CD73. Abstract Regulatory networks controlling cellular plasticity, important during early development, can re-emerge after tissue injury and premalignant transformation. One such regulatory molecule is the cell surface ectoenzyme ecto-5′-nucleotidase that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine (eADO). Ecto-5′-nucleotidase (NT5E) or cluster of differentiation 73 (CD73), is an enzyme that is encoded by NT5E in humans. In normal tissue, CD73-mediated generation of eADO has important pleiotropic functions ranging from the promotion of cell growth and survival, to potent immunosuppression mediated through purinergic G protein-coupled adenosine receptors. Importantly, tumors also utilize several mechanisms mediated by CD73 to resist therapeutics and in particular, evade the host immune system, leading to undesired resistance to targeted therapy and immunotherapy. Tumor cell CD73 upregulation is associated with worse clinical outcomes in a variety of cancers. Emerging evidence indicates a link between tumor cell stemness with a limited host anti-tumor immune response. In this review, we provide an overview of a growing body of evidence supporting the pro-tumorigenic role of CD73 and adenosine signaling. We also discuss data that support a link between CD73 expression and tumor plasticity, contributing to dissemination as well as treatment resistance. Collectively, targeting CD73 may represent a novel treatment approach for solid cancers.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Sean R. R. Hall
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| |
Collapse
|
20
|
Wang X, Guo Q, Wang H, Yuan X, Wang B, Lobie PE, Zhu T, Tan S, Wu Z. PCBP2 Posttranscriptional Modifications Induce Breast Cancer Progression via Upregulation of UFD1 and NT5E. Mol Cancer Res 2020; 19:86-98. [PMID: 33037085 DOI: 10.1158/1541-7786.mcr-20-0390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
It is commonly accepted that cellular protein levels are primarily determined by mRNA levels. However, discordance between protein and mRNA expression has been implicated in many pathologic conditions including oncogenesis. The mechanisms involved in this discordance are complicated and far from understood. In this study, it was observed that the expression levels of poly(C) binding protein 2 (PCBP2) mRNA and protein were diametric in breast normal and cancer cell lines, paraffin-embedded and fresh tissue specimens, consistent with data from The Cancer Genome Atlas and the Clinical Proteomic Tumor Analysis Consortium. Moreover, PCBP2 protein expression was significantly associated with disease progression and poor outcome in patients with breast cancer. Depletion of PCBP2 protein inhibited cell proliferation, colony formation, migration, invasion, and in vivo tumor growth and metastasis. Forced expression of PCBP2 exhibited the opposite effect. Mechanistically, it was demonstrated that PCBP2 3' untranslated region (3'UTR) was subject to alternative splicing and polyadenylation (APA) in breast cancer tissues and cell lines. Non-full-length 3'UTR PCBP2 transcripts yielded more protein than the full-length 3'UTR transcripts and enhanced the oncogenic and metastatic capacities of human breast cancer cells. Furthermore, UFD1 and NT5E were identified as genes downstream of PCBP2. PCBP2 promoted oncogenicity of breast cancer cells via upregulation of the expression of UFD1 and NT5E by direct binding to their 3'UTR-B portions. IMPLICATIONS: Findings demonstrate that APA of PCBP2 3'UTR contributes to its increased expression with subsequent promotion of breast cancer progression by regulating UFD1 and NT5E. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/1/86/F1.large.jpg.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Hao Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaodong Yuan
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Bijun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School and Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Tao Zhu
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China.
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
21
|
Wen D, Huang Z, Li Z, Tang X, Wen X, Liu J, Li M. LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer by stabilizing RRM1 mRNA. J Cell Physiol 2020; 235:7592-7603. [PMID: 32324262 DOI: 10.1002/jcp.29667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) is one of the commonest malignant cancers among women with high morbidity and mortality. Despite encouraging advances had been found in diagnostic and therapeutic strategies, effective therapeutic strategy and further exploration of the mechanism underlying in CC is still needed. We searched The Cancer Genome Atlas database and found that long noncoding RNA LINC02535 was highly expressed in CC. LINC02535 has not been studied in CC, and its molecular regulation mechanism remains unknown. Based on starBase database, LINC02535 could potentially bind poly (rC) binding protein 2 (PCBP2). In the present study, we discovered a significant increase of the LINC02535 and PCBP2 expression in CC tissues and cells as compared with the adjacent normal tissues and normal cervical epithelial cells. LINC02535 and PCBP2 can bind with each other and were colocated in cytoplasm. LINC02535 and PCBP2 promoted cell proliferation, migration, invasion, and suppressed apoptosis in CC. LINC02535 and PCBP2 facilitated the repair of DNA damage to promote CC progression. LINC02535 cooperated with PCBP2 to enhance the stability of RRM1 messenger RNA (mRNA). RRM1 promoted the repair of DNA damage and epithelial-to-mesenchymal transition (EMT) process in CC cells. LINC02535 regulated tumorigenesis in vivo. In conclusion, LINC02535 cooperated with PCBP2, regulated stability of RRM1 mRNA to promote cell proliferation and EMT process in CC cells by facilitating the repair of DNA damage, providing a potential biomarker for CC.
Collapse
Affiliation(s)
- Danxia Wen
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhong Huang
- The 3rd Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhouyu Li
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi Tang
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Wen
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinquan Liu
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingyi Li
- The 5th Ward of Radiotherapy Department of Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Mao J, Sun Z, Cui Y, Du N, Guo H, Wei J, Hao Z, Zheng L. PCBP2 promotes the development of glioma by regulating FHL3/TGF-β/Smad signaling pathway. J Cell Physiol 2020; 235:3280-3291. [PMID: 31693182 PMCID: PMC7166520 DOI: 10.1002/jcp.29104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to investigate the role of Poly (C)-binding protein 2 (PCBP2) and the related signaling pathway in glioma progression. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were performed to measure PCBP2 messenger RNA and protein expression in glioma tissues or cells. Cell transfection was completed using Lipofectamine 2000. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay and flow cytometry assay were used to explore the effects of PCBP2 expression on biological behaviors of glioma cells. Western blot assay was used for the detection of pathway related proteins. Expression of PCBP2 in glioma tissues and cells were higher than that in paracancerous tissues and normal cells (both p < .01). Moreover, the elevated expression of PCBP2 was significantly correlated with tumor size (p = .001) and WHO stage (p = .010). Knockdown of PCBP2 could suppress proliferation, migration and invasion of glioma cells and promote apoptosis. Besides, the expression of transforming growth factor-β (TGF-β) pathway related proteins TGF-β1, p-Smad2 and p-Smad7 were decreased following the downregulation of PCBP2. PCBP2 also inhibited FHL3 expression by binding to FHL3-3'UTR. The inhibition of FHL3 could reverse the antitumor action caused by PCBP2 silencing. In vivo assay, PCBP2 was also found to inhibit the tumor growth of glioma. PCBP2 activates TGF-β/Smad signaling pathway by inhibiting FHL3 expression, thus promoting the development and progression of glioma.
Collapse
Affiliation(s)
- Jianhui Mao
- Department of NeurosurgeryHarrison international Peace HospitalHengshuiChina
| | - Zhaosheng Sun
- Department of NeurosurgeryHarrison international Peace HospitalHengshuiChina
| | - Yongjian Cui
- Department of NeurologyHarrison International Peace HospitalHengshuiChina
| | - Naiyi Du
- Central LaboratoryHarrison International Peace HospitalHengshuiChina
| | - Hong Guo
- Department of NeurosurgeryHarrison international Peace HospitalHengshuiChina
| | - Jianhui Wei
- Department of NeurosurgeryHarrison international Peace HospitalHengshuiChina
| | - Zhenmin Hao
- Central LaboratoryHarrison International Peace HospitalHengshuiChina
| | - Lei Zheng
- Central LaboratoryHarrison International Peace HospitalHengshuiChina
| |
Collapse
|
23
|
Abstract
Cancer metabolism is a well-known target of cancer therapeutics. Classically, cancer metabolism has been studied in terms of the dependence of cancer cells on crucial metabolites, such as glucose and glutamine. But, the accumulating data show that iron metabolism in tumor microenvironment is also an important factor in preserving the survival of cancer cells. Cancer cells have a distinct phenotype of iron metabolism, which secures the much-needed iron for these metabolically active cells. In order to use this iron efficiently, cancer cells need to increase their iron supply and decrease iron loss. As recent research suggests, this is not only done by modifying the expression of iron-related proteins in cancer cells, but also by interaction of cancer cells with other cells from the tumor milieu. Tumor microenvironment is a dynamic environment characterized with intricate relationship between cancer cells, tumor-associated macrophages, fibroblasts, and other cells. Some of the mechanistic aspects of this relationship have been elucidated, while others are yet to be identified. In any case, identifying the details of the iron phenotype of the cells in tumor microenvironment presents with a new therapeutic opportunity to treat this deadly disease.
Collapse
|
24
|
Hong W, Hu Y, Fan Z, Gao R, Yang R, Bi J, Hou J. In silico identification of EP400 and TIA1 as critical transcription factors involved in human hepatocellular carcinoma relapse. Oncol Lett 2019; 19:952-964. [PMID: 31897208 PMCID: PMC6924164 DOI: 10.3892/ol.2019.11171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality worldwide. Transcription factors (TFs) are crucial proteins that regulate gene expression during cancer progression; however, the roles of TFs in HCC relapse remain unclear. To identify the TFs that drive HCC relapse, the present study constructed co-expression network and identified the Tan module the most relevant to HCC relapse. Numerous hub TFs (highly connected) were subsequently obtained from the Tan module according to the intra-module connectivity and the protein-protein interaction network connectivity. Next, E1A-binding protein p400 (EP400) and TIA1 cytotoxic granule associated RNA binding protein (TIA1) were identified as hub TFs differentially connected between the relapsed and non-relapsed subnetworks. In addition, zinc finger protein 143 (ZNF143) and Yin Yang 1 (YY1) were also identified by using the plugin iRegulon in Cytoscape as master upstream regulatory elements, which could potentially regulate expression of the genes and TFs of the Tan module, respectively. The Kaplan-Meier (KM) curves obtained from KMplot and Gene Expression Profiling Interactive Analysis tools confirmed that the high expression of EP400 and TIA1 were significantly associated with shorter relapse-free survival and disease-free survival of patients with HCC. Furthermore, the KM curves from the UALCAN database demonstrated that high EP400 expression significantly reduced the overall survival of patients with HCC. EP400 and TIA1 may therefore serve as potential prognostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Weiguo Hong
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Yan Hu
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Zhenping Fan
- Liver Disease Center for Cadre Medical Care, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Rong Gao
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Ruichuang Yang
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jingfeng Bi
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jun Hou
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
25
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
26
|
Wojtas B, Gielniewski B, Wojnicki K, Maleszewska M, Mondal SS, Nauman P, Grajkowska W, Glass R, Schüller U, Herold-Mende C, Kaminska B. Gliosarcoma Is Driven by Alterations in PI3K/Akt, RAS/MAPK Pathways and Characterized by Collagen Gene Expression Signature. Cancers (Basel) 2019; 11:cancers11030284. [PMID: 30818875 PMCID: PMC6468745 DOI: 10.3390/cancers11030284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/15/2023] Open
Abstract
Gliosarcoma is a very rare brain tumor reported to be a variant of glioblastoma (GBM), IDH-wildtype. While differences in molecular and histological features between gliosarcoma and GBM were reported, detailed information on the genetic background of this tumor is lacking. We intend to fill in this knowledge gap by the complex analysis of somatic mutations, indels, copy number variations, translocations and gene expression patterns in gliosarcomas. Using next generation sequencing, we determined somatic mutations, copy number variations (CNVs) and translocations in 10 gliosarcomas. Six tumors have been further subjected to RNA sequencing analysis and gene expression patterns have been compared to those of GBMs. We demonstrate that gliosarcoma bears somatic alterations in gene coding for PI3K/Akt (PTEN, PI3K) and RAS/MAPK (NF1, BRAF) signaling pathways that are crucial for tumor growth. Interestingly, the frequency of PTEN alterations in gliosarcomas was much higher than in GBMs. Aberrations of PTEN were the most frequent and occurred in 70% of samples. We identified genes differentially expressed in gliosarcoma compared to GBM (including collagen signature) and confirmed a difference in the protein level by immunohistochemistry. We found several novel translocations (including translocations in the RABGEF1 gene) creating potentially unfavorable combinations. Collected results on genetic alterations and transcriptomic profiles offer new insights into gliosarcoma pathobiology, highlight differences in gliosarcoma and GBM genetic backgrounds and point out to distinct molecular cues for targeted treatment.
Collapse
Affiliation(s)
- Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | - Marta Maleszewska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland.
| | - Pawel Nauman
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw 02-957, Poland.
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw 04-730, Poland.
| | - Rainer Glass
- Neurosurgical Research, University Clinics, LMU Munich 80539, Germany.
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf 20251, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg 20251, Germany.
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg 69120, Germany.
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| |
Collapse
|
27
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
28
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Chen Y, Wang S, He Z, Sun F, Huang Y, Ni Q, Wang H, Wang Y, Cheng C. Dyrk1B overexpression is associated with breast cancer growth and a poor prognosis. Hum Pathol 2017; 66:48-58. [PMID: 28554575 DOI: 10.1016/j.humpath.2017.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/29/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
Dyrk1B, also called minibrain-related kinase (Mirk), is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (Dyrk)/minibrain family of dual-specificity protein kinases. It is a serine/threonine kinase involved in the regulation of tumor progression and cell proliferation. In this study, the role of Dyrk1B in breast cancer development was investigated. The expression of Dyrk1B was detected by Western blot and immunohistochemistry staining, both of which demonstrated that Dyrk1B was overexpressed in breast cancer tissues and cells. Statistical analysis showed that the extent of Dyrk1B expression was associated with multiple clinicopathologic factors, including tumor size, grade, estrogen receptor status, and Ki-67 expression, and that high expression predicted a poor prognosis. The growth of breast cancer cells was inhibited significantly after knockout of DYRK1B by small interfering RNA (siRNA). Moreover, FoxO1 could be phosphorylated by Dyrk1B, and then FoxO1 was shuttled from the cell nucleus into the cytoplasm, which might be the mechanism of Dyrk1B-mediated survival in breast cancer cells. The results suggest that Dyrk1B plays a key role in the progression of breast cancer and provides a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China; Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shuo Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Fulan Sun
- Department of General Surgery, The Second People's Hospital of Nantong, Nantong 226001, China
| | - Yeqing Huang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yingying Wang
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Chun Cheng
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
30
|
Pu M, Wang J, Huang Q, Zhao G, Xia C, Shang R, Zhang Z, Bian Z, Yang X, Tao K. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumour Biol 2017; 39:1010428317709127. [PMID: 28714366 DOI: 10.1177/1010428317709127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the most prevalent neoplasms and the leading cause of cancer-related mortality worldwide. Mitochondrial ribosomal protein S23 is encoded by a nuclear gene and participates in mitochondrial protein translation. Mitochondrial ribosomal protein S23 overexpression has been found in many types of cancer. In this study, we explored mitochondrial ribosomal protein S23 expression in primary hepatocellular carcinoma tissues compared with matched adjacent non-tumoral liver tissues using mitochondrial ribosomal protein S23 messenger RNA and protein levels collected from public databases and clinical samples. Immunohistochemistry was performed to analyze the relationship between mitochondrial ribosomal protein S23 and various clinicopathological features. The results indicated that mitochondrial ribosomal protein S23 was significantly overexpressed in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 expression was correlated with the tumor size and tumor–metastasis–node stage. Moreover, patients with high mitochondrial ribosomal protein S23 expression levels presented poorer survival rates. Mitochondrial ribosomal protein S23 was an independent prognostic factor for survival, especially at the early stage of hepatocellular carcinoma. In addition, the downregulation of mitochondrial ribosomal protein S23 decreased the proliferation of hepatocellular carcinoma in vitro and in vivo. In conclusion, we verified for the first time that mitochondrial ribosomal protein S23 expression was upregulated in hepatocellular carcinoma. High mitochondrial ribosomal protein S23 levels can predict poor clinical outcomes in hepatocellular carcinoma, and this protein plays a key role in tumor proliferation. Therefore, mitochondrial ribosomal protein S23 may be a potential therapeutic target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng Pu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Qike Huang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ge Zhao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xishegn Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
31
|
Qian F, Xiao J, Hu B, Sun N, Yin W, Zhu J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum Pathol 2017; 64:61-68. [PMID: 28412208 DOI: 10.1016/j.humpath.2017.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
The purinergic P2X7 receptor (P2X7R) is a master regulator of inflammation and inflammation-related diseases. Recently, P2X7R has been reportedly involved in carcinogenesis and tumor progression. In this study, we investigated the expression pattern and prognostic merit of P2X7R in human colorectal cancer (CRC). The expression profile of P2X7R in 12 pairs of CRC and non-tumorous specimens was evaluated using Western blotting analysis. Additionally, we performed immunohistochemistry (IHC) on 116 paraffin-embedded CRC specimens, and evaluated the correlation between P2X7R expression and clinicopathological factors. P2X7R was overexpressed in CRC samples, compared with adjacent non-tumorous ones. High P2X7R expression significantly correlated with tumor size (P = .0177), Lymph node metastasis (P = .0128), and TNM stage (P = .0081). Furthermore, univariate and multivariate Cox regression analyses revealed that P2X7R expression could serve as an independent prognostic factor for poor overall survival (P = .0197). Treatment with P2X7R agonist BzATP led to the activation of Akt and NF-κB pathways. Consequently, we revealed that BzATP accelerated the proliferation of CRC cells, whereas co-incubation with PI3K/Akt inhibitor LY294002 significantly impaired BzATP-induced proliferation of CRC cells. Our findings implied that P2X7R may serve as a valuable prognostic indicator and promising therapeutic target of CRC.
Collapse
Affiliation(s)
- Fei Qian
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianjia Xiao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, China
| | - Naizhi Sun
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|