1
|
Wadoo R, Ali T, Jan I, Mir SA, Amin A, Qadri R, Alshehri S, Shakeel F, Bader GN, Wani SUD. In-vitro antioxidant and anti-proliferative activity of aerial parts of Senecio Laetus Edgew on breast cancer (MCF-7) and colon carcinoma (HCT116) cell lines. BMC Complement Med Ther 2025; 25:45. [PMID: 39934801 PMCID: PMC11816538 DOI: 10.1186/s12906-025-04789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The present study aimed to perform phytochemical investigation of various fractions of the aerial parts of Senecio laetus Edgew for its bio-constitution and to pharmacologically evaluate these fractions for antioxidant and antiproliferative activities against breast cancer (MCF-7) and colon carcinoma (HCT-116) cell lines. Phytochemical screening and characterization of compounds was carried out as per standard procedures. Extracts were subjected to GC-MS analysis for identification and characterization of constituents. The antioxidant activity was carried out using DPPH, ferric ion reducing power assay, and nitric oxide radical inhibition assays. In vitro antiproliferative activity of the extracts was carried out using MCF-7 (breast cancer) and HCT-116 (colon carcinoma) cancer cell lines by MTT assay, colony formation assay, and wound healing assay. Phytochemical screening showed the presence of alkaloids, flavonoids, carbohydrates, glycosides (cardiac and anthraquinone), tannins, triterpenoids, phenolic compounds, and phytosterols. GC-MS analysis showed the presence of 54 compounds. Ethyl acetate and methanolic extract exhibited the maximum amount of phenolic content compared to dichloromethane and hexane fractions. Antioxidant capacities were shown highest in ethyl acetate and methanolic fractions. The antiproliferative activity was found to be concentration dependent, with dichloromethane fraction more effective than ethyl acetate and hexane fractions against both the MCF-7 and HCT-116 cancer cell lines. The results indicate that S. laetus Edgew has a promising antioxidant and antiproliferative potential as shown by its activity against MCF-7 (breast carcinoma) and HCT-116 (colon carcinoma) cancer cell lines.
Collapse
Affiliation(s)
- Rukhsar Wadoo
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Ifat Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Raies Qadri
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
2
|
Chen T, Hu J, Wang H, Tan N, Qi J, Wang X, Wang L. Combination of bioaffinity ultrafiltration-UFLC-ESI-Q/TOF-MS/MS, in silico docking and multiple complex networks to explore antitumor mechanism of topoisomerase I inhibitors from Artemisiae Scopariae Herba. BMC Complement Med Ther 2023; 23:317. [PMID: 37700261 PMCID: PMC10496380 DOI: 10.1186/s12906-023-04146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Artemisiae Scopariae Herba (ASH) has been widely used as plant medicine in East Asia with remarkable antitumor activity. However, the underlying mechanisms have not been fully elucidated. METHODS This study aimed to construct a multi-disciplinary approach to screen topoisomerase I (topo I) inhibitors from ASH extract, and explore the antitumor mechanisms. Bioaffinity ultrafiltration-UFLC-ESI-Q/TOF-MS/MS was used to identify chemical constitution of ASH extract as well as the topo I inhibitors, and in silico docking coupled with multiple complex networks was applied to interpret the molecular mechanisms. RESULTS Crude ASH extract exhibited toxicogenetic and antiproliferative activities on A549 cells. A series of 34 ingredients were identified from the extract, and 6 compounds were screened as potential topo I inhibitors. Docking results showed that the formation of hydrogen bond and π-π stacking contributed most to their binding with topo I. Interrelationships among the 6 compounds, related targets and pathways were analyzed by multiple complex networks model. These networks displayed power-law degree distribution and small-world property. Statistical analysis indicated that isorhamnetin and quercetin were main active ingredients, and that chemical carcinogenesis-reactive oxygen species was the critical pathway. Electrophoretic results showed a therapeutic effect of ASH extract on the conversion of supercoiled DNA to relaxed forms, as well as potential synergistic effect of isorhamnetin and quercetin. CONCLUSIONS The results improved current understanding of Artemisiae Scopariae Herba on the treatment of tumor. Moreover, the combination of multi-disciplinary methods provided a new strategy for the study of bioactive constituents in medicinal plants.
Collapse
Affiliation(s)
- Tong Chen
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, High-tech Avenue 1#, Baoji, 721013, China
| | - Jingbo Hu
- College of Electronic and Electrical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Huan Wang
- College of Computer Science and Technology, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Nana Tan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, High-tech Avenue 1#, Baoji, 721013, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling, 712100, China
| | - Xiaoling Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, High-tech Avenue 1#, Baoji, 721013, China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, High-tech Avenue 1#, Baoji, 721013, China.
| |
Collapse
|
3
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
4
|
Liu YC, Yang YD, Liu WQ, Du TT, Wang R, Ji M, Yang BB, Li L, Chen XG. Benzobis(imidazole) derivatives as STAT3 signal inhibitors with antitumor activity. Bioorg Med Chem 2022; 65:116757. [PMID: 35504209 DOI: 10.1016/j.bmc.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic systems have been considered good biological probes, but some may also be good scaffolds for drug development. In this study, a series of benzobis(imidazole) derivatives were identified as STAT3 signal inhibitors, among which compound 24 showed significant inhibition of IL-6 induced JAK/STAT3 signalling pathway activation. Moreover, 24 inhibited cancer cell growth and migration, and induced cell apoptosis as well as cycle arrest in human hepatocellular carcinoma cells (HepG2) and oesophageal carcinoma cells (EC109). Compound 24 also displayed obvious antitumor activity in a mouse HepG2 cell xenograft tumor model without affecting the body weight. These results confirmed that 24 was a potential STAT3 signal inhibitor with certain antitumor activity.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
7
|
The Pharmacological Effects and Pharmacokinetics of Active Compounds of Artemisia capillaris. Biomedicines 2021; 9:biomedicines9101412. [PMID: 34680529 PMCID: PMC8533588 DOI: 10.3390/biomedicines9101412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisia capillaris Thunb. (A.capillaris, Yin-Chen in Chinese) is a traditional medicinal herb with a wide spectrum of pharmacological properties ranging from effects against liver dysfunction to treatments of severe cirrhosis and cancer. We used relevant keywords to search electronic databases, including PubMed, Medline, and Google Scholar, for scientific contributions related to this medicinal herb and the pharmacokinetics of its components. The pharmaceutical effects of A.capillaris contribute to the treatment not only of viral hepatitis, cirrhosis, and hepatocellular hepatoma, but also metabolic syndrome, psoriasis, and enterovirus in the clinic. The bioactive compounds, including scoparone, capillarisin, scopoletin, and chlorogenic acid, exhibit antioxidant, anti-inflammatory, antisteatotic, antiviral, and antitumor properties, reflecting the pharmacological effects of A.capillaris. The pharmacokinetics of the main bioactive compounds in A. capillaris can achieve a maximum concentration within 1 hour, but only chlorogenic acid has a relatively long half-life. Regarding the use of the A. capillaris herb by health professionals to treat various diseases, the dosing schedule of this herb should be carefully considered to maximize therapeutic outcomes while lessening possible side effects.
Collapse
|
8
|
Kong WS, Shen FX, Xie RF, Zhou G, Feng YM, Zhou X. Bufothionine induces autophagy in H22 hepatoma-bearing mice by inhibiting JAK2/STAT3 pathway, a possible anti-cancer mechanism of cinobufacini. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113848. [PMID: 33485977 DOI: 10.1016/j.jep.2021.113848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinobufacini is extracted from the skins and parotid venom glands of the toad for treating symptoms like swelling and pain in ancient times. Nowadays, cinobifucini injection has also achieved satisfactory therapeutic effects on hepatocellular carcinoma (HCC) in China. AIM OF THE STUDY Our previous work found that bufothionine, an alkaloid abundant in cinobufacini injection, induced mitochondria-mediated apoptosis. In this work, the underlying effects of bufothionine on autophagy in HCC and its possible dependent pathway were investigated. METHODS CCK-8 and Hoechst staining assays were performed to verify effects of drugs on proliferation and apoptosis of SMMC7721 cell. H22-tumor-bearing mice model was established by inoculating ascites fluid. HE staining was used to observe pathological changes in liver and tumor tissues. ELISA and Western blot experiments were conducted to investigate IL-6/JAK2/STAT3 signaling pathway. The effects of drugs on expressions of autophagic relative proteins were investigated by Western blot in vitro and in vivo. RESULTS In vitro, CCK-8 and Hoechst staining assays showed that bufothionine inhibited SMMC7721 cell proliferation and promoted apoptosis at 100 μM. In vivo, bufothionine relieved symptoms of H22-tumor-bearing mice and exerted anti-inflammation activity. ELISA and Western blot demonstrated that bufothionine significantly reduced serum IL-6 concentration, suppressed p-Stat3tyr705, p-Stat3ser727 and Jak2 expressions in tumor tissues and upregulated Atg5, Atg7 and LC3Ⅱ expressions in SMMC7721 cell and H22 tumor. CONCLUSION This is the first report showing that bufothionine might induce autophagy in HCC by inhibiting JAK2/STAT3 pathway, presenting a possible anti-cancer mechanism of bufothionine in cinobufacini injection.
Collapse
Affiliation(s)
- Wei-Song Kong
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fang-Xue Shen
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Rui-Fang Xie
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gui Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yi-Ming Feng
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Zhou
- Department of Pharmacy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Sakthivel KM, Vishnupriya S, Priya Dharshini LC, Rasmi RR, Ramesh B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. J Pharm Pharmacol 2021; 74:147-161. [PMID: 33847360 DOI: 10.1093/jpp/rgab047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Scopoletin (6-methoxy-7-hydroxycoumarin) is a naturally occurring coumarin belonging to the category of secondary metabolites. Coumarins are commonly found in several herbs and play a prominent role in the defense mechanism of plants. Beneficial effects of scopoletin including antioxidant, anti-diabetic, hepatoprotective, neuroprotective and anti-microbial activity induced via numerous intracellular signalling mechanisms have been widely studied. However, anti-inflammation and anti-tumorigenesis properties of scopoletin are not well documented in the literature. Therefore, the primary focus of the present review was to highlight the plethora of research pertaining to the signalling mechanisms associated with the prevention of the progression of disease condition by scopoletin. KEY FINDINGS Multiple signalling pathways like nuclear erythroid factor-2 (NEF2)-related factor-2 (NRF-2), apoptosis/p53 signalling, nuclear factor-κB (NF-κB) signalling, autophagy signalling, hypoxia signalling, signal transducer and activator of transcription-3 (STAT3) signalling, Wnt-β signalling, Notch signalling are coupled with the anti-inflammation and anti-tumorigenesis potential of scopoletin. SUMMARY Understanding crucial targets in these molecular signalling pathways may support the role of scopoletin as a promising naturally derived bioactive compound for the treatment of several diseases.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Balasubramanian Ramesh
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Wang X, Wu K, Fang L, Yang X, Zheng N, Du Z, Lu Y, Xie Z, Liu Z, Zuo Z, Ye F. Discovery of N-substituted sulfamoylbenzamide derivatives as novel inhibitors of STAT3 signaling pathway based on Niclosamide. Eur J Med Chem 2021; 218:113362. [PMID: 33774344 DOI: 10.1016/j.ejmech.2021.113362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been confirmed as an attractive therapeutic target for cancer therapy. Herein, we designed and synthesized a series of N-substituted Sulfamoylbenzamide STAT3 inhibitors based on small-molecule STAT3 inhibitor Niclosamide. Compound B12, the best active compound of this series, was identified as an inhibitor of IL-6/STAT3 signaling with an IC50 of 0.61-1.11 μM in MDA-MB-231, HCT-116 and SW480 tumor cell lines with STAT3 overexpression, by inhibiting the phosphorylation of STAT3 of Tyr705 residue and the expression of STAT3 downstream genes, inducing apoptosis and inhibiting the migration of cancer cells. Furthermore, in vivo study revealed that compound B12 suppressed the MDA-MB-231 xenograft tumor growth in nude mice at the dose of 30 mg/kg (i.g.), which has better antitumor activity than the positive control Niclosamide. More importantly, B12 is an orally bioavailable anticancer agent as a promising candidate for further development.
Collapse
Affiliation(s)
- Xuebao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojiao Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zongxuan Du
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiguo Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Faqing Ye
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
12
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Moon SJ, Lee CH, Lee DY. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing data support that herbal medicines are beneficial in the treatment of cervical cancer; however, their mechanisms of action remain to be elucidated. In the current study, we used a systems pharmacology approach to explore the pharmacological mechanisms of FDY003, an anticancer herbal formula comprising Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris (Linn.) Link, in the treatment of cervical cancer. Through the pharmacokinetic assessment of absorption-distribution-metabolism-excretion characteristics, we found 18 active compounds that might interact with 106 cervical cancer-related targets responsible for the pharmacological effects. FDY003 targets were significantly associated with gene ontology terms related to the regulation of cellular behaviors, including cell proliferation, cell cycle processes, cell migration, cell apoptosis, cell death, and angiogenesis. The therapeutic targets of the herbal drug were further enriched in various oncogenic pathways that are implicated in the tumorigenesis and progression of cervical cancer, including the phosphatidylinositol 3-kinase, mitogen-activated protein kinase, focal adhesion, human papillomavirus infection, and tumor necrosis factor signaling pathways. Our study provides a systematic approach to explore the anticancer properties of herbal medicines against cervical cancer.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | | | - Chol Hee Lee
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| |
Collapse
|
13
|
Lee KW, Chung KS, Lee JH, Choi JH, Choi SY, Kim S, Lee JY, Lee KT. Resveratrol analog, N-(4-methoxyphenyl)-3,5-dimethoxybenzamide induces G 2/M phase cell cycle arrest and apoptosis in HeLa human cervical cancer cells. Food Chem Toxicol 2018; 124:101-111. [PMID: 30508562 DOI: 10.1016/j.fct.2018.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
In this study, several resveratrol analogs were synthesized and evaluated in search of a more effective anti-proliferative resveratrol analog. Among the evaluated resveratrol analogs, we have identified N-(4-methoxyphenyl)-3,5-dimethoxybenamide (MPDB) as a potent anti-proliferative compound. Treatment with MPDB resulted in G2/M phase cell cycle arrest, which was accompanied by alteration of G2/M-related protein expression and phosphorylation. MPDB-induced G2/M arrest was blocked by transfection of ATM/ATR siRNAs, indicating the critical role of ATM/ATR in G2/M phase arrest. In addition, treatment with MPDB displayed the activation of caspase and decreased Bcl-xl protein expression after 20 h in HeLa cells. Moreover, MPDB increased cytosolic cytochrome c release and Fas and Fas-L protein expression, indicating intrinsic and extrinsic apoptosis pathway, respectively. These results suggest that MPDB is a new and potent compound that induces ATM/ATR-dependent G2/M phase cell cycle arrest and apoptosis, implicating it as a putative candidate in the investment of cervical cancer therapy.
Collapse
Affiliation(s)
- Kyung-Won Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju, 55365, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
14
|
Yan H, Jung KH, Kim J, Rumman M, Oh MS, Hong SS. Artemisia capillaris extract AC68 induces apoptosis of hepatocellular carcinoma by blocking the PI3K/AKT pathway. Biomed Pharmacother 2018; 98:134-141. [DOI: 10.1016/j.biopha.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
|