1
|
An P, Li X, Zhao Y, Li L, Wang Y, Wang W, Zhang T, Wang S, Wu X. Curcumin alleviates renal fibrosis in chronic kidney disease by targeting the circ_0008925-related pathway. Ren Fail 2025; 47:2444393. [PMID: 40038566 PMCID: PMC11884099 DOI: 10.1080/0886022x.2024.2444393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Curcumin has been shown to inhibit renal fibrosis, but whether curcumin mediates renal fibrosis progression by regulating the circular RNA (circRNA)-related pathway remain unclear. METHODS TGF-β1 was used to construct renal injury and fibrosis cell model. Cell growth was evaluated by cell counting kit 8 assay, EdU assay and flow cytometry. Fibrosis marker and interleukin 6 signal transducer (IL6ST) protein levels were measured using western bolt analysis. Inflammation factor concentrations were determined by ELISA. Circ_0008925, miR-204-5p and IL6ST expression was assessed by qRT-PCR. Unilateral ureteral obstruction (UUO) mice models were constructed to assess the role of curcumin in vivo. RESULTS Curcumin treatment alleviated TGF-β1-induced HK-2 cell apoptosis, inflammation and fibrosis in vitro, as well as relieved renal injury in UUO mice models in vivo. Circ_0008925 was highly expressed in TGF-β1-induced HK-2 cells and its expression was inhibited by curcumin. Circ_0008925 could sponge miR-204-5p to positively regulate IL6ST. The inhibition effect of curcumin on TGF-β1-induced HK-2 cell injury and fibrosis was reversed by circ_0008925 overexpression, miR-204-5p inhibitor or IL6ST upregulation. Besides, circ_0008925 knockdown inhibited TGF-β1-induced HK-2 cell injury and fibrosis by suppressing IL6ST expression. CONCLUSION Curcumin relieved renal fibrosis through regulating circ_0008925/miR-204-5p/IL6ST axis.
Collapse
Affiliation(s)
- Peng An
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xingyao Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanhong Zhao
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Liuyun Li
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yafeng Wang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenfang Wang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Zhang
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sicen Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xili Wu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen C, Liu W, Gu X, Zhang L, Mao X, Chen Z, Tao L. Baicalin-loaded Polydopamine modified ZIF-8 NPs inhibits myocardial ischemia/reperfusion injury in rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1863-1878. [PMID: 38830010 DOI: 10.1080/09205063.2024.2358640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Baicalin (BAN) has shown promise in alleviating myocardial ischemia/reperfusion (I/R) injury, yet its limited solubility and biocompatibility have hindered its application. Developing drug delivery systems is a promising strategy to enhance the therapeutic potential of BAN in the context of I/R injury. This study aims to prepare a BAN-loaded nanodrug system using polydopamine (PDA)-modified Zeolitic imidazolate framework-8 (ZIF-8) as a carrier, with the goal of improving BAN's mitigating effects on I/R injury. We prepared the BAN nanoparticles (NPs) system, PZB NPs, using ZIF-8 as the carrier. The system was characterized in terms of morphology, particle size, zeta potential, and X-ray diffraction (XRD). We assessed the cytotoxicity of PZB NPs in H9c2 cells, investigated its effects and mechanisms in H/R-induced H9c2 cells, and evaluated its ability to alleviate myocardial I/R injury in rats. PZB NPs exhibited good dispersion, with a BAN loading efficiency of 26.43 ± 1.55%, a hydrated particle size of 102.21 ± 1.19 nm, and a zeta potential of -24.84 ± 0.07 mV. It displayed slow and sustained drug release in an acidic environment (pH 5.5). In vitro studies revealed that PZB NPs was non-cytotoxic and significantly enhanced the recovery of H/R injury H9c2 cell viability. PZB NPs suppressed cell apoptosis, activated the Nrf2/HO-1 pathway, and cleared ROS. In vivo study demonstrated that PZB NPs significantly reduced infarct size, ameliorated fibrosis and improved heart function. The PZB NPs markedly enhances BAN's ability to alleviate I/R injury, both in vitro and in vivo, offering a promising drug delivery system for clinical applications.
Collapse
Affiliation(s)
- Changgong Chen
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Wenhua Liu
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Xingjian Gu
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Li Zhang
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Xiang Mao
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Zili Chen
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| | - Luyuan Tao
- Department of Cardiology, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, P. R. China
| |
Collapse
|
4
|
Williquett J, Allamargot C, Sun H. AMPK-SP1-Guided Dynein Expression Represents a New Energy-Responsive Mechanism and Therapeutic Target for Diabetic Nephropathy. KIDNEY360 2024; 5:538-549. [PMID: 38467599 PMCID: PMC11093544 DOI: 10.34067/kid.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Key Points AMP kinase senses diabetic stresses in podocytes, subsequently upregulates specificity protein 1–mediated dynein expression and promotes podocyte injury. Pharmaceutical restoration of dynein expression by targeting specificity protein 1 represents an innovative therapeutic strategy for diabetic nephropathy. Background Diabetic nephropathy (DN) is a major complication of diabetes. Injury to podocytes, epithelial cells that form the molecular sieve of a kidney, is a preclinical feature of DN. Protein trafficking mediated by dynein, a motor protein complex, is a newly recognized pathophysiology of diabetic podocytopathy and is believed to be derived from the hyperglycemia-induced expression of subunits crucial for the transportation activity of the dynein complex. However, the mechanism underlying this transcriptional signature remains unknown. Methods Through promoter analysis, we identified binding sites for transcription factor specificity protein 1 (SP1) as the most shared motif among hyperglycemia-responsive dynein genes. We demonstrated the essential role of AMP-activated protein kinase (AMPK)–regulated SP1 in the transcription of dynein subunits and dynein-mediated trafficking in diabetic podocytopathy using chromatin immunoprecipitation quantitative PCR and live cell imaging. SP1-dependent dynein-driven pathogenesis of diabetic podocytopathy was demonstrated by pharmaceutical intervention with SP1 in a mouse model of streptozotocin-induced diabetes. Results Hyperglycemic conditions enhance SP1 binding to dynein promoters, promoted dynein expression, and enhanced dynein-mediated mistrafficking in cultured podocytes. These changes can be rescued by chemical inhibition or genetic silencing of SP1. The direct repression of AMPK, an energy sensor, replicates hyperglycemia-induced dynein expression by activating SP1. Mithramycin inhibition of SP1-directed dynein expression in streptozotocin-induced diabetic mice protected them from developing podocytopathy and prevented DN progression. Conclusions Our work implicates AMPK-SP1–regulated dynein expression as an early mechanism that translates energy disturbances in diabetes into podocyte dysfunction. Pharmaceutical restoration of dynein expression by targeting SP1 offers a new therapeutic strategy to prevent DN.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
5
|
Lin Z, Lv D, Liao X, Peng R, Liu H, Wu T, Wu K, Sun Y, Zhang Z. CircUBXN7 promotes macrophage infiltration and renal fibrosis associated with the IGF2BP2-dependent SP1 mRNA stability in diabetic kidney disease. Front Immunol 2023; 14:1226962. [PMID: 37744330 PMCID: PMC10516575 DOI: 10.3389/fimmu.2023.1226962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Inflammatory cell infiltration is a novel hallmark of diabetic kidney disease (DKD), in part, by activated macrophages. Macrophage-to-tubular epithelial cell communication may play an important role in renal fibrosis. Circular RNAs (circRNAs) have been reported in the pathogenesis of various human diseases involving macrophages activation, including DKD. However, the exact mechanism of circRNAs in macrophage infiltration and renal fibrosis of DKD remains obscure. Methods In our study, a novel circRNA circUBXN7 was identified in DKD patients using microarray. The function of circUBXN7 in vitro and in vivo was investigated by qRT-PCR, western blot, and immunofluorescence. Finally, a dual-luciferase reporter assay, ChIP, RNA pull-down, RNA immunoprecipitation and rescue experiments were performed to investigate the mechanism of circUBXN7. Results We demonstrated that the expression of circUBXN7 was significantly upregulated in the plasma of DKD patients and correlated with renal function, which might serve as an independent biomarker for DKD patients. According to investigations, ectopic expression of circUBXN7 promoted macrophage activation, EMT and fibrosis in vitro, and increased macrophage infiltration, EMT, fibrosis and proteinuria in vivo. Mechanistically, circUBXN7 was transcriptionally upregulated by transcription factor SP1 and could reciprocally promote SP1 mRNA stability and activation via directly binding to the m6A-reader IGF2BP2 in DKD. Conclusion CircUBXN7 is highly expressed in DKD patients may provide the potential biomarker and therapeutic target for DKD.
Collapse
Affiliation(s)
- Ziyue Lin
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Center of Teaching and Learning, Chongqing Medical University, Chongqing, China
| | - Tianhui Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Keqian Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Inhibiting specificity protein 1 attenuated sevoflurane-induced mitochondrial stress and promoted autophagy in hippocampal neurons through PI3K/Akt/mTOR and α7-nAChR signaling. Neurosci Lett 2023; 794:136995. [PMID: 36464148 DOI: 10.1016/j.neulet.2022.136995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Sevoflurane, a commonly used anesthetic in surgery, is considered as an inducer of neurodegenerative diseases and postoperative complications including postoperative cognitive dysfunction. Evidence showed that specificity protein 1 (SP1) participated in the regulation of various cellular processes. Also, SP1 was found to modulate sevoflurane-induced hippocampal inflammatory injury both in vitro and in vivo. Our study aimed to illustrate the role of SP1 in mediating mitochondrial stress and autophagy in neurons under sevoflurane exposure. SiRNA for SP1 was transfected in to hippocampus neurons for the loss-of-function assay before sevoflurane stimulation. Meanwhile, recilisib was utilized for PI3K/Akt/mTOR signaling activation, GTS-21 and MLA (methylycaconitine citrate) were used to activate or inactivate alpha 7 nicotinic acetylcholine receptor (α7-nAChR), respectively. Sevoflurane induced SP1 upregulation and autophagy suppression. Interfering SP1 dramatically depressed the promoted oxidative stress and mitochondrial dysfunction induced by sevoflurane. Additionally, SP1 silence blocked sevoflurane-induced activation of PI3K/Akt/mTOR signaling and inhibition of α7-nAChR. Restoring PI3K/Akt/mTOR signaling or depressing CAP significantly reversed the repressive effects of SP1 knockdown on mitochondrial stress and autophagy imbalance in hippocampal cells. In conclusions, our research indicated that SP1 regulated sevoflurane-induced oxidative stress dysregulation, mitochondrial function and cell autophagy in hippocampus via mediating the PI3K/Akt/mTOR and α7-nAChR pathways. Therefore, it might provide a novel sight for sevoflurane-induced hippocampus injury and POCD therapy.
Collapse
|
9
|
Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2023; 13:1041327. [PMID: 36712680 PMCID: PMC9877239 DOI: 10.3389/fphar.2022.1041327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is a long-term kidney damage caused by gradual loss of essential kidney functions. A global health issue, CKD affects up to 16% of the population worldwide. Symptoms are often not apparent in the early stages, and if left untreated, CKD can progress to end-stage kidney disease (ESKD), also known as kidney failure, when the only possible treatments are dialysis and kidney transplantation. The end point of nearly all forms of CKD is kidney fibrosis, a process of unsuccessful wound-healing of kidney tissue. Detection of kidney fibrosis, therefore, often means detection of CKD. Renal biopsy remains the best test for renal scarring, despite being intrinsically limited by its invasiveness and sampling bias. Urine is a desirable source of fibrosis biomarkers as it can be easily obtained in a non-invasive way and in large volumes. Besides, urine contains biomolecules filtered through the glomeruli, mirroring the pathological state. There is, however, a problem of highly abundant urinary proteins that can mask rare disease biomarkers. Urinary extracellular vesicles (uEVs), which originate from renal cells and carry proteins, nucleic acids, and lipids, are an attractive source of potential rare CKD biomarkers. Their cargo consists of low-abundant proteins but highly concentrated in a nanosize-volume, as well as molecules too large to be filtered from plasma. Combining molecular profiling data (protein and miRNAs) of uEVs, isolated from patients affected by various forms of CKD, this review considers the possible diagnostic and prognostic value of uEVs biomarkers and their potential application in the translation of new experimental antifibrotic therapeutics.
Collapse
Affiliation(s)
- Melanie Tepus
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisa Tonoli
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Elisabetta A. M. Verderio
- Centre for Health, Ageing and the Understanding of Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Levstek T, Vujkovac B, Cokan Vujkovac A, Trebušak Podkrajšek K. Urinary-derived extracellular vesicles reveal a distinct microRNA signature associated with the development and progression of Fabry nephropathy. Front Med (Lausanne) 2023; 10:1143905. [PMID: 37035314 PMCID: PMC10076752 DOI: 10.3389/fmed.2023.1143905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Early initiation is essential for successful treatment of Fabry disease, but sensitive and noninvasive biomarkers of Fabry nephropathy are lacking. Urinary extracellular vesicles (uEVs) represent a promising source of biomarkers of kidney involvement. Among them, microRNAs (miRNAs) are important post-transcriptional regulators of gene expression that contribute to the development and progression of various kidney diseases. We aimed to identify uEV-derived miRNAs involved in the development and/or progression of Fabry nephropathy. Methods Patients with genetically confirmed Fabry disease and matched control subjects were included. EVs were isolated from the second morning urine by size exclusion chromatography, from which miRNAs were extracted. miRNA urine exosome PCR panels were used to characterize the miRNA signature in a discovery cohort. Individual qPCRs were performed on a validation cohort that included chronological samples. We identified the target genes of dysregulated miRNAs and searched for potential hub genes. Enrichment analyses were performed to identify their potential function. Results The expression of miR-21-5p and miR-222-3p was significantly higher in patients with stable renal function and those with progressive nephropathy compared with the corresponding controls. In addition, the expression of miR-30a-5p, miR-10b-5p, and miR-204-5p was significantly lower in patients with progressive nephropathy, however, in the chronological samples, this was only confirmed for miR-204-5p. Some of the identified hub genes controlled by the dysregulated miRNAs have been associated with kidney impairment in other kidney diseases. Conclusion The miRNA cargo in uEVs changes with the development and progression of Fabry nephropathy and, therefore, represents a potential biomarker that may provide a new option to prevent or attenuate the progression of nephropathy. Furthermore, dysregulated miRNAs were shown to be potentially associated with pathophysiological pathways in the kidney.
Collapse
Affiliation(s)
- Tina Levstek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Bojan Vujkovac
- Centre for Fabry Disease, General Hospital Slovenj Gradec, Slovenj Gradec, Slovenia
| | | | - Katarina Trebušak Podkrajšek
- Laboratory for Translational Medical Biochemistry, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- *Correspondence: Katarina Trebušak Podkrajšek,
| |
Collapse
|
11
|
Sun T, Cao Y, Huang T, Sang Y, Dai Y, Tao Z. Comprehensive analysis of fifteen hub genes to identify a promising diagnostic model, regulated networks, and immune cell infiltration in acute kidney injury. J Clin Lab Anal 2022; 36:e24709. [PMID: 36125921 DOI: 10.1002/jcla.24709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Acute kidney injury is a common clinical problem with no sensitive and specific diagnostic biomarkers and definitive treatments. The underlying molecular mechanisms of acute kidney injury are unclear. Therefore, it is pivotal to explore the underlying mechanisms and screen for novel diagnostic biomarkers, and therapeutic targets. METHODS The present study identified 15 hub genes by WGCNA analysis. LASSO-based logistic regression analysis was used to select key features and construct a diagnostic model of AKI. In addition, GO and KEGG analyses were performed and TF-mRNA and miRNA-mRNA network analysis and immune infiltration analysis of hub genes were performed to reveal the underlying mechanisms of AKI. RESULTS A diagnostic model was constructed by LASSO-based logistic regression analysis and was validated by RT-qPCR based on 15 hub genes. GO and KEGG analyses revealed DEGs were enriched in oxidation-reduction process, cell adhesion, proliferation, migration, and metabolic process. The enriched TFs were BRD2, EP300, ETS1, MYC, SPI1, and ZNF263. The enriched miRNAs were miR-181c-5p, miR-218-5p, miR-485-5p, miR-532-5p and miR-6884-5p. The immune infiltration analysis showed that Macrophages M2 was decreasing significantly revealing a protective factor for further AKI treatment. CONCLUSIONS The present study identified 15 hub genes based on WGCNA. Development and validation of a potentially diagnostic model based on 15 hub genes. In addition, exploring the interaction between transcriptional factors and 15 hub genes, and miRNA-mRNA relationship pairs. Furthermore, immune infiltration analysis was performed by analyzing gene expression profiles of AKI. Our study provides some basis for further experimental studies.
Collapse
Affiliation(s)
- Tao Sun
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ying Cao
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Tiancha Huang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yiwen Sang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yibei Dai
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Zhihua Tao
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
12
|
miR-335-5p regulates the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection by directly regulating SP1. Acta Biochim Biophys Sin (Shanghai) 2022; 54:961-973. [PMID: 35866606 PMCID: PMC9828317 DOI: 10.3724/abbs.2022081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Uncontrolled proliferation, migration and phenotypic switching of vascular smooth muscle cells (VSMCs) are important steps in the development and progression of aortic dissection (AD). The function and potential mechanism of miR-335-5p in the pathogenesis of AD are explored in this study. Specifically, the biological function of miR-335-5p is explored in vitro through CCK-8, Transwell, immunofluorescence, EdU, wound-healing, RT-qPCR and western blotting assays. In addition, an AD model induced by angiotensin II is used to investigate the function of miR-335-5p in vivo. A dual-luciferase assay is performed to verify the targeting relationship between miR-335-5p and specificity protein 1 (SP1). Experiments involving the loss of SP1 function are performed to demonstrate the function of SP1 in the miR-335-5p-mediated regulation of human aortic-VSMCs (HA-VSMCs). AD tissues and platelet-derived growth factor BB (PDGF-BB)-stimulated HA-VSMCs show significant downregulation of miR-335-5p expression and upregulated SP1 expression. Overexpression of miR-335-5p effectively suppresses cell proliferation, migration and synthetic phenotype markers and enhances contractile phenotype markers induced by PDGF-BB treatment. Additionally, SP1 is identified as a target gene downstream of miR-335-5p, and its expression is negatively correlated with miR-335-5p in AD. Upregulation of SP1 partially reverses the inhibitory effect of miR-335-5p on HA-VSMCs, whereas the downregulation of SP1 has the opposite effect. Furthermore, Ad-miR-335-5p clearly suppresses aorta dilatation and vascular media degeneration in the AD model. Our results suggest that miR-335-5p inhibits HA-VSMC proliferation, migration and phenotypic switching by negatively regulating SP1, and indicate that miR-335-5p may be a potential therapeutic target in AD.
Collapse
|
13
|
Jiao Y, Wang J, Jia Y, Xue M. Remote ischemic preconditioning protects against cerebral ischemia injury in rats by upregulating miR-204-5p and activating the PINK1/Parkin signaling pathway. Metab Brain Dis 2022; 37:945-959. [PMID: 35067796 DOI: 10.1007/s11011-022-00910-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Remote ischemic preconditioning (RiPC) is the process where preconditioning ischemia protects the organs against the subsequent index ischemia. RiPC is a protective method for brain damage. This study is to explore the effect and mechanism of RiPC in cerebral ischemia injury in rats through regulation of miR-204-5p/BRD4 expression. Middle cerebral artery occlusion (MCAO) rat model and glucose deprivation (OGD) neuron model were established. The effect of RiPC on neurological deficits, cerebral infarct size, autophagy marker, inflammatory cytokines and apoptosis was evaluated. miR-204-5p expression was analyzed using RT-qPCR, and then downregulated using miR-204-5p antagomir to estimate its effect on MCAO rats. The downstream mechanism of miR-204-5p was explored. RiPC promoted autophagy, reduced cerebral infarct volume and neurological deficit score, and alleviated apoptosis and cerebral ischemia injury in rats, with no significant effects on healthy rat brains. RiPC up-regulated miR-204-5p expression in MCAO rats. miR-204-5p knockdown partially reversed the effect of RiPC. RiPC promoted autophagy in OGD cells, and attenuated inflammation and apoptosis. miR-204-5p targeted BRD4, which partially reversed the effect of miR-204-5p on OGD cells. RiPC activated the PINK1/Parkin pathway via the miR-204-5p/BRD4 axis. In conclusion, RiPC activated the PINK1/Parkin pathway and prevented cerebral ischemia injury by up-regulating miR-204-5p and inhibiting BRD4.
Collapse
Affiliation(s)
- Yiming Jiao
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jinlan Wang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yanjie Jia
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Xie Z, Chen J, Chen Z. MicroRNA-204 attenuates oxidative stress damage of renal tubular epithelial cells in calcium oxalate kidney-stone formation via MUC4-mediated ERK signaling pathway. Urolithiasis 2021; 50:1-10. [PMID: 34783868 DOI: 10.1007/s00240-021-01286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Oxalate-induced oxidative stress causes damage to cells, accompanied with renal deposition of calcium oxalate crystals. Recent studies have highlighted the extensive functions of microRNAs (miRNAs) in various processes, including cellular responses to oxidative stress. Hence, this study was intended to analyze the role of miR-204 in the calcium oxalate kidney-stone formation and the underlying mechanism. In silico analysis was performed to determine the miRNA/mRNA interaction involved in calculus, while dual-luciferase reporter assay was conducted for validation. A calcium oxalate kidney-stone model was established by H2O2 induction in RTEC HK-2 cells, in which the expression of miR-204 was examined. Gain- and loss-of-function approaches were employed to alter the expression of miR-204/MUC4 so as to assess the detailed role of miR-204 in oxidative stress injury in renal tubular epithelial cells (RTECs) and calcium oxalate kidney-stone formation. MUC4, an up-regulated gene in H2O2-induced HK-2 cells, was a target of MUC4. miR-204 functionally targeted MUC4 and blocked the ERK pathway activation. Furthermore, up-regulated miR-204 contributed to promotion of RTEC proliferation and suppression of ROS levels, RTEC apoptosis as well as formation of calcium oxalate crystal. Taken together, miR-204 impairs MUC4-dependent activation of the ERK signaling pathway and consequently ameliorates oxidative stress damage to RTECs and prevents calcium oxalate kidney-stone formation.
Collapse
Affiliation(s)
- Zhijuan Xie
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, People's Republic of China
| | - Zhong Chen
- The First Affiliated Hospital, Department of Nuclear Medicine, Hengyang Medical School, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Hu H, Zhang J, Li Y, Ding J, Chen W, Guo Z. LncRNA SPANXA2-OT1 Participates in the Occurrence and Development of EMT in Calcium Oxalate Crystal-Induced Kidney Injury by Adsorbing miR-204 and Up-Regulating Smad5. Front Med (Lausanne) 2021; 8:719980. [PMID: 34646842 PMCID: PMC8502877 DOI: 10.3389/fmed.2021.719980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the regulatory mechanism of long non-coding RNAs (lncRNAs) in the occurrence and development of epithelial-mesenchymal transition (EMT) in calcium oxalate crystal-induced kidney injury. Materials and Methods: Gene core technique was used to screen differentially expressed lncRNAs and mRNAs in HK-2 cells before and after calcium oxalate monohydrate (COM) stimulation; differentially expressed mRNAs were then analyzed using GO and pathway analysis. The role of target lncRNA in EMT in renal tubular epithelial cells induced by COM was further investigated by applying a series of in vitro experiments. Results: Four differentially expressed lncRNAs (ABCA9-AS1, SPANXA2-OT1, RP11-955H22.1, and RP11-748C4.1) were up-regulated after 48 h of COM stimulation compared to the control group, where up-regulated expression of lncRNA SPANXA2-OT1 was the most significant. Thus, lncRNA SPANXA2-OT1 was further examined. Interference lncRNA SPANXA2-OT1 reversed the down-regulation of E-cadherin and Pan-ck, and up-regulated Vimentin and α-SMA induced by COM stimulation. The application of miR204 inhibitor weakened the interference effect of interfering RNA on lncRNA SPANXA2-OT1 and promoted the occurrence of EMT. Moreover, the miR204 simulator alleviated the overexpression effect of lncRNA SPANXA2-OT1 on COM-stimulated renal tubular epithelial cells and inhibited the occurrence of EMT in renal tubular epithelial cells. Also, a dual-luciferase reporter assay showed that miR-204 could bind to lncRNA SPANXA2-OT1 and Smad5, while lncRNA SPANXA2-OT1 could inhibit cell proliferation and promote cell apoptosis. Conclusion: The lncRNA SPANXA2-OT1 is involved in the occurrence and development of EMT in renal tubular epithelial cells induced by crystalline kidney injury by adsorbing miR-204 and up-regulating Smad5.
Collapse
Affiliation(s)
- Haiyan Hu
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China.,Department of Nephrology, Hainan Hospital of Chinese PLA General Hospital, The Hainan Academician Team Innovation Center, Sanya, China
| | - Yinhui Li
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Hu JM, He LJ, Wang PB, Yu Y, Ye YP, Liang L. Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4. Int J Mol Med 2021; 48:169. [PMID: 34278441 PMCID: PMC8285052 DOI: 10.3892/ijmm.2021.5002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute renal injury (ARI) is a life‑threatening condition and a main contributor to end‑stage renal disease, which is mainly caused by ischemia‑reperfusion (I/R). miR‑106b‑5p is a kidney function‑related miRNA; however, whether miR‑106b‑5p regulates the progression of ARI remains unclear. The present study thus aimed to examine the effects of miR‑106b‑5p antagonist on the regulation of ARI progression. It was found that miR‑106b‑5p expression was upregulated in the renal tissue of rats with I/R‑induced ARI and in NRK‑52E rat renal proximal tubular epithelial cells subjected to hypoxia‑reoxygenation (H/R). In vitro, H/R induction suppressed the proliferation, and promoted the apoptosis and autophagy of NRK‑52E cells, whereas miR‑106b‑5p antagonist (inhibition of miR‑106b‑5p) promoted the proliferation, and attenuated the apoptosis and autophagy of NRK‑52E cells under the H/R condition. Dual luciferase reporter gene assay validated that transcription factor 4 (TCF4) was a target of miR‑106b‑5p. It was further found that TCF4 overexpression promoted the proliferation, and inhibited the apoptosis and autophagy of NRK‑52E cells subjected to H/R. Moreover, the effects of miR‑106b‑5p antagonist on NRK‑52E cell proliferation, apoptosis and autophagy were mediated through the regulation of TCF4. In vivo, miR‑106b‑5p antagonist reduced the severity of renal injury, decreased cell proliferation in renal tissues and lowered the serum creatinine (Scr) and blood urea nitrogen (BUN) levels in the blood samples from rats with I/R‑induced ARI. On the whole, the findings presented herein demonstrate that miR‑106b‑5p antagonist attenuates ARI by promoting the proliferation, and suppressing the apoptosis and autophagy of renal cells via upregulating TCF4.
Collapse
Affiliation(s)
- Jing-Meng Hu
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Jie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Peng-Bo Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Yan Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Ya-Ping Ye
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Liang
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
17
|
Liu D, Du Y, Jin FY, Xu XL, Du YZ. Renal Cell-Targeted Drug Delivery Strategy for Acute Kidney Injury and Chronic Kidney Disease: A Mini-Review. Mol Pharm 2021; 18:3206-3222. [PMID: 34337953 DOI: 10.1021/acs.molpharmaceut.1c00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become a global public health concern associated with high morbidity, mortality, and healthcare costs. However, at present, very few effective and specific drug therapies are available, owing to the poor therapeutic efficacy and systemic side effects. Kidney-targeted drug delivery, as a potential strategy for solving these problems, has received great attention in the fields of AKI and CKD in recent years. Here, we review the literature on renal targeted, more specifically, renal cell-targeted formulations of AKI and CKD that offered biodistribution data. First, we provide a broad overview of the unique structural characteristics and injured cells of acute and chronic injured kidneys. We then separately summarize literature examples of renal targeted formulations according to the difference of target cells and elaborate on the appropriate formulation design criteria for AKI and CKD. Finally, we propose a hypothetic strategy to improve the renal accumulation of glomerular cell-targeted formulation by escaping the uptake of the reticuloendothelial system and provide some perspectives for future studies.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| |
Collapse
|
18
|
Liu L, Chen H, Yun J, Song L, Ma X, Luo S, Song Y. miRNA-483-5p Targets HDCA4 to Regulate Renal Tubular Damage in Diabetic Nephropathy. Horm Metab Res 2021; 53:562-569. [PMID: 34126643 DOI: 10.1055/a-1480-7519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the diagnostic value of miR-483-5p in diabetic nephropathy (DN), and its effect and mechanism on apoptosis and inflammation of human proximal renal tubular cells (HK2) induced by high glucose (HG). Thirty healthy controls, 30 types 2 diabetes mellitus (T2DM) patients, and 28 DN patients were enrolled. miR-483-5p mRNA levels in serum were analyzed by RT-qPCR assays. The receiver operating characteristic curve (ROC) was used to analyze the diagnostic value of miR-483-5p in DN. HK2 cells were induced by HG to establish an in vitro study model. CCK-8 and flow cytometry was used to detect cell viability, apoptosis, and reactive oxygen species (ROS) generation. Inflammation levels were measured by ELISA. Luciferase reporter assay was used to detect target genes of miR-483-5p. miR-483-5p was decreased in DN patients. The decreased level of miR-483-5p was positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with proteinuria. miR-483-5p can significantly distinguish DN patients from healthy controls and T2DM and has a high diagnostic value. miR-483-5p decreased in HK2 cells induced by HG, and overexpression of miR-483-5p reversed HG-induced decreased cell activity, increased apoptosis, ROS production, and inflammation. Histone deacetylase 4 (HDCA4) was markedly increased in DN patients and HG-induced HK2 cells. miR-483-5p directly targeted HDCA4, and increasing miR-483-5p inhibited HDCA4 increased in HG-induced HK2. In conclusion, the results indicate that reduction of miR-483-5p has a high diagnostic value in DN, and overexpression of miR-483-5p has a certain protective effect on HK2 cells induced by HG by targeting HDCA4.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, 200137, Shanghai, China
| | - Huanzhen Chen
- Department of Endocrinology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
| | - Jie Yun
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Liqun Song
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Xiaopeng Ma
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Shan Luo
- Department of Nephrology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
19
|
Lee YH, Liao YW, Lu MY, Hsieh PL, Yu CC. LINC00084/miR-204/ZEB1 Axis Mediates Myofibroblastic Differentiation Activity in Fibrotic Buccal Mucosa Fibroblasts: Therapeutic Target for Oral Submucous Fibrosis. J Pers Med 2021; 11:jpm11080707. [PMID: 34442351 PMCID: PMC8398589 DOI: 10.3390/jpm11080707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
Oral submucosal fibrosis (OSF) is a precancerous condition in the oral cavity and areca nut consumption has been regarded as one of the etiologic factors implicated in the development of OSF via persistent activation of buccal mucosal fibroblasts (BMFs). It has been previously reported that an epithelial to mesenchymal transition (EMT) factor, ZEB1, mediated the areca nut-associated myofibroblast transdifferentiation. In the current study, we aimed to elucidate how areca nut affected non-coding RNAs and the subsequent myofibroblast activation via ZEB1. We found that long non-coding RNA LINC00084 was elicited in the BMFs treated with arecoline, a major alkaloid of areca nut, and silencing LINC00084 prevented the arecoline-induced activities (such as collagen gel contraction, migration, and wound healing capacities). The upregulation of LINC00084 was also observed in the OSF tissues and fibrotic BMFs (fBMFs), and positively correlated with several fibrosis factors. Moreover, we showed knockdown of LINC00084 markedly suppressed the myofibroblast features in fBMFs, including myofibroblast phenotypes and marker expression. The results from the luciferase reporter assay confirmed that LINC00084 acted as a sponge of miR-204 and miR-204 inhibited ZEB1 by directly interacting with it. Altogether, these findings suggested that the constant irritation of arecoline may result in upregulation of LINC00084 in BMFs, which increased the ZEB1 expression by sequestering miR-204 to induce myofibroblast transdifferentiation.
Collapse
Affiliation(s)
- Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.L.); (M.-Y.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.L.); (M.-Y.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan
- Correspondence: (P.-L.H.); (C.-C.Y.); Tel.: +886-4-2471-8668 (C.-C.Y.)
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.L.); (M.-Y.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: (P.-L.H.); (C.-C.Y.); Tel.: +886-4-2471-8668 (C.-C.Y.)
| |
Collapse
|
20
|
Lu HY, Wang GY, Zhao JW, Jiang HT. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J Clin Lab Anal 2021; 35:e23881. [PMID: 34240756 PMCID: PMC8373329 DOI: 10.1002/jcla.23881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) was characterized by loss of renal function, associated with chronic kidney disease, end‐stage renal disease, and length of hospital stay. Long non‐coding RNAs (lncRNAs) participated in AKI development and progression. Here, we aimed to investigate the roles and mechanisms of lncRNA MALAT1 in AKI. Methods AKI serum samples were obtained from 129 AKI patients. ROC analysis was conducted to confirm the diagnostic value of MALAT1 in differentiating AKI from healthy volunteers. After hypoxic treatment on HK‐2 cells, the expressions of inflammatory cytokines, MALAT1, miR‐204, APOL1, p65, and p‐p65, were measured by RT‐qPCR and Western blot assays. The targeted relationship between miR‐204 and MALAT1 or miR‐204 and APOL1 was determined by luciferase reporter assay and RNA pull‐down analysis. After transfection, CCK‐8, flow cytometry, and TUNEL staining assays were performed to evaluate the effects of MALAT1 and miR‐204 on AKI progression. Results From the results, lncRNA MALAT1 was strongly elevated in serum samples from AKI patients, with the high sensitivity and specificity concerning differentiating AKI patients from healthy controls. In vitro, we established the AKI cell model after hypoxic treatment. After experiencing hypoxia, we found significantly increased MALAT1, IL‐1β, IL‐6, and TNF‐α expressions along with decreased miR‐204 level. Moreover, the targeted relationship between MALAT1 and miR‐204 was confirmed. Silencing of MALAT1 could reverse hypoxia‐triggered promotion of HK‐2 cell apoptosis. Meanwhile, the increase of IL‐1β, IL‐6, and TNF‐α after hypoxia treatment could be repressed by MALAT1 knockdown as well. After co‐transfection with MALAT1 silencing and miR‐204 inhibition, we found that miR‐204 could counteract the effects of MALAT1 on HK‐2 cell progression and inflammation after under hypoxic conditions. Finally, NF‐κB signaling was inactivated while APOL1 expression was increased in HK‐2 cells after hypoxia treatment, and lncRNA MALAT1 inhibition reactivated NF‐κB signaling while suppressed APOL1 expression by sponging miR‐204. Conclusions Collectively, these results illustrated that knockdown of lncRNA MALAT1 could ameliorate AKI progression and inflammation by targeting miR‐204 through APOL1/NF‐κB signaling.
Collapse
Affiliation(s)
- Hai-Yuan Lu
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Guo-Yi Wang
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jin-Wen Zhao
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hai-Tao Jiang
- Department of Orthopedics, Huai'an First People's Hospital, Huai'an, China
| |
Collapse
|
21
|
Liu J, Liu Y, Wang F, Liang M. miR-204: Molecular Regulation and Role in Cardiovascular and Renal Diseases. Hypertension 2021; 78:270-281. [PMID: 34176282 DOI: 10.1161/hypertensionaha.121.14536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of microRNA research has evolved from studies aiming to gauge the importance of microRNAs to those focusing on understanding a subset of specific microRNAs that have emerged as potent regulators of molecular systems and pathophysiological conditions. In this article, we review the molecular features and regulation of miR-204 and the growing body of evidence for an important role of miR-204 in the regulation of cardiovascular and renal physiology and pathophysiological processes. miR-204 exhibits a highly tissue-specific expression pattern, and miR-204 abundance is regulated by several transcriptional and posttranscriptional mechanisms. Strong evidence supports a role for miR-204 in attenuating pulmonary arterial hypertension and hypertensive and diabetic renal injury while promoting hypertension and endothelial dysfunction in a wide range of model systems. miR-204 may influence these disease processes by targeting several biological pathways in a tissue-specific manner. miR-204 is dysregulated in patients with cardiovascular and renal diseases. The unequivocal functional roles and clear clinical relevance indicate that miR-204 is a high-value microRNA in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Feng Wang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
22
|
Pawluczyk I, Nicholson M, Barbour S, Er L, Selvaskandan H, Bhachu JS, Barratt J. A Pilot Study to Predict Risk of IgA Nephropathy Progression Based on miR-204 Expression. Kidney Int Rep 2021; 6:2179-2188. [PMID: 34386667 PMCID: PMC8343780 DOI: 10.1016/j.ekir.2021.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Immunoglobulin (Ig)A nephropathy (IgAN) is the most frequently diagnosed primary glomerulonephritis worldwide. Despite the common diagnostic feature of mesangial IgA-containing immune complex deposition, the clinical course of the disease is extremely variable, with 30% of patients developing end-stage kidney disease within 20 years of diagnosis. Therefore, identifying which patients are likely to progress is paramount. Results In this pilot study, we found that urinary exosomal miR-204 expression was significantly reduced in IgAN compared with healthy subjects. However, there was no difference in miR-204 expression between IgAN and non-IgAN chronic kidney disease controls. Analysis of miR-204 expression in kidney biopsy cores by next-generation sequencing followed by quantitative polymerase chain reaction validation in independent cohorts demonstrated that expression of miR-204 was significantly lower in IgAN compared with thin-membrane nephropathy but not compared with membranous nephropathy. Patients with IgAN at high risk of future progression had significantly lower expression of miR-204 than those at low risk of progression. Cortical localization indicated that miR-204 was preferentially expressed in the interstitium compared with glomeruli in IgAN nonprogressors and that this distribution was lost in IgAN progressors. Receiver operating characteristic curve analysis between the 2 IgAN cohorts revealed an area under the curve of 0.82. In addition, miR-204 expression correlated with known clinicopathological prognostic risk factors. Importantly, incorporating miR-204 into the International IgAN risk prediction tool improved the diagnostic power of the algorithm to predict risk of progression. Conclusion Additional large-scale studies are now needed to validate the additive value of miR-204 in improving risk prediction in IgAN and more broadly in chronic kidney disease.
Collapse
Affiliation(s)
- Izabella Pawluczyk
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Matthew Nicholson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sean Barbour
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Lee Er
- Division of Nephrology, University of British Columbia, Vancouver, Canada
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jasraj S Bhachu
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, Xiao J, Gao J, Zhang D, Ke X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front Cell Dev Biol 2021; 9:647763. [PMID: 34055778 PMCID: PMC8155602 DOI: 10.3389/fcell.2021.647763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Yulang Huang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Lifang Chen
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Zongming Feng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Weixin Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jian Xiao
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Debao Zhang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
24
|
Shihana F, Wong WKM, Joglekar MV, Mohamed F, Gawarammana IB, Isbister GK, Hardikar AA, Seth D, Buckley NA. Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci Rep 2021; 11:9165. [PMID: 33911095 PMCID: PMC8080685 DOI: 10.1038/s41598-021-87918-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs in biofluids are potential biomarkers for detecting kidney and other organ injuries. We profiled microRNAs in urine samples from patients with Russell's viper envenoming or acute self-poisoning following paraquat, glyphosate, or oxalic acid [with and without acute kidney injury (AKI)] and on healthy controls. Discovery analysis profiled for 754 microRNAs using TaqMan OpenArray qPCR with three patients per group (12 samples in each toxic agent). From these, 53 microRNAs were selected and validated in a larger cohort of patients (Russell's viper envenoming = 53, paraquat = 51, glyphosate = 51, oxalic acid = 40) and 27 healthy controls. Urinary microRNAs had significantly higher expression in patients poisoned/envenomed by different nephrotoxic agents in both discovery and validation cohorts. Seven microRNAs discriminated severe AKI patients from no AKI for all four nephrotoxic agents. Four microRNAs (miR-30a-3p, miR-30a-5p, miR-92a, and miR-204) had > 17 fold change (p < 0.0001) and receiver operator characteristics area-under-curve (ROC-AUC) > 0.72. Pathway analysis of target mRNAs of these differentially expressed microRNAs showed association with the regulation of different nephrotoxic signaling pathways. In conclusion, human urinary microRNAs could identify toxic AKI early after acute injury. These urinary microRNAs have potential clinical application as early non-invasive diagnostic AKI biomarkers.
Collapse
Affiliation(s)
- Fathima Shihana
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia.
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Fahim Mohamed
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- Allied Health Sciences, Department of Pharmacy, University of Peradeniya, Peradeniya, Sri Lanka
- Australian Kidney Biomarker Reference Laboratory, Department of Nephrology, Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia
| | - Indika B Gawarammana
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Devanshi Seth
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
- Discipline of Clinical Medicine and Addiction Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nicholas A Buckley
- Clinical Pharmacology and Toxicology Research Group, Biomedical Informatics and Digital Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
- Drug Health Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Wang D, Wang L, Han J, Zhang Z, Fang B, Chen F. Bioinformatics-Based Analysis of the lncRNA-miRNA-mRNA Network and TF Regulatory Network to Explore the Regulation Mechanism in Spinal Cord Ischemia/Reperfusion Injury. Front Genet 2021; 12:650180. [PMID: 33986769 PMCID: PMC8110913 DOI: 10.3389/fgene.2021.650180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Spinal cord ischemia/reperfusion injury (SCII) is a catastrophic complication involved with cardiovascular, spine, and thoracic surgeries and can lead to paraplegia. Nevertheless, the molecular mechanism of SCII remain ill-defined. Methods Expression profiling (GSE138966) data were obtained from GEO database. Then, differentially expressed (DE) lncRNAs and DEmRNAs were screened out with p < 0.05, and | fold change| > 1.5. Aberrant miRNAs expression in SCII was obtained from PubMed. Functional enrichment analysis of overlapping DEmRNAs between predicted mRNAs in miRDB database and DEmRNAs obtained from GSE138966 was performed using cluster Profiler R package. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. The key lncRNAs in the ceRNA network were identified by topological analysis. Subsequently, key lncRNAs related ceRNA-pathway network and transcription factors (TFs)-mRNAs network were constructed. Simultaneously, the expression levels of hub genes were measured via qRT-PCR. Results The results in this study indicated that 76 miRNAs, 1373 lncRNAs, and 4813 mRNAs were differentially expressed in SCII. A SCII-related ceRNA network was constructed with 154 ncRNAs, 139 mRNAs, and 51 miRNAs. According topological analysis, six lncRNAs (NONRATT019236.2, NONRATT009530.2, NONRATT026999.2, TCONS_00032391, NONRATT023112.2, and NONRATT021956.2) were selected to establish the ceRNA-pathway network, and then two candidate hub lncRNAs (NONRATT009530.2 and NONRATT026999.2) were identified. Subsequently, two lncRNA-miRNA-mRNA regulatory axes were identified. NONRATT026999.2 and NONRATT009530.2 might involve SCII via miR-20b-5p/Map3k8 axis based on the complex ceRNA network. SP1 and Hnf4a acting as important TFs might regulate Map3k8. Furthermore, qRT-PCR results showed that the NONRATT009530.2, NONRATT026999.2, Map3k8, Hfn4a, and SP1 were significantly upregulated in SCII of rats, while the miR-20b-5p was downregulated. Conclusion Our results offer a new insight to understand the ceRNA regulation mechanism in SCII and identify highlighted lncRNA-miRNA-mRNA axes and two key TFs as potential targets for prevention and treatment of SCII.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Limei Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Han
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Wang D, Chen F, Fang B, Zhang Z, Dong Y, Tong X, Ma H. MiR-128-3p Alleviates Spinal Cord Ischemia/Reperfusion Injury Associated Neuroinflammation and Cellular Apoptosis via SP1 Suppression in Rat. Front Neurosci 2020; 14:609613. [PMID: 33424542 PMCID: PMC7785963 DOI: 10.3389/fnins.2020.609613] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Neuroinflammation and cellular apoptosis caused by spinal cord ischemia/reperfusion (I/R) injury result in neurological dysfunction. MicroRNAs (miRs) have crucial functions in spinal cord I/R injury pathogenesis according to previous evidences. Herein, whether miR-128-3p contributes to spinal cord I/R injury by regulating specificity protein 1 (SP1) was assessed. METHODS A rat model of spinal cord I/R injury was established by occluding the aortic arch for 14 min. Then, miR-128-3p's interaction with SP1 was detected by dual-luciferase reporter assays. Next, miR-128-3p mimic and inhibitor, as well as adenovirus-delivered shRNA specific for SP1 were injected intrathecally for assessing the effects of miR-128-3p and SP1 on rats with spinal cord I/R injury. SP1, Bax and Bcl-2 expression levels in I/R injured spinal cord tissues were evaluated by Western blotting, while IL-1β, TNF-α, and IL-6 were quantitated by ELISA. Tarlov scores were obtained to detect hind-limb motor function. Evans blue (EB) dye extravasation was utilized to examine blood-spinal cord barrier (BSCB) permeability. Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining was performed for neuronal apoptosis assessment. RESULTS MiR-128-3p expression was decreased, while SP1 amounts were increased in rat spinal cord tissue specimens following I/R. SP1 was identified as a miR-128-3p target and downregulated by miR-128-3p. MiR-128-3p overexpression or SP1 silencing alleviated I/R-induced neuroinflammation and cell apoptosis, and improved Tarlov scores, whereas pretreatment with miR-128-3p inhibitor aggravated the above injuries. CONCLUSION Overexpression of miR-128-3p protects neurons from neuroinflammation and apoptosis during spinal cord I/R injury partially by downregulating SP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Chen H, Fan Y, Jing H, Tang S, Huang Z, Liao M, Lin S, Zhong J, Zhou J. LncRNA Gm12840 mediates WISP1 to regulate ischemia-reperfusion-induced renal fibrosis by sponging miR-677-5p. Epigenomics 2020; 12:2205-2218. [PMID: 33351669 DOI: 10.2217/epi-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: We aimed to identify that long noncoding RNAs (lncRNAs) are involved in ischemia-reperfusion (IR)-induced late fibrosis of kidney and may constitute novel therapeutic strategies for acute kidney injury-induced chronic kidney disease. Materials & methods: We performed the mouse model of IR later induced renal fibrosis and analyzed lncRNA profiles using second-generation sequencing during the pathogenesis. Results: The expression levels of 43 lncRNAs and 141 lncRNAs were respectively changed significantly 7 days and 2 weeks after IR treatment. Based on the correlation analysis of the differentially expressed genes, the interaction networks of lncRNAs, miRNAs and mRNA were structured. Conclusion: LncRNA (Gm12840) could act as a sponge for miR-677-5p to mediate fibroblast activation induced by TGF-β1 via the WISP1/PKB (Akt) signaling pathway.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Guangzhou, Guangdong 510060, PR China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, 8 Fuyu West Road, Guangzhou, Guangdong 511400, PR China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, 81 North Lingnan Avenue, Foshan, Guangdong 528000, PR China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, 183 Zhongshan West Road, Guangzhou, Guangdong 510630, PR China
| |
Collapse
|
28
|
Wang Y, Zuo B, Wang N, Li S, Liu C, Sun D. Calcium dobesilate mediates renal interstitial fibrosis and delay renal peritubular capillary loss through Sirt1/p53 signaling pathway. Biomed Pharmacother 2020; 132:110798. [PMID: 33011612 DOI: 10.1016/j.biopha.2020.110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 02/01/2023] Open
Abstract
Calcium dobesilate (Cad), a protective agent, protects against microvascular damage, and diseases such as diabetic retinopathy and diabetic nephropathy. However, these vascular protective effects have not been demonstrated in chronic kidney disease (CKD). In this study, we aimed to determine the ability of Cad to protect against renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO) and identify the underlying therapeutic mechanisms of Cad during hypoxia/serum deprivation (H/SD) in human umbilical vein endothelial cells (HUVECs). A total of 36 male mice were randomly assigned into 3 groups (12 mice in each group): the Sham-operated group (Sham), the saline solution-treated UUO mice group (UUO), and the Cad administration (intragastrically) group (Cad). The mice in Cad group were administered Cad (100 mg/kg) daily by oral gavage and slaughtered on the 7th and 14th days post-surgery. Six mice from each group were sacrificed by sodium pentobarbital injection on the 7th and 14th day after surgery. Tissue hypoxia, cell apoptosis and fibrotic lesions were detected by Immunostaining and Western blot. Peritubular capillaries (PTCs) injury was measured by a novel technique of fluorescent microangiography (FMA). Endothelial cell-to-mesenchymal transition (EndMT) were identified by immunofluorescence and Western blot. HUVECs proliferation was measured via Cell Counting Kit‑8 assays and Edu staining. Sirt1 and its downstream gene in Cad regulation of endothelial were detected. Hematoxylin-eosin (HE), Masson-trichrome stains and Histological findings showed that Cad administration markedly reduced hypoxia and renal interstitial fibrosis at each time point in UUO. Meanwhile, Cad protect against EndMT process of PTCs by increasing CD31 expression and decreasing α-smooth muscle actin and fibronectin expression. in vitro studies showed that there was a proliferative response of the HUVECs incubated with Cad (10 μM) in H/SD. Sirt1 was suppressed after small interfering RNA (siRNA) was transfected in HUVECs. Mechanistically, Cad enhanced Sirt1 signaling, which was accompanied by increased levels of p53 acetylation (ac-p53). Meanwhile, protein expression of Bcl-2, and VE-cadherin were downregulated, Bax, and α-SMA were upregulated. In summary, the therapeutic effect of Cad in obstructive nephropathy were likely through suppressing EndMT progression and promoting anti-apoptotic effects after via activating the Sirt1/p53 signaling pathway.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Nannan Wang
- Department of Nephrology, Gongyi People's Hospital, Gongyi, 451200, PR China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
29
|
Zhang H, Wang J, Du A, Li Y. MiR-483-3p inhibition ameliorates myocardial ischemia/reperfusion injury by targeting the MDM4/p53 pathway. Mol Immunol 2020; 125:9-14. [DOI: 10.1016/j.molimm.2020.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
30
|
Zhao JY, Wang XL, Yang YC, Zhang B, Wu YB. Upregulated miR-101 inhibits acute kidney injury-chronic kidney disease transition by regulating epithelial-mesenchymal transition. Hum Exp Toxicol 2020; 39:1628-1638. [PMID: 32633566 DOI: 10.1177/0960327120937334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is an independent risk factor for chronic kidney disease (CKD). However, the role and mechanism of microRNA (miRNA, miR) in AKI-CKD transition are elusive. In this study, a murine model of renal ischemia/reperfusion was established to investigate the repairing effect and mechanism of miR-101a-3p on renal injury. The pathological damage of renal tissue was observed by hematoxylin and eosin and Masson staining. The levels of miR-101, profibrotic cytokines, and epithelial-mesenchymal transition (EMT) markers were analyzed using Western blotting, real-time polymerase chain reaction, and/or immunofluorescence. MiR-101 overexpression caused the downregulation of α-smooth muscle actin, collagen-1, and vimentin, as well as upregulation of E-cadherin, thereby alleviating the degree of renal tissue damage. MiR-101 overexpression mitigated hypoxic HK-2 cell damage. Collagen, type X, alpha 1 and transforming growth factor β receptor 1 levels were downregulated in hypoxic cells transfected with miR-101 mimic. Our study indicates that miR-101 is an anti-EMT miRNA, which provides a novel therapeutic strategy for AKI-CKD transition.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - X-L Wang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-C Yang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - B Zhang
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y-B Wu
- Department of Pediatrics, 85024Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Zhang KF, Wang J, Guo J, Huang YY, Huang TR. Metformin enhances radiosensitivity in hepatocellular carcinoma by inhibition of specificity protein 1 and epithelial-to-mesenchymal transition. J Cancer Res Ther 2020; 15:1603-1610. [PMID: 31939444 DOI: 10.4103/jcrt.jcrt_297_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective Radiotherapy becomes more and more important in hepatocellular carcinoma (HCC) due to the development of technology, especially in unresectable cases. Metformin has a synergistic benefit with radiotherapy in some cancers, but remains unclear in HCC. This study aims to investigate the effect of metformin on radiosensitivity of HCC cells and the roles of specificity protein 1 (Sp1) as a target of metformin. Methods The SMMC-7721 cell line was exposed to various doses of γ-ray irradiation (0, 2, 4, 6, and 8 Gy) and with or without different concentrations of metformin (0, 1, 5, 10, and 20 mM) to measure the radiosensitivity using MTT assay. Flow cytometry was used to determine cell cycle by propidium iodide (PI) staining and apoptosis by Hoechst 33342/PI staining and Annexin V-FITC/PI staining. Real-time polymerase chain reaction and Western blotting were performed to analyze the Sp1 mRNA and protein expressions of Sp1 and epithelial-to-mesenchymal transition (EMT) marker E-cadherin and Vimentin. The invasion capability was measured by the Boyden chamber assay. Results In SMMC-7721 cells exposed to irradiation, metformin reduced proliferation and survival cells at various concentrations (0, 1, 5, 10, and 20 mM) and induced cell cycle arrest, apoptosis, and inhibited invasion. In SMMC-7721 cells with irradiation, the mRNA and protein expressions of Sp1 were significantly decreased by metformin as well as a selective Sp1 inhibitor. Metformin attenuated transforming growth factor-β1 induced decrease of E-cadherin and increase of Vimentin proteins. Conclusion Metformin demonstrated enhanced radiosensitivity and inhibition of EMT in HCC cells. Sp1 might be a target of metformin in radiosensitization.
Collapse
Affiliation(s)
- Ke-Fen Zhang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi; Department of Pathology, Taishan Sanatorium, Taian, P.R. China
| | - Jun Wang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi; Department of Oncology, The Central Hospital of Taian, Taian, Shandong, P.R. China
| | - Jiao Guo
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| | - Yue-Ying Huang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| | - Tian-Ren Huang
- Research Department, Affifiliated Cancer Hospital of Guangxi Medical University, Guangxi, P.R. China
| |
Collapse
|
32
|
Wang Y, Zhou Q, Tang R, Huang Y, He T. FoxM1 inhibition ameliorates renal interstitial fibrosis by decreasing extracellular matrix and epithelial-mesenchymal transition. J Pharmacol Sci 2020; 143:281-289. [PMID: 32513569 DOI: 10.1016/j.jphs.2020.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
FoxM1 is a transcriptional regulator involved in tumor development, pulmonary fibrosis, and cardiac fibrosis. However, its role in renal interstitial fibrosis (RIF) has yet to be elucidated. We established a TGF-β1-stimulated human proximal tubular epithelial cell (HK-2) model in vitro and a unilateral ureteral obstruction (UUO)-induced rat RIF model in vivo. FoxM1 inhibition was achieved by siRNA interference in vitro and by injecting thiostrepton into UUO-induced RIF rats in vivo. The degree of renal damage and fibrosis were determined by histological assessment via hematoxylin and eosin (H&E) staining. Immunohistochemistry, western blots, and qPCR were used to determine the expression levels of FoxM1, Collagen I, E-cadherin, α-SMA, and Snail1. Our results showed that FoxM1 inhibition could ameliorate RIF and reduce the deposition of Collagen I. H&E staining revealed that renal structural damage, inflammatory cell infiltration, and ECM deposition were significantly attenuated by thiostrepton treatment in the UUO rats. Furthermore, FoxM1 downregulation significantly suppressed epithelial-to-mesenchymal transition, as evidenced by decreased protein and mRNA expression levels of α-SMA and Snail1 and a significant increase in protein and mRNA expression levels of E-cadherin. Collectively, these results suggested that FoxM1 inhibition could be a novel therapeutic strategy for the treatment of RIF.
Collapse
Affiliation(s)
- Yanhui Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuyu Huang
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ting He
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
33
|
Xie LB, Chen B, Liao X, Chen YF, Yang R, He SR, Pei LJ, Jiang R. LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway. J Cell Mol Med 2020; 24:5555-5564. [PMID: 32270599 PMCID: PMC7214170 DOI: 10.1111/jcmm.15211] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of long non‐coding RNAs (lncRNAs) in kidney diseases has been gradually discovered in recent years. LINC00963, as an lncRNA, was found to be involved in chronic renal failure. However, the role and molecular mechanisms of LINC00963 engaged in acute kidney injury (AKI) were still unclear. In this study, we established rat AKI models by ischaemia and reperfusion (I/R) treatment. Urea and creatinine levels were determined, and histological features of kidney tissues were examined following HE staining. CCK8 assay was chosen to assess the viability of hypoxia‐induced HK‐2 cells. Dual‐luciferase reporter gene assays were performed to verify the target relationship between LINC00963 and microRNA. The mRNA and protein levels were assayed by RT‐qPCR and Western blot, respectively. Annexin V‐FITC/PI and TUNEL staining were used to evaluate apoptosis. LINC00963 was highly expressed in the cell and rat models, and miR‐128‐3p was predicted and then verified as a target gene of LINC00963. Knockdown of LINC00963 reduced acute renal injury both in vitro and in vivo. LINC00963 activated the JAK2/STAT1 pathway to aggravate renal I/R injury. LINC00963 could target miR‐128‐3p to reduce G1 arrest and apoptosis through JAK2/STAT1 pathway to promote the progression of AKI.
Collapse
Affiliation(s)
- Li-Bo Xie
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xue Liao
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Yi-Feng Chen
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Rui Yang
- College of Clinical Medicine, Southwest Medical University School of Clinical Medical Sciences, Luzhou, China
| | - Si-Rong He
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li-Jun Pei
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Yang Z, Qu Z, Yi M, Lv Z, Wang Y, Shan Y, Ran N, Liu X. MiR-204-5p Inhibits Transforming Growth Factor-β1-Induced Proliferation and Extracellular Matrix Production of Airway Smooth Muscle Cells by Regulating Six1 in Asthma. Int Arch Allergy Immunol 2020; 181:239-248. [PMID: 31955160 DOI: 10.1159/000505064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1)-in-duced proliferation of airway smooth muscle cells plays critical roles in the development of airway remodeling. Six1 (sine oculis homeobox homolog 1) has been demonstrated to be involved in airway inflammation and remodeling in asthmatic mice. OBJECTIVES The aim of this work was to investigate the potential role of miR-204-5p in the proliferation and extracellular matrix (ECM) production of airway smooth muscle cells in asthma. METHODS Real-time PCR was used to measure the expression of miR-204-5p in asthmatic airway smooth muscle cells. Cell viability and apoptosis were detected to evaluate the effect of miR-204-5p on airway smooth muscle cells. Dual-luciferase reporter experiments were applied to identify the target genes of miR-204-5p. RESULTS MiR-204-5p was downregulated notably in asthmatic airway smooth muscle cells as well as cells stimulated with TGF-β1. Overexpression of miR-204-5p markedly suppressed the TGF-β1-induced proliferation of airway smooth muscle cells and the deposition of ECM, whereas the inhibition of miR-204-5p significantly enhanced the proliferation of airway smooth muscle cells and upregulated the level of fibronectin and collagen III. Furthermore, subsequent analyses demonstrated that Six1 was a direct target of miR-204-5p, and Western blot further indicated that miR-204-5p negatively regulated the expression of Six1. Most importantly, the restoration of Six1 expression reversed the inhibitory effect of miR-204-5p on TGF-β1-induced proliferation and ECM production. CONCLUSIONS MiR-204-5p inhibits TGF-β1-in-duced proliferation and ECM production of airway smooth muscle cells by regulating Six1, identifying a potential therapeutic target for preventing airway remodeling in asthma.
Collapse
Affiliation(s)
- Zhaochuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Center of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Wang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China,
| |
Collapse
|
35
|
Ai K, Zhu X, Kang Y, Li H, Zhang L. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN. Exp Mol Pathol 2019; 112:104358. [PMID: 31836508 DOI: 10.1016/j.yexmp.2019.104358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Renal fibrosis, a common pathological outcome of chronic kidney disease (CKD), is characterized by extracellular matrix (ECM) accumulation, damage to the tubular epithelium, and the proliferation and activation of fibroblasts. SnoN, a TGF-β1/Smad transcriptional co-suppressor, is downregulated in obstructive nephropathy. However, the relationship between miR-130a-3p and SnoN expression in the regulation of renal fibrosis is still unknown. METHODS We used human renal proximal tubular epithelial cells (HRPTEpiCs, HK-2 and primary HRPTEpiCs) treated with TGF-β1 to establish an in vitro renal fibrosis model. The expression of miR-130a-3p, SnoN and other proteins related to epithelial mesenchymal transition (EMT) and TGF-β1/Smad signalling was investigated by western blotting or qRT-PCR. A luciferase reporter assay was conducted to confirm the interaction of SnoN mRNA and miR-130a-3p. The translocation of p-Smad 2/3 and Smad 7 was determined using immunofluorescence staining. RESULTS After TGF-β1 treatment, miR-130a-3p was highly expressed in renal tubular epithelial cells, while SnoN was poorly expressed. The cell morphology changed to fibroblast-like, indicating evidence of EMT. The levels of EMT and fibrosis-related proteins were decreased through miR-130a-3p inhibition. Additionally, miR-130a-3p acted upon the 3'-UTR of SnoN directly to suppress SnoN expression. Furthermore, miR-130a-3p/SnoN promoted the activation of TGF-β1/Smad signalling, as revealed by p-Smad 2/3 and Smad 7 expression levels and distribution patterns. CONCLUSION Our study verified that miR-130a-3p facilitates the TGF-β1/Smad pathway in renal tubular epithelial cells and may participate in renal fibrosis by targeting SnoN, which could be a possible strategy for renal fibrosis treatment.
Collapse
Affiliation(s)
- Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xuan Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Hu Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Lei Zhang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
36
|
Lung myofibroblast transition and fibrosis is regulated by circ0044226. Int J Biochem Cell Biol 2019; 118:105660. [PMID: 31786325 DOI: 10.1016/j.biocel.2019.105660] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive disease characterized by aberrant fibroblast activation. This study aims to explore the role of the circ0044226 on fibroblast-to-myofibroblast transition (FMT). METHODS Bleomycin and TGF-β1 were respectively used to induce the IPF mice model and human lung fibroblasts to myofibroblast differentiation. The mRNA and protein levels were examined by qRT-PCR and western blot. Localization of α-SMA was evaluated by immunofluorescence staining. Cell viability and proliferation were evaluated by CCK8 and EDU test. Dual-luciferase reporter assay was used to analyze the interaction between miR-7 and circ0044226 or sp1. Fluorescence in situ hybridization (FISH) assay was used for the identification of sub-location of circ0044226 and miR-7 in cells. The IPF model mice received intratracheal injection of AAV-sh-NC and AAV-sh- circ0044226, and lung fibrosis was detected by HE staining, Masson staining and immunohistochemistry assay. RESULTS The circ0044226 was upregulated while miR-7 was downregulated in IPF mice model and FMT-derived myofibroblasts. miR-7 was a target of circ0044226 and sp1 was a target of miR-7. circ0044226 was distributed mostly in the cytoplasm and functioned as a miR-7 sponge to positively regulate the expression of sp1. Intervention of circ0044226 could ameliorate FMT and suppress fibroblast viability and proliferation by functioning as an endogenous miR-7 sponge. CONCLUSION Circ0044226 knockdown alleviates fibroblast proliferation and FMT by functioning as a competing endogenous RNA, which may represent a promising therapy for pulmonary fibrosis.
Collapse
|
37
|
Abstract
As one type of the most common endogenous short noncoding RNAs (ncRNAs), microRNAs (miRNAs) act as posttranscriptional regulators of gene expression and have great potential biological functions in the physiological and pathological processes of various diseases. The role of miRNAs in renal fibrosis has also attracted great attention in the previous 20 years, and new therapeutic strategies targeting miRNAs appear to be promising. Some researchers have previously reviewed the roles of miRNA in renal fibrosis disease, but numerous studies have emerged over the recent 5 years. It is necessary to update and summarize research progress in miRNAs in renal fibrosis. Thus, in this review, we summarize progress in miRNA-mediated renal fibrosis over the last 5 years and evaluate the biological functions of some miRNAs in different stages of renal fibrosis. Furthermore, we also expound the recent clinical applications of these miRNAs to provide new insights into the treatment of renal fibrosis disease.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang Province, China.,Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Jun Zhou
- Department of Anesthesiology, The third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Zhu Y, Yin X, Li J, Zhang L. Overexpression of microRNA-204-5p alleviates renal ischemia-reperfusion injury in mice through blockage of Fas/FasL pathway. Exp Cell Res 2019; 381:208-214. [PMID: 31009621 DOI: 10.1016/j.yexcr.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
The multiple roles of microRNA-204-5p (miR-204-5p) in numerous types of cancer have been reported, but its function in renal ischemia-reperfusion injury (RIRI) remains unclear. In this study, we aim to explore whether miR-204-5p was implicated in the RIRI in mice via regulating the Fas/Fas ligand (FasL) pathway. Firstly, the Gene Expression Omnibus (GEO) database was used to screen RIRI-related differentially expressed genes (DEGs). Then, RIRI mouse model was established, and the role of miR-204-5p and FasL in RIRI was explored by ectopic expression, depletion and reporter assay experiments. The blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in renal tissues of mice were also measured. Afterwards, the regulatory role of miR-204-5p on Fas/FasL pathway in RIRI was investigated. Renal tissues from RIRI mice showed lower miR-204-5p expression and higher Fas and FasL expression. FasL was identified as a direct target gene of miR-204-5p. In addition, the increased levels of BUN, Scr and MDA, as well as decreased levels of SOD and GSH-Px in RIRI mice were reversed by elevation of miR-204-5p and blockage of the Fas/FasL pathway. Taken together, this study demonstrated that increased miR-204-5p might suppress RIRI in mice through suppressing Fas/FasL pathway by targeting FasL.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Xiaohui Yin
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Junxu Li
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Lei Zhang
- Department of Kidney Medicine, Linyi City People's Hospital, No. 27, Eastern Section of Jiefang Road, Linyi, 276000, PR China.
| |
Collapse
|
39
|
Li H, Wang J, Liu X, Cheng Q. MicroRNA-204-5p suppresses IL6-mediated inflammatory response and chemokine generation in HK-2 renal tubular epithelial cells by targeting IL6R. Biochem Cell Biol 2019; 97:109-117. [PMID: 30110560 DOI: 10.1139/bcb-2018-0141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During the pathogenetic process of varied kidney diseases, renal tubules are the major sites in response to detrimental insults, including pro-inflammatory stimuli. MicroRNA-204-5p (miR-204-5p) can be detected in the renal tubular epithelial cells in the normal kidney; its expression, however, is downregulated in the kidney with pathological changes. This study aimed to investigate the role of miR-204-5p in interleukin 6 (IL6) mediated inflammatory response and chemokine production in HK-2 renal tubular cells. In HK-2 cells, the expression of miR-204-5p was downregulated in response to exogenous pro-inflammatory stimulus, tumor necrosis factor α (TNFα), or IL1β, while that of IL6 receptor α (IL6R) was upregulated. Dual-luciferase results confirmed that miRNA-204-5p directly targeted IL6R. In addition to suppressing IL6R expression, miRNA-204-5p agomir also inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in HK-2 cells exposed to exogenous IL6. Further, miRNA-204-5p suppressed the overproduction of pro-inflammatory mediators (cyclooxygenase 2 and prostaglandin E2) and chemokines (C–C motif chemokine ligand 2 and C–X–C motif chemokine ligand 8). The anti-inflammatory effects of miRNA-204-5p were attenuated when IL6R was reexpressed in HK-2 cells. Collectively, our study reveals that miR-204-5p inhibits the inflammation and chemokine generation in renal tubular epithelial cells by modulating the IL6/IL6R axis.
Collapse
Affiliation(s)
- Hua Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Jibo Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaoru Liu
- Department of Medicine, Qingdao University, Qingdao 266071, China
| | - Qiang Cheng
- Department of Geratology, The 401 Hospital of PLA, Qingdao 266071, China
| |
Collapse
|
40
|
Szeto CC, Wang G, Ng JKC, Kwan BCH, Mac-Moune Lai F, Chow KM, Luk CCW, Lai KB, Li PKT. Urinary miRNA profile for the diagnosis of IgA nephropathy. BMC Nephrol 2019; 20:77. [PMID: 30832601 PMCID: PMC6399975 DOI: 10.1186/s12882-019-1267-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Urinary micro-RNA (miRNA) level is increasingly reported to as non-invasive markers of various kidney diseases. We aim to identify urinary miRNA targets for the diagnosis of IgAN. Methods In the development cohort, we performed complete miRNA profiling of urinary sediment in 22 patients with IgAN and 11 healthy controls (CTL). Potential miRNA targets were quantified by a separate validation cohort of 33 IgAN patients and 9 healthy controls. Results In the development cohort, we identified 39 miRNA targets that have significantly different expression between IgAN and CTL (14 up-regulated, and 25 down-regulated). Among the 8 miRNA targets chosen for validation study, urinary miR-204, miR-431 and miR-555 remained significantly reduced, and urinary miR-150 level was significantly increased in the IgAN as compared to CTL. The area-under-curve of the receiver operating characteristic (ROC) curve for urinary mi-204 level for the diagnosis of IgAN was 0.976, and the diagnostic performance of combining additional miRNA targets was not further improved. At the cut-off 1.70 unit, the sensitivity and specificity of urinary miR-204 was 100 and 55.5%, respectively, for diagnosing IgAN. Conclusions Urinary miR-150, miR-204, miR-431 and miR-555 levels are significantly different between IgAN and healthy controls; urinary miR-204 level alone has the best diagnostic accuracy. Electronic supplementary material The online version of this article (10.1186/s12882-019-1267-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheuk-Chun Szeto
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Gang Wang
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.,Division of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jack Kit-Chung Ng
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Bonnie Ching-Ha Kwan
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Fernand Mac-Moune Lai
- Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai-Ming Chow
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Cathy Choi-Wan Luk
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ka-Bik Lai
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Philip Kam-Tao Li
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
41
|
Zhao J, Meng M, Zhang J, Li L, Zhu X, Zhang L, Wang C, Gao M. Astaxanthin ameliorates renal interstitial fibrosis and peritubular capillary rarefaction in unilateral ureteral obstruction. Mol Med Rep 2019; 19:3168-3178. [PMID: 30816496 PMCID: PMC6423568 DOI: 10.3892/mmr.2019.9970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Loss of peritubular capillaries is a notable feature of progressive renal interstitial fibrosis. Astaxanthin (ASX) is a natural carotenoid with various biological activities. The present study aimed to evaluate the effect of ASX on unilateral ureteral obstruction (UUO)‑induced renal fibrosis in mice. For that purpose, mice were randomly divided into five treatment groups: Sham, ASX 100 mg/kg, UUO, UUO + ASX 50 mg/kg and UUO + ASX 100 mg/kg. ASX was administered to the mice for 7 or 14 days following UUO. The results demonstrated that UUO‑induced histopathological changes in the kidney tissue were prevented by ASX. Renal function was improved by ASX treatment, as evidenced by decreased blood urea nitrogen and serum creatinine levels. Furthermore, the extent of renal fibrosis and collagen deposition induced by UUO was suppressed by ASX. The levels of collagen I, fibronectin and α‑smooth muscle actin were increased by UUO in mice or by transforming growth factor (TGF)‑β1 treatment in NRK‑52E cells, and were reduced by ASX administration. In addition, ASX inhibited the UUO‑induced decrease in peritubular capillary density by upregulating vascular endothelial growth factor and downregulating thrombospondin 1 levels. Inactivation of the TGF‑β1/Smad signaling pathway was involved in the anti‑fibrotic mechanism of ASX in UUO mice and TGF‑β1‑treated NRK‑52E cells. In conclusion, ASX attenuated renal interstitial fibrosis and peritubular capillary rarefaction via inactivation of the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Meixia Meng
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Jinhua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Li
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaojing Zhu
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Chang Wang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
42
|
Benyeogor I, Simoneaux T, Wu Y, Lundy S, George Z, Ryans K, McKeithen D, Pais R, Ellerson D, Lorenz WW, Omosun T, Thompson W, Eko FO, Black CM, Blas-Machado U, Igietseme JU, He Q, Omosun Y. A unique insight into the MiRNA profile during genital chlamydial infection. BMC Genomics 2019; 20:143. [PMID: 30777008 PMCID: PMC6379932 DOI: 10.1186/s12864-019-5495-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genital C. trachomatis infection may cause pelvic inflammatory disease (PID) that can lead to tubal factor infertility (TFI). Understanding the pathogenesis of chlamydial complications including the pathophysiological processes within the female host genital tract is important in preventing adverse pathology. MicroRNAs regulate several pathophysiological processes of infectious and non-infectious etiologies. In this study, we tested the hypothesis that the miRNA profile of single and repeat genital chlamydial infections will be different and that these differences will be time dependent. Thus, we analyzed and compared differentially expressed mice genital tract miRNAs after single and repeat chlamydia infections using a C. muridarum mouse model. Mice were sacrificed and their genital tract tissues were collected at 1, 2, 4, and 8 weeks after a single and repeat chlamydia infections. Histopathology, and miRNA sequencing were performed. Results Histopathology presentation showed that the oviduct and uterus of reinfected mice were more inflamed, distended and dilated compared to mice infected once. The miRNAs expression profile was different in the reproductive tissues after a reinfection, with a greater number of miRNAs expressed after reinfection. Also, the number of miRNAs expressed each week after chlamydia infection and reinfection varied, with weeks eight and one having the highest number of differentially expressed miRNAs for chlamydia infection and reinfection respectively. Ten miRNAs; mmu-miR-378b, mmu-miR-204-5p, mmu-miR-151-5p, mmu-miR-142-3p, mmu-miR-128-3p, mmu-miR-335-3p, mmu-miR-195a-3p, mmu-miR-142-5p, mmu-miR-106a-5p and mmu-miR-92a-3p were common in both primary chlamydia infection and reinfection. Pathway analysis showed that, amongst other functions, the differentially regulated miRNAs control pathways involved in cellular and tissue development, disease conditions and toxicity. Conclusions This study provides insights into the changes in miRNA expression over time after chlamydia infection and reinfection, as well as the pathways they regulate to determine pathological outcomes. The miRNAs networks generated in our study shows that there are differences in the focus molecules involved in significant biological functions in chlamydia infection and reinfection, implying that chlamydial pathogenesis occurs differently for each type of infection and that this could be important when determining treatments regime and disease outcome. The study underscores the crucial role of host factors in chlamydia pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5495-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ifeyinwa Benyeogor
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Tankya Simoneaux
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Yuehao Wu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Zenas George
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Khamia Ryans
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Danielle McKeithen
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Roshan Pais
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Debra Ellerson
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - W Walter Lorenz
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Tolulope Omosun
- Department of Physical Sciences, Georgia State University, Covington, GA, 30014, USA
| | - Winston Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA
| | - Carolyn M Black
- Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Uriel Blas-Machado
- Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Qing He
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA.,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, 720 Westview Drive, S.W, Atlanta, GA, 30310, USA. .,Centers for Disease Control & Prevention (CDC), Atlanta, GA, 30333, USA.
| |
Collapse
|
43
|
Wu XQ, Tian XY, Wang ZW, Wu X, Wang JP, Yan TZ. miR-191 secreted by platelet-derived microvesicles induced apoptosis of renal tubular epithelial cells and participated in renal ischemia-reperfusion injury via inhibiting CBS. Cell Cycle 2019; 18:119-129. [PMID: 30394829 DOI: 10.1080/15384101.2018.1542900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we aimed to reveal the role of miR-191 in apoptosis of renal tubular epithelial cells and in the involvement of renal ischemia-reperfusion injury. Renal transplantation rat model was established. miR-191 and Cystathionine-β-synthase (CBS) were measured by qRT-PCR and Western blot. The regulation of miR-191 on CBS was detected by luciferase reporter assay. We found miR-191 expression in platelets and platelet microvesicles (P-MVs) of patients and model rats was significantly upregulated than that of health and normal rats. Also, mRNA and protein levels of CBS in renal tissues of patients were significantly downregulated than that of health and normal rats. We also found that P-MVs could transfer miR-191 to HK-2 cells. Luciferase reporter assay showed that CBS was a direct target of miR-191. In addition, we proved that P-MVs-secreted miR-191 inhibited CBS expression in HK-2 cells, and P-MVs-secreted miR-191 promoted HK-2 cell apoptosis via CBS. Finally, we verified the trends of CBS expressions, HK-2 cell apoptosis and apoptosis-related proteins in vivo were similar as the trends in vitro. Therefore, CBS was a direct target of miR-191, and miR-191 could transfer to HK-2 cells via P-MVs to decrease the expression of CBS, thus to promote cell apoptosis and renal IR injury.
Collapse
Affiliation(s)
- Xiao-Qiang Wu
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Xiang-Yong Tian
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Zhi-Wei Wang
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Xuan Wu
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Jun-Peng Wang
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Tian-Zhong Yan
- a Department of Urology, Henan Provincial People's Hospital , People's Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
44
|
Inhibition of MicroRNA-204 Conducts Neuroprotection Against Spinal Cord Ischemia. Ann Thorac Surg 2018; 107:76-83. [PMID: 30278168 DOI: 10.1016/j.athoracsur.2018.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/19/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNA(miR)-204 is an autophagy- and apoptosis-related gene. Neuroprotection by the inhibition of miR-204 against spinal cord ischemia was evaluated, and the roles of neuronal autophagy and apoptosis were investigated. METHODS Spinal cord ischemia was conducted in rats by cross-clamping the descending aorta for 14 minutes. Inhibition of miR-204 was induced by intrathecal injection of lentivirus vectors containing antagomiR-204. Hind-limb motor function was assessed with the motor deficit index. Lumbar spinal cords were harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. Autophagy was evaluated by the LC3-II/LC3-I ratio and beclin-1 expression. Expressions of LC3-I, LC3-II, beclin-1, B-cell lymphoma-2 (BCL-2), caspase-3, and miR-204 were measured by Western blot and quantitative real-time polymerase chain reaction. Autophagy was blocked by 3-methyladenine. RESULTS Transient ischemia enhanced miR-204 expression and the LC3-II/LC3-I ratio and downregulated BCL-2 expression in spinal cords in a time-dependent manner. AntagomiR-204 significantly reduced expressions of miR-204 and caspase-3, dramatically upregulated expressions of beclin-1 and BCL-2 and the LC3-II/LC3-I ratio in spinal cords after reperfusion. Compared with controls, inhibition of miR-204 markedly decreased the motor deficit index scores at 6, 12, 24, and 48 hours after reperfusion; increased the number of viable motor neurons; and decreased the number of apoptotic neurons. 3-Methyladenine completely abolished enhancements of the LC3-II/LC3-I ratio and beclin-1 expression induced by antagomiR-204 and inhibited the protective effect on hind-limb motor function. CONCLUSIONS Inhibition of miR-204 exerts spinal cord protection against ischemia-reperfusion injury, possibly via promotion of autophagy and antiapoptotic effects.
Collapse
|
45
|
Cao Y, Hu J, Sui J, Jiang L, Cong Y, Ren G. Quercetin is able to alleviate TGF-β-induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Exp Ther Med 2018; 16:2442-2448. [PMID: 30210596 PMCID: PMC6122524 DOI: 10.3892/etm.2018.6489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are characterized by a gradual loss of kidney function over time. A number of studies have indicated that tubule interstitial fibrosis (TIF) is associated with the occurrence and development of CKD. The aim of the present study was to investigate the effect of quercetin treatment on the fibrosis of renal tubular epithelial cells and to determine whether the anti-fibrotic effects of quercetin are achieved via microRNA (miR)-21. Human tubular epithelial HK-2 cells were cultured with transforming growth factor (TGF)-β to induce fibrosis and the expression of fibrotic markers collagen I, fibronectin, α-smooth muscle actin (SMA) and epithelial-cadherin were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Cells were treated with 7.5, 15 or 30 mg/ml quercetin, following which fibrosis and miR-21 expression were evaluated. Quercetin-treated cells were transfected with miR-21 mimics and the expression of fibrotic markers was examined using RT-qPCR. Finally, the expression of fibrosis-associated miR-21 target genes, phosphatase and tensin homolog (PTEN) and TIMP Metallopeptidase Inhibitor 3 (TIMP3), was measured in cells treated with quercetin with or without miR-21 mimics using RT-qPCR, western blotting and immunocytochemistry. The results revealed that TGF-β treatment induced a significant increase in the expression of fibrotic markers in HK-2 cells, while quercetin treatment partially inhibited the fibrosis of HK-2 cells. Furthermore, quercetin treatment significantly inhibited TGF-β-induced miR-21 upregulation and transfection with miR-21 mimics reversed the anti-fibrotic effects of quercetin. Quercetin treatment markedly upregulated PTEN and TIMP3 expression, whereas transfection with miR-21 mimics reversed this effect. The results of the present study suggest that quercetin is able to alleviate TGF-β-induced fibrosis in HK-2 cells via suppressing the miR-21 and upregulating PTEN and TIMP3. Quercetin may have potential as an anti-fibrotic treatment for patients with renal fibrosis.
Collapse
Affiliation(s)
- Yaochen Cao
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Jialin Hu
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Jianying Sui
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Limei Jiang
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Yakun Cong
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| | - Guoqing Ren
- Department of Nephrology, Daqingshi No. 4 Hospital, Daqing, Heilongjiang 163712, P.R. China
| |
Collapse
|
46
|
Gong L, Jiang L, Qin Y, Jiang X, Song K, Yu X. Protective effect of retinoic acid receptor α on hypoxia-induced epithelial to mesenchymal transition of renal tubular epithelial cells associated with TGF-β/MMP-9 pathway. Cell Biol Int 2018; 42:1050-1059. [PMID: 29719094 DOI: 10.1002/cbin.10982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
Retinoic acid receptor α (RARα), a member of family of the nuclear retinoic acid receptors (RARs), plays an essential role in various chronic kidney diseases (CKD). Renal tubular epithelial to mesenchymal transition (EMT) is a common mechanism of progression of renal interstitial fibrosis (RIF). Hypoxia has been extensively considered as one of major inducers of renal tubular EMT. However, the effects of RARα on hypoxia-induced EMT have not yet been described so far. The aim of the present study was to explore the roles and potential mechanisms of RARα in hypoxia-induced EMT of renal tubular epithelial cells (RTECs). Our results showed that expression of RARα in RTECs subjected to hypoxia significantly was reduced, accompanied by decreased expression level of the epithelial marker E-cadherin, and increased expression levels of the mesenchymal markers α-smooth muscle actin (α-SMA) and vimentin, in accord with EMT. Meanwhile, hypoxia could cause RTECs to obviously express TGF-β and matrix metalloproteinase-9 (MMP-9). Furthermore, using lentivirus-based delivery vectors to overexpress RARα in RTECs, we demonstrated that RARα alleviated hypoxia-induced EMT of RTECs and downregulated the expression levels of TGF-β and MMP-9. In a word, RARα protects RTECs against EMT induced by hypoxia associated with TGF-β/MMP-9 pathway.
Collapse
Affiliation(s)
- Ling Gong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ling Jiang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xingbo Jiang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kunling Song
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xueyun Yu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
47
|
Wu Q, Zhao Y, Wang P. miR-204 inhibits angiogenesis and promotes sensitivity to cetuximab in head and neck squamous cell carcinoma cells by blocking JAK2-STAT3 signaling. Biomed Pharmacother 2018; 99:278-285. [DOI: 10.1016/j.biopha.2018.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023] Open
|
48
|
Zou YF, Zhang W. Role of microRNA in the detection, progression, and intervention of acute kidney injury. Exp Biol Med (Maywood) 2017; 243:129-136. [PMID: 29264947 DOI: 10.1177/1535370217749472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury, characterized by sharply decreased renal function, is a common and important complication in hospitalized patients. The pathological mechanism of acute kidney injury is mainly related to immune activation and inflammation. Given the high morbidity and mortality rates of hospitalized patients with acute kidney injury, the identification of biomarkers useful for assessing risk, making an early diagnosis, evaluating the prognosis, and classifying the injury severity is urgently needed. Furthermore, investigation into the development of acute kidney injury and potential therapeutic targets is required. While microRNA was first discovered in Caenorhabditis elegans, Gary Ruvkun's laboratory identified the first microRNA target gene. Together, these two important findings confirmed the existence of a novel post-transcriptional gene regulatory mechanism. Considering that serum creatinine tests often fail in the early detection of AKI, testing for microRNAs as early diagnostic biomarkers has shown great potential. Numerous studies have identified microRNAs that can serve as biomarkers for the detection of acute kidney injury. In addition, as microRNAs can control the expression of multiple proteins through hundreds or thousands of targets influencing multiple signaling pathways, the number of studies on the functions of microRNAs in AKI progression is increasing. Here, we mainly focus on research into microRNAs as biomarkers and explorations of their functions in acute kidney injury. Impact statement Firstly, we have discussed the potential advantages and limitations of miRNA as biomarkers. Secondly, we have summarized the role of miRNA in the progress of AKI. Finally, we have made a vision of miRNA's potential and advantages as therapeutic target intervention AKI.
Collapse
Affiliation(s)
- Yan-Fang Zou
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, 66281 School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University , Shanghai 200025, PR China
| |
Collapse
|
49
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
50
|
Janszky N, Süsal C. Circulating and urinary microRNAs as possible biomarkers in kidney transplantation. Transplant Rev (Orlando) 2017; 32:110-118. [PMID: 29366537 DOI: 10.1016/j.trre.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/03/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Noémi Janszky
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany.
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University of Heidelberg, Germany
| |
Collapse
|