1
|
Murphy CS, Fairfield H, DeMambro VE, Fadel S, Gartner CA, Karam M, Potts C, Rodriguez P, Qiang YW, Hamidi H, Guan X, Vary CPH, Reagan MR. Inhibition of acyl-CoA synthetase long-chain isozymes decreases multiple myeloma cell proliferation and causes mitochondrial dysfunction. Mol Oncol 2025. [PMID: 39853696 DOI: 10.1002/1878-0261.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM. ACSLs convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. Analysis of the Multiple Myeloma Research Foundation (MMRF) CoMMpassSM study showed that high ACSL1 and ACSL4 expression in myeloma cells are both associated with worse clinical outcomes for MM patients. Cancer Dependency Map (DepMap) data showed that all five ACSLs have negative Chronos scores, and ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support myeloma cell line fitness. Inhibition of ACSLs in myeloma cell lines in vitro, using the pharmacological inhibitor Triacsin C (TriC), increased apoptosis, decreased proliferation, and decreased cell viability, in a dose- and time-dependent manner. RNA-sequencing analysis of MM.1S cells treated with TriC showed a significant enrichment in apoptosis, ferroptosis, and endoplasmic reticulum (ER) stress, and proteomic analysis of these cells revealed enriched pathways for mitochondrial dysfunction and oxidative phosphorylation. TriC also rewired mitochondrial metabolism by decreasing mitochondrial membrane potential, increasing mitochondrial superoxide levels, decreasing mitochondrial ATP production rates, and impairing cellular respiration. Overall, our data support the hypothesis that suppression of ACSLs in myeloma cells is a novel metabolic target in MM that inhibits their viability, implicating this family as a promising therapeutic target in treating myeloma.
Collapse
Affiliation(s)
- Connor S Murphy
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Heather Fairfield
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Victoria E DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Samaa Fadel
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
- University of New England, Biddeford, ME, USA
| | - Carlos A Gartner
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Michelle Karam
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Christian Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Princess Rodriguez
- Vermont Integrative Genomics Resource DNA Facility, University of Vermont, Burlington, VT, USA
| | - Ya-Wei Qiang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | | | - Calvin P H Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| | - Michaela R Reagan
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Wang Y, Xu S, Liu J, Qi P. A Novel Peroxisome-Related Gene Signature Predicts Breast Cancer Prognosis and Correlates with T Cell Suppression. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:887-911. [PMID: 39678026 PMCID: PMC11639899 DOI: 10.2147/bctt.s490154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Background Peroxisomes are increasingly linked to cancer development, yet the prognostic role of peroxisome-related genes (PRGs) in breast cancer remains unclear. Objective This study aimed to construct a prognostic model based on PRG expression in breast cancer to clarify their prognostic value and clinical implications. Methods Transcriptomic data from TCGA and GEO were used for training and validation cohorts. TME characteristics were analyzed with ESTIMATE, MCP-counter, and CIBERSORT algorithms. qPCR validated mRNA expression levels of risk genes, and data analysis was conducted in R. Results Univariate and multivariate Cox regression identified a 7-gene PRG risk signature (ACBD5, ACSL5, DAO, NOS2, PEX3, PEX10, and SLC27A2) predicting breast cancer prognosis in training (n=1069), internal validation (n=327), and external validation (merged from four GEO datasets, n=640) datasets. While basal and Her2 subtypes had higher risk scores than luminal subtypes, a significant prognostic impact of the PRG risk signature was seen only in luminal subtypes. The high-risk subgroup exhibited a higher frequency of focal synonymous copy number alterations (SCNAs), arm-level amplifications and deletions, and single nucleotide variations. These increased genomic aberrations were associated with greater immune suppression and reduced CD8+ T cell infiltration. Bulk RNA sequencing and single-cell analyses revealed distinct expression patterns of peroxisome-related genes (PRGs) in the breast cancer TME: PEX3 was primarily expressed in malignant and stromal cells, while ACSL5 showed high expression in T cells. Additionally, the PRG risk signature demonstrated efficacy comparable to that of well-known biomarkers for predicting immunotherapy responses. Drug sensitivity analysis revealed that the PRG high-risk subgroup was sensitive to inhibitors of BCL-2 family proteins (BCL-2, BCL-XL, and MCL1) and other kinases (PLK1, PLK1, BTK, CHDK1, and EGFR). Conclusion The PRG risk signature serves as a promising biomarker for evaluating peroxisomal activity, prognosis, and responsiveness to immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yunxiang Wang
- Head and Neck Breast Department, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453000, People’s Republic of China
| | - Sheng Xu
- Head and Neck Breast Department, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453000, People’s Republic of China
| | - Junfeng Liu
- Head and Neck Breast Department, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453000, People’s Republic of China
| | - Pan Qi
- Head and Neck Breast Department, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453000, People’s Republic of China
| |
Collapse
|
3
|
Yang L, Pham K, Xi Y, Jiang S, Robertson KD, Liu C. Acyl-CoA Synthetase Medium-Chain Family Member 5-Mediated Fatty Acid Metabolism Dysregulation Promotes the Progression of Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1951-1966. [PMID: 39069168 PMCID: PMC11423759 DOI: 10.1016/j.ajpath.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with high incidence and mortality worldwide. Despite diagnostic and therapeutic advancements, HCC remains poorly responsive to treatment, with a poor prognosis. Understanding the molecular mechanisms driving HCC is crucial for developing effective therapies. Emerging evidence indicates that dysregulated fatty acid metabolism contributes to HCC. Acyl-CoA medium-chain synthetase 5 (ACSM5), involved in fatty acid metabolism, is down-regulated in HCC; however, its role is not well understood. This study was used to analyze ACSM5 expression in HCC patient samples and cell lines. The newly established ACSM5-overexpressing HCC cell lines, Huh7-ACSM5 and Hepa1-6-ACSM5, were used to investigate the effects and regulatory mechanisms of ACSM5. The results showed that ACSM5 was significantly down-regulated in HCC tumor tissues compared with non-tumor tissues. ACSM5 expression was regulated by DNA methylation, with a DNA methyltransferase 1 (DNMT1) inhibitor effectively increasing ACSM5 expression and reducing promoter region methylation. Overexpression of ACSM5 in Huh7 cells reduced fatty acid accumulation, decreased cell proliferation, migration, and invasion in vitro, and inhibited tumor growth in mouse xenografts. Furthermore, ACSM5 overexpression also decreased STAT3 phosphorylation, subsequently affecting downstream cytokine TGFB and FGF12 mRNA levels. These findings suggest that ACSM5 down-regulation contributes to HCC progression, providing insights into its oncogenic role and highlighting its potential as a biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Yibo Xi
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shaoning Jiang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
4
|
Lai Y, Gao Y, Lin J, Liu F, Yang L, Zhou J, Xue Y, Li Y, Chang Z, Li J, Chao T, Chen J, Cheng X, Gao X, Li X, Lu F, Chu Q, Wang W. Dietary elaidic acid boosts tumoral antigen presentation and cancer immunity via ACSL5. Cell Metab 2024; 36:822-838.e8. [PMID: 38350448 DOI: 10.1016/j.cmet.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.
Collapse
Affiliation(s)
- Yongfeng Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liguo Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Chang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianfu Gao
- Shanghai ProfLeader Biotech Co., Ltd, Shanghai, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Murphy CS, DeMambro VE, Fadel S, Fairfield H, Garter CA, Rodriguez P, Qiang YW, Vary CPH, Reagan MR. Inhibition of Acyl-CoA Synthetase Long Chain Isozymes Decreases Multiple Myeloma Cell Proliferation and Causes Mitochondrial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583708. [PMID: 38559245 PMCID: PMC10979990 DOI: 10.1101/2024.03.13.583708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Acyl-CoA synthetase long-chain family members (ACSLs) convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. The Cancer Dependency Map data suggested that ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support MM fitness. Here, we show that inhibition of ACSLs in human myeloma cell lines using the pharmacological inhibitor Triascin C (TriC) causes apoptosis and decreases proliferation in a dose- and time-dependent manner. RNA-seq of MM.1S cells treated with TriC for 24 h showed a significant enrichment in apoptosis, ferroptosis, and ER stress. Proteomics of MM.1S cells treated with TriC for 48 h revealed that mitochondrial dysfunction and oxidative phosphorylation were significantly enriched pathways of interest, consistent with our observations of decreased mitochondrial membrane potential and increased mitochondrial superoxide levels. Interestingly, MM.1S cells treated with TriC for 24 h also showed decreased mitochondrial ATP production rates and overall lower cellular respiration.
Collapse
Affiliation(s)
- Connor S Murphy
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Victoria E DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Samaa Fadel
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of New England, Biddeford, ME, USA
| | - Heather Fairfield
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Carlos A Garter
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | | | - Ya-Wei Qiang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | - Calvin P H Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Michaela R Reagan
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- University of Maine, University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| |
Collapse
|
6
|
Gao D, Zhou Q, Hou D, Zhang X, Ge Y, Zhu Q, Yin J, Qi X, Liu Y, Lou M, Zhou L, Bi Y. A novel peroxisome-related gene signature predicts clinical prognosis and is associated with immune microenvironment in low-grade glioma. PeerJ 2024; 12:e16874. [PMID: 38406287 PMCID: PMC10885797 DOI: 10.7717/peerj.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Low-grade glioma (LGG), a common primary tumor, mainly originates from astrocytes and oligodendrocytes. Increasing evidence has shown that peroxisomes function in the regulation of tumorigenesis and development of cancer. However, the prognostic value of peroxisome-related genes (PRGs) in LGG has not been reported. Therefore, it is necessary to construct a prognostic risk model for LGG patients based on the expression profiles of peroxisome-related genes. Our study mainly concentrated on developing a peroxisome-related gene signature for overall survival (OS) prediction in LGG patients. First, according to these peroxisome-related genes, all LGG patients from The Cancer Genome Atlas (TCGA) database could be divided into two subtypes. Univariate Cox regression analysis was used to find prognostic peroxisome-related genes in TCGA_LGG dataset, and least absolute shrinkage and selection operator Cox regression analysis was employed to establish a 14-gene signature. The risk score based on the signature was positively associated with unfavorable prognosis. Then, multivariate Cox regression incorporating additional clinical characteristics showed that the 14-gene signature was an independent predictor of LGG. Time-dependent ROC curves revealed good performance of this prognostic signature in LGG patients. The performance about predicting OS of LGG was validated using the GSE107850 dataset derived from the Gene Expression Omnibus (GEO) database. Furethermore, we constructed a nomogram model based on the gene signature and age, which showed a better prognostic power. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that neuroactive ligand-receptor interaction and phagosome were enriched and that the immune status was decreased in the high-risk group. Finally, cell counting kit-8 (CCK8) were used to detect cell proliferation of U251 and A172 cells. Inhibition of ATAD1 (ATPase family AAA domain-containing 1) and ACBD5 (Acyl-CoA binding-domain-containing-5) expression led to significant inhibition of U251 and A172 cell proliferation. Flow cytometry detection showed that ATAD1 and ACBD5 could induce apoptosis of U251 and A172 cells. Therefore, through bioinformatics methods and cell experiments, our study developed a new peroxisome-related gene signature that migh t help improve personalized OS prediction in LGG patients.
Collapse
Affiliation(s)
- Dandan Gao
- Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qiangyi Zhou
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Dianqi Hou
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Xiaoqing Zhang
- Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yiqin Ge
- Department of Neurosurgery, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Zhu
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Jian Yin
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Xiangqian Qi
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Yaohua Liu
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Meiqing Lou
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Li Zhou
- Department of Oncology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yunke Bi
- Neurosurgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
7
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
8
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
9
|
Yang Y, Liang J, Zhao J, Wang X, Feng D, Xu H, Shen Y, Zhang Y, Dai J, Wang Z, Wei Q, Liu Z. The multi-omics analyses of acsl1 reveal its translational significance as a tumor microenvironmental and prognostic biomarker in clear cell renal cell carcinoma. Diagn Pathol 2023; 18:96. [PMID: 37608295 PMCID: PMC10463412 DOI: 10.1186/s13000-023-01384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of kidney cancer. Dysregulation of long-chain acyl-CoA synthetase 1 (ACSL1) is strongly implicated in undesirable results in varieties of cancers. Nevertheless, the dysregulation and associated multi-omics characteristics of ACSL1 in ccRCC remain elusive. METHODS We probed the mRNA and protein profiles of ACSL1 in RCC using data from the Cancer Genome Atlas, Gene Expression Omnibus, the Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort and RCC cell lines. Correlations between ACSL1 expression and clinicopathological features, epigenetic modification and immune microenvironment characteristics were analyzed to reveal the multi-omics profile associated with ACSL1. RESULTS ACSL1 was down-regulated in ccRCC tissues compared to adjacent normal tissues. Lower expression of ACSL1 was linked to unfavorable pathological parameters and prognosis. The dysregulation of ACSL1 was greatly ascribed to CpG island-associated methylation modification. The ACSL1 high-expression subgroup had enriched fatty acid metabolism-related pathways and high expression of ferroptosis-related genes. In contrast, the ACSL1 low-expression subgroup exhibited higher immune and microenvironment scores, elevated expression of immune checkpoints PDCD1, CTLA4, LAG3, and TIGIT, and higher TIDE scores. Using data from the GDSC database, we corroborated that down-regulation of ACSL1 was associated with higher sensitivity towards Erlotinib, Pazopanib, and PI3K-Akt-mTOR-targeted therapeutic strategies. CONCLUSION Taken together, our findings point to ACSL1 as a biomarker for prognostic prediction of ccRCC, identifying the tumor microenvironment (TME) phenotype, and even contributing to treatment decision-making in ccRCC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, No. 48, Taling South Road, Xunyang District, Jiujiang City, 332000, Jiangxi Province, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| |
Collapse
|
10
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
11
|
Hou J, Jiang C, Wen X, Li C, Xiong S, Yue T, Long P, Shi J, Zhang Z. ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics. Front Pharmacol 2022; 13:949863. [PMID: 35910359 PMCID: PMC9326356 DOI: 10.3389/fphar.2022.949863] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
Cancer is a major public health problem around the world and the key leading cause of death in the world. It is well-known that glucolipid metabolism, immunoreaction, and growth/death pattern of cancer cells are markedly different from normal cells. Recently, acyl-CoA synthetase long-chain family 4 (ACSL4) is found be participated in the activation of long chain fatty acids metabolism, immune signaling transduction, and ferroptosis, which can be a promising potential target and biomarker for anticancer. Specifically, ACSL4 inhibits the progress of lung cancer, estrogen receptor (ER) positive breast cancer, cervical cancer and the up-regulation of ACSL4 can improve the sensitivity of cancer cells to ferroptosis by enhancing the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS). However, it is undeniable that the high expression of ACSL4 in ER negative breast cancer, hepatocellular carcinoma, colorectal cancer, and prostate cancer can also be related with tumor cell proliferation, migration, and invasion. In the present review, we provide an update on understanding the controversial roles of ACSL4 in different cancer cells.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People’s Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
| | - Chengming Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, Chengdu Third People’s Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Tian Yue
- Department of Cardiology, Chengdu Third People’s Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| | - Pan Long
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, Chengdu Third People’s Hospital/Affiliated Hospital of Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
12
|
Mozihim AK, Chung I, Said NABM, Jamil AHA. Reprogramming of Fatty Acid Metabolism in Gynaecological Cancers: Is There a Role for Oestradiol? Metabolites 2022; 12:metabo12040350. [PMID: 35448537 PMCID: PMC9031151 DOI: 10.3390/metabo12040350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Gynaecological cancers are among the leading causes of cancer-related death among women worldwide. Cancer cells undergo metabolic reprogramming to sustain the production of energy and macromolecules required for cell growth, division and survival. Emerging evidence has provided significant insights into the integral role of fatty acids on tumourigenesis, but the metabolic role of high endogenous oestrogen levels and increased gynaecological cancer risks, notably in obesity, is less understood. This is becoming a renewed research interest, given the recently established association between obesity and incidence of many gynaecological cancers, including breast, ovarian, cervical and endometrial cancers. This review article, hence, comprehensively discusses how FA metabolism is altered in these gynaecological cancers, highlighting the emerging role of oestradiol on the actions of key regulatory enzymes of lipid metabolism, either directly through its classical ER pathways, or indirectly via the IGIFR pathway. Given the dramatic rise in obesity and parallel increase in the prevalence of gynaecological cancers among premenopausal women, further clarifications of the complex mechanisms underpinning gynaecological cancers are needed to inform future prevention efforts. Hence, in our review, we also highlight opportunities where metabolic dependencies can be exploited as viable therapeutic targets for these hormone-responsive cancers.
Collapse
Affiliation(s)
- Azilleo Kristo Mozihim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nur Akmarina B. M. Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
- Correspondence: ; Tel.: +60-3-7967-4909
| |
Collapse
|
13
|
Shi Y, Chen S, Xing H, Jiang G, Wu N, Liu Q, Sakamoto N, Kuno T, Sugiura R, Xiao Q, Jin F, Fang Y, Yao F. Comprehensive Analysis of Prognostic Microenvironment-Related Genes in Invasive Breast Cancer. Front Oncol 2022; 11:576911. [PMID: 35047378 PMCID: PMC8761742 DOI: 10.3389/fonc.2021.576911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies reveal that tumor microenvironment contributes to breast cancer (BRCA) development, progression, and therapeutic response. However, the contribution of the tumor microenvironment-related genes in routine diagnostic testing or therapeutic decision making for BRCA remains elusive. Immune/stromal/ESTIMATE scores calculated by the ESTIMATE algorithm quantify immune and stromal components in a tumor, and thus can reflect tumor microenvironment. To investigate the association of the tumor microenvironment-related genes with invasive BRCA prognosis, here we analyzed the immune/stromal/ESTIMATE scores in combination with The Cancer Genome Atlas (TCGA) database in invasive BRCA. We found that immune/stromal/ESTIMATE scores were significantly correlated with the invasive BRCA clinicopathological factors. Based on the immune/stromal/ESTIMATE scores, we extracted a series of differential expression genes (DEGs) related to the tumor microenvironment. Survival analysis was further performed to identify a list of high-frequency DEGs (HF-DEGs), which exhibited prognostic value in invasive BRCA. Importantly, consistent with the results of bioinformatics analysis, immunohistochemistry results showed that high SASH3 expression was associated with a good prognosis in invasive BRCA patients. Our findings suggest that the tumor microenvironment-related HF-DEGs identified in this study have prognostic values and may serve as potential biomarkers and therapeutic targets for invasive BRCA.
Collapse
Affiliation(s)
- Yingrong Shi
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Huijuan Xing
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Guanglie Jiang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Nan Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Norihiro Sakamoto
- Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China.,Division of Food and Drug Evaluation Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Yu Y, Sun X, Chen F, Liu M. Genetic Alteration, Prognostic and Immunological Role of Acyl-CoA Synthetase Long-Chain Family Member 4 in a Pan-Cancer Analysis. Front Genet 2022; 13:812674. [PMID: 35126480 PMCID: PMC8811308 DOI: 10.3389/fgene.2022.812674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Acyl-CoA Synthetase long-chain family member 4 (ACSL4) is a member of acyl-CoA synthetase protein long-chain family, which is associated with amino acid synthesis, lipid synthesis and lipid peroxidation dependent iron death. However, the role of ACSL4 in generalized carcinoma remains unclear. We aim to analyze the expression and prognostic value of ACSL4 in pan-cancer, and further explore the correlation between ACSL4 and immune infiltration. Through ONCOMINE, TIMER (Tumor Immune Estimation Resource), GEPIA (Gene expression Profiling Interactive), UALCAN and HPA, ACSL4 expression patterns of in pan-cancer were analyzed. The prognostic value of ACSL4 was analyzed using PrognoScan and Kaplan-Meier Plotter databases. Furthermore, gene variation and epigenetic modification of ACSL4 were analyzed by cBioPortal and GSCA databases. Meanwhile, GEPIA and TIMER databases applied to evaluate the relationship between ACSL4 expression and immune infiltration. These results indicate that ACSL4 expression is down-regulated and associated with prognosis in most tumors. In general, lower ACSL4 expression shows more beneficial prognosis. The most common genetic alteration of ACSL4 is point mutation. ACSL4 is negatively correlated with DNA methylation levels in most cancers. ACSL4 mutations or hypomethylation are associated with poor prognosis. In addition, ACSL4 is positively correlated with immune infiltration in cancers. ACSL4 and immune infiltration are strongly associated with prognosis in BRCA (Breast invasive carcinoma) and SKCM (Skin Cutaneous Melanoma). ACSL4 mutation caused significant changes of immune infiltration in UCEC (Uterine Corpus Endometrial Carcinoma) and SARC (Sarcoma). ACSL4 may be a promising prognostic biomarker for pan-cancer and is closely associated with immune infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuepu Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei Chen
- Department of General Surgery, Linyi Traditional Chinese Medicine Hospital, Linyi, China
| | - Miao Liu
- Department of Pathology, Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Miao Liu,
| |
Collapse
|
15
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Zhang Q, Xie T, Mo G, Zhang Z, Lin L, Zhang X. ACSL1 Inhibits ALV-J Replication by IFN-Ⅰ Signaling and PI3K/Akt Pathway. Front Immunol 2021; 12:774323. [PMID: 34777393 PMCID: PMC8585972 DOI: 10.3389/fimmu.2021.774323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/07/2021] [Indexed: 01/06/2023] Open
Abstract
J subgroup avian leukosis virus (ALV-J) infection causes serious immunosuppression problems, leading to hematopoietic malignancy tumors in chicken. It has been demonstrated that interferon-stimulated genes (ISGs) could limit ALV-J replication; nevertheless, the underlying mechanisms remain obscure. Here, we demonstrate that Long-chain Acyl-CoA synthetase 1 (ACSL1) is an interferon (IFN)-stimulated gene that specifically restricts the replication of ALV-J due to the higher IFN-I production. More importantly, ACSL1 induces primary monocyte-derived macrophages (MDMs) to pro-inflammatory phenotypic states during ALV-J infection, and ACSL1 mediates apoptosis through the PI3K/Akt signaling pathway in ALV-J-infected primary monocyte-derived macrophages (MDMs). Overall, these results provide evidence that ACSL1 contributes to the antiviral response against ALV-J.
Collapse
Affiliation(s)
- Qihong Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Ling Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Filippova EA, Pronina IV, Burdennyy AM, Kazubskaya TP, Loginov VI, Braga EA. The Profile of MicroRNA Expression and a Group of Genes in Breast Cancer: Relationship to Tumor Progression and Immunohistochemical Status. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, Wang Y, Lin Y, Zhou L, Xu S, Zhang J, Yin W, Lu J. Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBioMedicine 2021; 71:103560. [PMID: 34482070 PMCID: PMC8417304 DOI: 10.1016/j.ebiom.2021.103560] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recent evidence shows that inducing ferroptosis may improve efficacy of tumor therapy. However, ferroptosis-related genes have been little studied in patients with breast cancer especially in the neoadjuvant setting. ACSL4 and GPX4 have been well established as the positive and negative regulator of ferroptosis, respectively. This study aimed to explore the predictive value of ACSL4 and GPX4 for patients with breast cancer administered neoadjuvant chemotherapy. METHODS This study included patients treated with paclitaxel-cisplatin-based neoadjuvant chemotherapy. Immunohistochemistry staining of ACSL4 and GPX4 was carried out on the core needle biopsy specimens. Logistic regression was performed to explore the predictive biomarkers of pathological complete response (pCR). Survival analyses were examined by log-rank test and Cox proportional hazard regression. FINDINGS A total of 199 patients were included for the analyses. Both ACSL4 expression and ACSL4/GPX4 combination status could serve as independent predictive factors for pCR. The interaction for pCR was observed between ACSL4 and clinical tumor stage. Besides, ACSL4 expression, GPX4 expression, and their combination status were independent prognostic factors for disease-free survival. Analyses of the Kaplan-Meier Plotter database suggested that higher ACSL4 expression is related to better overall survival, and higher GPX4 expression is related to better distant metastasis-free survival. Pathway analyses revealed that ACSL4 and GPX4 might function in crucial pathways including apoptosis, autophagy, cell adhesion, lipid metabolism, etc. INTERPRETATION: This study revealed the critical value of ACSL4 and GPX4 serving as novel predictive and prognostic biomarkers for patients with breast cancer receiving neoadjuvant chemotherapy. It might be a novel strategy to induce ferroptosis to promote chemosensitivity. Future studies are required to elucidate the potential mechanisms. FUNDING This work was supported by Shanghai Natural Science Foundation [grant number 19ZR1431100], Clinical Research Plan of Shanghai Hospital Development Center [grant numbers SHDC2020CR3003A, 16CR3065B, and 12016231], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Youth Medical Talents - Specialist Program [grant number 2018-15], Shanghai "Rising Stars of Medical Talent" Youth Development Program for Outstanding Youth Medical Talents [grant number 2018-16], Shanghai Collaborative Innovation Center for Translational Medicine [grant number TM201908], Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University [grant numbers YG2017QN49, ZH2018QNA42, and YG2019QNA28], Nurturing Fund of Renji Hospital [grant numbers PYMDT-002, PY2018-IIC-01, PY2018-III-15, and PYIII20-09], Science and Technology Commission of Shanghai Municipality [grant numbers 20DZ2201600 and 15JC1402700], and Shanghai Municipal Key Clinical Specialty.
Collapse
Affiliation(s)
- Rui Sha
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaqian Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yaohui Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jie Zhang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
19
|
Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol 2021; 909:174397. [PMID: 34332918 DOI: 10.1016/j.ejphar.2021.174397] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
20
|
Ghasemishahrestani Z, Melo Mattos LM, Tilli TM, Santos ALSD, Pereira MD. Pieces of the Complex Puzzle of Cancer Cell Energy Metabolism: An Overview of Energy Metabolism and Alternatives for Targeted Cancer Therapy. Curr Med Chem 2021; 28:3514-3534. [PMID: 32814521 DOI: 10.2174/0929867327999200819123357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Over the past decades, several advances in cancer cell biology have led to relevant details about a phenomenon called the 'Warburg effect'. Currently, it has been accepted that the Warburg effect is not compatible with all cancer cells, and thus the process of aerobic glycolysis is now challenged by the knowledge of a large number of cells presenting mitochondrial function. The energy metabolism of cancer cells is focused on the bioenergetic and biosynthetic pathways in order to meet the requirements of rapid proliferation. Changes in the metabolism of carbohydrates, amino acids and lipids have already been reported for cancer cells and this might play an important role in cancer progression. To the best of our knowledge, these changes are mainly attributed to genetic reprogramming which leads to the transformation of a healthy into a cancerous cell. Indeed, several enzymes that are highly relevant for cellular energy are targets of oncogenes (e.g. PI3K, HIF1, and Myc) and tumor suppressor proteins (e.g. p53). As a consequence of extensive studies on cancer cell metabolism, some new therapeutic strategies have appeared that aim to interrupt the aberrant metabolism, in addition to influencing genetic reprogramming in cancer cells. In this review, we present an overview of cancer cell metabolism (carbohydrate, amino acid, and lipid), and also describe oncogenes and tumor suppressors that directly affect the metabolism. We also discuss some of the potential therapeutic candidates which have been designed to target and disrupt the main driving forces associated with cancer cell metabolism and proliferation.
Collapse
Affiliation(s)
- Zeinab Ghasemishahrestani
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Maura Melo Mattos
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Martins Tilli
- Centro de Desenvolvimento Tecnologico em Saude, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Dias Pereira
- Departamento de Bioquimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Feng J, Ren J, Yang Q, Liao L, Cui L, Gong Y, Sun S. Metabolic gene signature for predicting breast cancer recurrence using transcriptome analysis. Future Oncol 2021; 17:71-80. [PMID: 33397130 DOI: 10.2217/fon-2020-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The study aimed at identifying a metabolic gene signature for stratifying the risk of recurrence in breast cancer. Materials & methods: The data of patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The limma package was used to identify differentially expressed metabolic genes, and a metabolic gene signature was constructed. Results: A five-gene metabolic signature was established that demonstrated satisfactory accuracy and predictive power in both training and validation cohorts. Also, a nomogram for predicting recurrence-free survival was established using a combination of the metabolism gene risk score and the clinicopathological features. Conclusions: The proposed metabolic gene signature and nomogram have a significant prognostic value and may improve the recurrence risk stratification for breast cancer patients.
Collapse
Affiliation(s)
- Juan Feng
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qingfeng Yang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Lingxia Liao
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Le Cui
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shengrong Sun
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
22
|
Zhang Q, Zhou W, Yu S, Ju Y, To SKY, Wong AST, Jiao Y, Poon TCW, Tam KY, Lee LTO. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation. Oncogene 2021; 40:97-111. [PMID: 33082557 DOI: 10.1038/s41388-020-01516-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022]
Abstract
As a result of the hostile microenvironment, metabolic alterations are required to enable the malignant growth of cancer cells. To understand metabolic reprogramming during metastasis, we conducted shotgun proteomic analysis of highly metastatic (HM) and non-metastatic (NM) ovarian cancer cells. The results suggest that the genes involved in fatty-acid (FA) metabolism are upregulated, with consequent increases of phospholipids with relatively short FA chains (myristic acid, MA) in HM cells. Among the upregulated proteins, ACSL1 expression could convert the lipid profile of NM cells to that similar of HM cells and make them highly aggressive. Importantly, we demonstrated that ACSL1 activates the AMP-activated protein kinase and Src pathways via protein myristoylation and finally enhances FA beta oxidation. Patient samples and tissue microarray data also suggested that omentum metastatic tumours have higher ACSL1 expression than primary tumours and a strong association with poor clinical outcome. Overall, our data reveal that ACSL1 enhances cancer metastasis by regulating FA metabolism and myristoylation.
Collapse
Affiliation(s)
- Qingyu Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Shan Yu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yaojun Ju
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Sally Kit Yan To
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Terence Chuen Wai Poon
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Proteomics, Metabolomics and Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
- Centre of Reproduction, Development, and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
23
|
Fernández LP, Merino M, Colmenarejo G, Moreno-Rubio J, Sánchez-Martínez R, Quijada-Freire A, Gómez de Cedrón M, Reglero G, Casado E, Sereno M, Ramírez de Molina A. Metabolic enzyme ACSL3 is a prognostic biomarker and correlates with anticancer effectiveness of statins in non-small cell lung cancer. Mol Oncol 2020; 14:3135-3152. [PMID: 33030783 PMCID: PMC7718959 DOI: 10.1002/1878-0261.12816] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid-lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism-related pathways in non-small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl-CoA synthetase long-chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high-grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.
Collapse
Affiliation(s)
| | - María Merino
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Juan Moreno-Rubio
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | | | | | - Guillermo Reglero
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofía University Hospital, San Sebastián de los Reyes, Madrid, Spain
| | | |
Collapse
|
24
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
25
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
26
|
Identification of Latent Oncogenes with a Network Embedding Method and Random Forest. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5160396. [PMID: 33029511 PMCID: PMC7530476 DOI: 10.1155/2020/5160396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Oncogene is a special type of genes, which can promote the tumor initiation. Good study on oncogenes is helpful for understanding the cause of cancers. Experimental techniques in early time are quite popular in detecting oncogenes. However, their defects become more and more evident in recent years, such as high cost and long time. The newly proposed computational methods provide an alternative way to study oncogenes, which can provide useful clues for further investigations on candidate genes. Considering the limitations of some previous computational methods, such as lack of learning procedures and terming genes as individual subjects, a novel computational method was proposed in this study. The method adopted the features derived from multiple protein networks, viewing proteins in a system level. A classic machine learning algorithm, random forest, was applied on these features to capture the essential characteristic of oncogenes, thereby building the prediction model. All genes except validated oncogenes were ranked with a measurement yielded by the prediction model. Top genes were quite different from potential oncogenes discovered by previous methods, and they can be confirmed to become novel oncogenes. It was indicated that the newly identified genes can be essential supplements for previous results.
Collapse
|
27
|
Qin X, Zhang J, Lin Y, Sun XM, Zhang JN, Cheng ZQ. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma. J Transl Med 2020; 18:326. [PMID: 32859232 PMCID: PMC7456023 DOI: 10.1186/s12967-020-02494-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver cancer is among the most common malignancy worldwide. Hepatocellular carcinoma (HCC), the principal histological subtype of liver cancer, is globally the third most common cause of cancer-related mortality. The high rates of recurrence and metastasis contribute to the poor prognosis of HCC patients. In recent years, increasing evidence has shown that microRNAs (miRNAs) are involved in the tumorigenesis, progression, and prognosis of HCC. METHODS To screen for key candidate miRNAs in HCC, three microarray datasets were downloaded from Gene Expression Omnibus (GEO). The sole common differentially expressed miRNA (DEmiR) observed in the above three datasets using a Venn diagram was microRNA-211-5p (miR-211-5p). The expression of miR-211-5p from HCC tissues was measured in several HCC cell lines. Additionally, using Kaplan-Meier plots, the potential prognostic value of miR-211-5p in HCC was analyzed. Cell counting kit-8 (CCK-8) and transwell assays examined the ability of miR-211-5p to induce cell proliferation, migration, and invasion in HCC cultures. The interaction of miR-211-5p and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) was assessed both theoretically and using a luciferase reporter assay. Finally, the ability of miR-211-5p to modulate tumorigenesis in HCC in vivo was assessed after establishing a xenograft model. RESULTS qRT-PCR demonstrated that the relative expression of miR-211-5p was considerably down-regulated in HCC tissues and cell lines compared with normal tissue. Kaplan-Meier plots indicated that HCC patients with decreased expression of miR-211-5p had poor overall survival. Upregulation of miR-211-5p in vitro consistently suppressed cell proliferation, migration, and invasion. In contrast, enhanced expression of ACSL4 promoted a malignant phenotype in HCC cells. Importantly, we discovered that ACSL4 was a direct downstream target of miR-211-5p in HCC, and that miR-211-5p suppressed the malignant phenotype by inhibition of ACSL4 expression. Furthermore, miR-211-5p overexpression impaired tumorigenesis and growth of HCC in vivo. CONCLUSIONS Targeting miR-211-5p and the downstream gene ACSL4 will possibly provide novel insight and represents a promising approach to future therapy of HCC patients.
Collapse
Affiliation(s)
- Xia Qin
- The Graduate School of Second Military Medical University, Shanghai, China
| | - Jian Zhang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Lin
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Xue-Ming Sun
- Department of Neonatology, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Qingzhou, China
| | - Jia-Ning Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhi-Qiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, western culture road, Jinan, China.
| |
Collapse
|
28
|
Development and validation of a lipogenic genes panel for diagnosis and recurrence of colorectal cancer. PLoS One 2020; 15:e0229864. [PMID: 32155177 PMCID: PMC7064220 DOI: 10.1371/journal.pone.0229864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Background & aim Accumulated evidence indicates that the elevation of lipid metabolism is an essential step in colorectal cancer (CRC) development, and analysis of the key lipogenic mediators may lead to identifying the new clinically useful prognostic gene signatures. Methods The expression pattern of 61 lipogenic genes was assessed between CRC tumors and matched adjacent normal tissues in a training set (n = 257) with the Mann-Whitney U test. Cox's proportional hazards model and the Kaplan–Meier method were used to identifying a lipogenic-biomarkers signature associated with the prognosis of CRC. The biomarkers signature was then confirmed in two independent validation groups, including a set of 223 CRC samples and an additional set of 203 COAD profiles retrieving from the Cancer Genome Atlas (TCGA). Results Five genes, including ACOT8, ACSL5, FASN, HMGCS2, and SCD1, were significantly enhanced in CRC tumors. Using the cutoff value 0.493, the samples were classified into high risk and low risk. The AUC of panel for discriminating of all, early (I-II stages), and advanced CRC (III-IV stages) were 0.8922, 0.8446, and 0.9162 (Training set), along with 0.8800, 0.8205, and 0.7351 (validation set I), and 0.9071, 0.8946, and 0.9107 (Validation set II), respectively. There was a reverse correlation between the high predicted point of panel and worse OS of CRC patients in training set (HR (95% CI): 0.1096 (0.07089–0.1694), P < 0.001), validation set I (HR (95% CI): 0.3350 (0.2116–0.5304), P < 0.001), and validation set II (HR (95% CI): 0.1568 (0.1090–0.2257), P < 0.001). Conclusion Our study showed that the panel of ACOT8/ACSL5/FASN/HMGBCS2/SCD1 genes had a better prognostic performance than validated clinical risk scales and is applicable for early detection of CRC and tumor recurrence.
Collapse
|
29
|
Dinarvand N, Khanahmad H, Hakimian SM, Sheikhi A, Rashidi B, Pourfarzam M. Evaluation of long-chain acyl-coenzyme A synthetase 4 (ACSL4) expression in human breast cancer. Res Pharm Sci 2020; 15:48-56. [PMID: 32180816 PMCID: PMC7053294 DOI: 10.4103/1735-5362.278714] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and purpose: Breast cancer (BC) is one of the major causes of female cancer-related death. It has recently been demonstrated that metabolic reprogramming including alteration in lipid metabolism is indicated in various types of cancer. The enzymes of the acyl-coenzyme A synthetase long-chain family (ACSLs) are responsible for converting fatty acids to their corresponding fatty acyl-coenzyme A esters which are essential for some lipid metabolism pathways. ACSL4 is one of the isoforms of ACSLs and has a marked preference for arachidonic and eicosapentaenoic acids. The objective of this study was to evaluate ACSL4 expression, its prognostic significance, and its correlation with p53 tumor suppressor in BC patients. Experimental approach: In this study 55 pairs of fresh samples of BC and adjacent non-cancerous tissue were used to analyze ACSL4 expression, using real-time polymerase chain reaction and immunohistochemistry (IHC) staining. The expression of other studied variables was also examined using the IHC technique. Findings / Results: ACSL4 expression was significantly higher in BC tissues compared to the adjacent normal tissue. This upregulation was negatively correlated with Ki-67 and age, and positively correlated with p53 status. The correlation between ACSL4 and p53 may indicate the role of p53 in the regulation of lipid metabolism in cancer cells, in addition to its role in the regulation of ferroptosis cell death. Conclusion and implications: Our results indicated that the expression of ACSL4 may be considered as a prognostic indicator and potential therapeutic target in BC. However, further studies are needed to confirm the significance of these findings.
Collapse
Affiliation(s)
- Negar Dinarvand
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetic and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | | | - Abdolkarim Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, I.R. Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
30
|
Huang M, Wu J, Ling R, Li N. Quadruple negative breast cancer. Breast Cancer 2020; 27:527-533. [PMID: 31939077 DOI: 10.1007/s12282-020-01047-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Quadruple negative breast cancer (QNBC), lacking the expression of ER (estrogen receptor), PR (progesterone receptor), HER2 (human epidermal growth factor receptor-2) and AR (androgen receptor), was regarded as one breast cancer subtype with the worst prognosis. Recently, the molecular features of QNBC are not well understood. Different from AR-positive triple-negative breast cancer, QNBC is insensitive to conventional chemotherapeutic agents and has no efficient treatment targets. However, QNBC has been shown to express unique proteins that may be amenable to use in the development of targeted therapies. Here we reviewed the features of QNBC and proteins that may serve as effective targets for QNBC treatment, such as ACSL4, SKP2, immune checkpoint inhibitors, EGFR, MicroRNA signatures and Engrailed 1.
Collapse
Affiliation(s)
- Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang Wu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
31
|
Rossi Sebastiano M, Konstantinidou G. Targeting Long Chain Acyl-CoA Synthetases for Cancer Therapy. Int J Mol Sci 2019; 20:E3624. [PMID: 31344914 PMCID: PMC6696099 DOI: 10.3390/ijms20153624] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The deregulation of cancer cell metabolic networks is now recognized as one of the hallmarks of cancer. Abnormal lipid synthesis and extracellular lipid uptake are advantageous modifications fueling the needs of uncontrolled cancer cell proliferation. Fatty acids are placed at the crossroads of anabolic and catabolic pathways, as they are implicated in the synthesis of phospholipids and triacylglycerols, or they can undergo β-oxidation. Key players to these decisions are the long-chain acyl-CoA synthetases, which are enzymes that catalyze the activation of long-chain fatty acids of 12-22 carbons. Importantly, the long-chain acyl-CoA synthetases are deregulated in many types of tumors, providing a rationale for anti-tumor therapeutic opportunities. The purpose of this review is to summarize the last up-to-date findings regarding their role in cancer, and to discuss the related emerging tumor targeting opportunities.
Collapse
|
32
|
Non-coding RNAs derailed: The many influences on the fatty acid reprogramming of cancer. Life Sci 2019; 231:116509. [PMID: 31152812 DOI: 10.1016/j.lfs.2019.05.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 02/05/2023]
Abstract
Non-coding RNAs (NcRNAs), a family of functional RNA molecules that cannot translate into proteins but control specific gene expression programs, have been shown to be implicated in various biological processes, including fatty acid metabolism. Fast-growing tumor cells rewire their fatty acid metabolic circuitry in order to meet the needs of energy storage, membrane proliferation, and the generation of signaling molecules, which is achieved by regulating a variety of key enzymes along with related signaling pathways in fatty acid metabolism. This review presents an update of our knowledge about the regulatory network of ncRNAs-specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs)-in this metabolic shift and discusses the possibility of ncRNA-based therapeutics being applied to the restoration of cancer-related fatty acid metabolism.
Collapse
|
33
|
Pérez-Núñez I, Karaky M, Fedetz M, Barrionuevo C, Izquierdo G, Matesanz F, Alcina A. Splice-site variant in ACSL5: a marker promoting opposing effect on cell viability and protein expression. Eur J Hum Genet 2019; 27:1836-1844. [PMID: 31053784 PMCID: PMC6871522 DOI: 10.1038/s41431-019-0414-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/21/2019] [Accepted: 04/06/2019] [Indexed: 01/15/2023] Open
Abstract
Long-chain Acyl-CoA synthetases (ACSLs) activate fatty acids (FAs) by thioesterification with Coenzyme A (CoA), generating FA-CoAs. These products are essential for lipid metabolism and carcinogenesis. In previous study, we identified an intronic variant rs2256368:A>G, whose G allele promotes exon 20 skipping in up to 43% of ACSL5 transcripts but its functional relevance is unclear. Here, we compared the expression of splice (Spl) and nonsplice (NSpl) ACSL5 variants and the effect on cell viability under culture conditions that force cells to metabolize fatty acids. We found that lymphoblastoid cell lines from 1000 Genomes Project, bearing Spl genotypes, showed a reduced expression of total ACSL5 protein due to an inefficient translation of the Spl RNA. These cells impaired growth in cultures with phorbol myristate acetate-ionomycin (PMA-Io) or medium deprived of glucose, while production of reactive oxygen species increased in PMA-Io. Specific ACSL5-isoform transfection in HEK239T (kidney), U87 (astroglioma), and HOG (oligodendrocyte) cells showed the Spl protein to be the causal factor of cell-growth inhibition, despite its reduced protein expression. Our findings indicate that the variant rs2256368:A>G can predict a growth inhibitory activity, caused by the Spl isoform of ACSL5 protein, opposed to the activity of the NSpl. Deep understanding of its functioning might have application in metabolic diseases and cancer.
Collapse
Affiliation(s)
- Iván Pérez-Núñez
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Mohamad Karaky
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - María Fedetz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Cristina Barrionuevo
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Guillermo Izquierdo
- Unidad de Esclerosis Múltiple, Hospital Universitario Virgen Macarena, 41009, Sevilla, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain.
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain.
| |
Collapse
|
34
|
Yen MC, Chou SK, Kan JY, Kuo PL, Hou MF, Hsu YL. Solute Carrier Family 27 Member 4 (SLC27A4) Enhances Cell Growth, Migration, and Invasion in Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19113434. [PMID: 30388870 PMCID: PMC6274775 DOI: 10.3390/ijms19113434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Fatty acid metabolism is important in the regulation of breast cancer progression. Some of the proteins involved in fatty acid transport have been demonstrated to promote the proliferation, migration, and invasion in breast cancer cells. Solute carrier family 27 member 4 (SLC27A4) is a fatty acid transporter protein and is related to very long chain acyl-CoA synthetase activity. In the present study, bioinformatic analysis revealed that relatively high SLC27A4 expression was observed in all subtypes of breast tumor tissues when compared to normal breast tissues. Silencing SLC27A4 expression significantly reduced uptake of free fatty acids in two breast cancer cell lines, Hs578T and MDA-MB-231. Cell growth inhibition was observed in SLC27A4-silenced Hs578T and cell cycle was arrested at G2/M. In addition, the capacity of migration and invasion decreased in both cell lines after knockdown of SLC27A4. The epithelial–mesenchymal transition signaling pathway was inhibited because protein expression of Slug, vimentin, α-smooth muscle actin, and other regulators was lower than that in control cells. Taken together, our results confirm that high SLC27A4 is associated with tumor progression in breast cancer cells. It is worth investigating whether SLC27A4 serves a diagnostic marker and therapeutic target in further studies.
Collapse
Affiliation(s)
- Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shih-Kai Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jung-Yu Kan
- Department of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
35
|
Tang Y, Zhou J, Hooi SC, Jiang YM, Lu GD. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol Lett 2018; 16:1390-1396. [PMID: 30008815 DOI: 10.3892/ol.2018.8843] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The significance of fatty acid metabolism in cancer initiation and development is increasingly accepted by scientists and the public due to the high prevalence of overweight and obese individuals. Fatty acids have different turnovers in the body: Either breakdown into acetyl-CoA to aid ATP generation through catabolic metabolism or incorporation into triacylglycerol and phospholipid through anabolic metabolism. However, these two distinct pathways require a common initial step known as fatty acid activation. Long-chain acyl-CoA synthetases (ACSLs), which are responsible for activation of the most abundant long-chain fatty acids, are commonly deregulated in cancer. This deregulation is also associated with poor survival in patients with cancer. Fatty acids physiologically regulate ACSL expression, but cancer cells could hijack certain involved regulatory mechanisms to deregulate ACSLs. Among the five family isoforms, ACSL1 and ACSL4 are able to promote ungoverned cell growth, facilitate tumor invasion and evade programmed cell death, while ACSL3 may have relatively complex functions in different types of cancer. Notably, ACSL4 is also essential for the induction of ferroptosis (another form of programmed cell death) by facilitating arachidonic acid oxidation, which makes the enzyme a desirable cancer target. The present review thus evaluates the functions of deregulated ACSLs in cancer, the possible molecular mechanisms involved and the chemotherapeutic potentials to target ACSLs. A better understanding of the pathological effects of ACSLs in cancer and the involved molecular mechanisms will aid in delineating the exact role of fatty acid metabolism in cancer and designing precise cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Yue Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lim School of Medicine, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education of China, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
36
|
Sun XJ, Xu GL. Overexpression of Acyl-CoA Ligase 4 (ACSL4) in Patients with Hepatocellular Carcinoma and its Prognosis. Med Sci Monit 2017; 23:4343-4350. [PMID: 28887439 PMCID: PMC5602145 DOI: 10.12659/msm.906639] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Recently, accumulating studies have found that ACSL4 dysregulation is related to a great number of malignant tumors. The purpose of the present study was to explore the relationship between ACSL4 expression level and clinical prognosis of hepatocellular carcinoma (HCC) patients. Material/Methods The Oncomine and TCGA databases were used to predict the expression of ACSL4 mRNA in HCC and its association with HCC prognosis. Further, immunohistochemistry was performed to verify the ACSL4 protein expression in 116 paired HCC and adjacent normal tissues. Kaplan-Meier and cox analysis were performed to validate the correlation between ACSL4 expression and HCC prognosis. Results We first used the Oncomine database to find that ACSL4 mRNA expression level was significantly higher in HCC tissues than that in normal tissues (p all <0.001). The results were consistent with those in the TCGA database. Then, immunohistochemical results demonstrated that the ACSL4 positive expression rate was 70.7% in HCC tissues. ACSL4 differential expression level was significantly related to Edmondson grade (p=0.010), AFP (p=0.001) and TNM stage (p=0.012). Survival analysis revealed that both overall survival (OS) and disease-free survival (DFS) time were remarkably reduced in HCC patients with ACSL4 high expression (p=0.001 and 0.000, respectively). Moreover, Cox multivariate analysis demonstrated that ACSL4 expression was the only independent prognostic factor for both OS and DFS (both p values=0.001). Conclusions Taken together, our study demonstrated that ACSL4 was overexpressed in HCC, and it will be a new potential therapeutic target for HCC as an independent adverse prognostic parameter.
Collapse
Affiliation(s)
- Xiao-Jie Sun
- Medical College of Shandong University, Jinan, Shandong, China (mainland).,Department of Vascular Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Ge-Liang Xu
- Department of Hepatic Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|