1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Zheng C, Zheng J, Wang X, Zhang Y, Ma X, He L. Two-pore-domain potassium channel Sandman regulates intestinal stem cell homeostasis and tumorigenesis in Drosophila melanogaster. J Genet Genomics 2025:S1673-8527(25)00147-X. [PMID: 40381822 DOI: 10.1016/j.jgg.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Potassium channels regulate diverse biological processes, ranging from cell proliferation to immune responses. However, the functions of potassium homeostasis and its regulatory mechanisms in adult stem cells and tumors remain poorly characterized. Here, we identify Sandman, a two-pore-domain potassium channel in Drosophila, as an essential regulator for the proliferation of intestinal stem cells and malignant tumors, while dispensable for the normal development processes. Mechanistically, loss of sandman elevates intracellular K+ concentration, leading to growth inhibition. This phenotype is rescued by pharmacological reduction of intracellular K+ levels using the K+ ionophore. Conversely, overexpression of sandman triggers stem cell death in most regions of the midgut, inhibits tumor growth, and induces a Notch loss-of-function phenotype in the posterior midgut. These effects are mediated predominantly via the induction of endoplasmic reticulum (ER) stress, as demonstrated by the complete rescue of phenotypes through the co-expression of Ire1 or Xbp1s. Additionally, human homologs of Sandman demonstrated similar ER stress-inducing capabilities, suggesting an evolutionarily conserved relationship between this channel and ER stress. Together, our findings identify Sandman as a shared regulatory node that governs Drosophila adult stem cell dynamics and tumorigenesis through bioelectric homeostasis, and reveal a link between the two-pore potassium channel and ER stress signaling.
Collapse
Affiliation(s)
- Chen Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiadong Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xin Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
3
|
Song Y, Zhao QL, Ogawa R, Mizukami T, Li YM, Cui ZG, Saitoh JI, Noguchi K. Exploring the therapeutic potential of 4,4'-dimethoxychalcone: Inducing apoptosis in cancer cells via ER stress and autophagy disruption. Cell Signal 2025; 132:111854. [PMID: 40334804 DOI: 10.1016/j.cellsig.2025.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/10/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
In cancer therapeutics, natural flavonoid compounds are renowned for their diverse structures and broad biological activities, offering considerable opportunities for drug discovery. This study investigates the anticancer effects of the flavonoid 4,4'-dimethoxychalcone (DMC), focusing on its apoptotic mechanisms and therapeutic potential. Our findings reveal that DMC induces apoptosis by upregulating pro-apoptotic proteins (Bax, Bim, tBid) and downregulating anti-apoptotic proteins (Bcl-2, Mcl-1), with concurrent caspase-3 activation and PARP cleavage. This apoptotic effect is mitigated by Z-VAD-FMK, a pan-caspase inhibitor. DMC also induces mitochondrial membrane potential (MMP) loss and increases reactive oxygen species (ROS) production. Furthermore, DMC promotes endoplasmic reticulum (ER) stress, evidenced by the increased expression of p-PERK/PERK, p-IRE1/IRE1, GRP78, HSP70, ATF4, and CHOP proteins. ER stress inhibitors significantly reverse DMC-induced MMP loss, apoptosis, and upregulation of apoptosis-related proteins. Additionally, DMC activates the mitogen-activated protein kinase (MAPK) pathway, including Erk, JNK, and p38. DMC also promotes autophagosome accumulation, modulates autophagy marker proteins (LC3-II, ATG5, p62), and leads to lysosomal dysfunction-evidenced by downregulated LAMP-1 and Cathepsin D expression, lysosomal pH increase, yet unaffected LC3 and LAMP-1 co-localization. Modulating autophagy with inhibitors (3-methyladenine, 3-MA; chloroquine, CQ) or an inducer (rapamycin, Rapa) respectively enhances or reduces DMC-induced apoptosis. Treatment with 3-MA also led to a significant increase in the expression of ER stress markers CHOP and ATF4. Collectively, DMC-induced cell death is primarily due to ER stress activation and autophagic flux impairment via lysosomal dysfunction. These results suggest DMC's potential as an anticancer agent, warranting further clinical investigation.
Collapse
Affiliation(s)
- Yu Song
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Qing-Li Zhao
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ryohei Ogawa
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tatsuji Mizukami
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yu-Mei Li
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan.
| | - Jun-Ichi Saitoh
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan.
| | - Kyo Noguchi
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Borah ST, Mondal A, Das B, Saha S, Das Sarma J, Gupta P. β-Cyclodextrin Encapsulated Platinum(II)-Based Nanoparticles: Photodynamic Therapy and Inhibition of the NF-κB Signaling Pathway in Glioblastoma. ACS APPLIED BIO MATERIALS 2025; 8:3331-3342. [PMID: 40148119 DOI: 10.1021/acsabm.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This study explores cell death through photodynamic therapy (PDT) with β-cyclodextrin-encapsulated platinum(II)-based nanoparticles (Pt-NPs) and the effect on the NF-κB and stress pathways in glioblastoma. The encapsulation of the cyclometalated Pt(II) complex Pt(LL') within β-cyclodextrin (β-CD) enhances its biocompatibility, improves cellular penetration, and boosts emission, thereby increasing the effectiveness of PDT. Both Pt(LL') and Pt-NPs show minimal toxicity in the dark; however, Pt-NPs significantly increase toxicity toward glioblastoma Kr158 cells upon irradiation at 390 nm. The PDT-induced cell death is further validated through apoptosis assays and the modulation of some key survival pathways like NF-κB/p65, DJ-1, and ERp29. This is the first report of β-cyclodextrin-encapsulated platinum(II)-based nanoparticles designed to target glioblastoma cells through PDT, offering a promising strategy for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Sanchari Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| |
Collapse
|
5
|
Zhang F, Wang T, Wei L, Xie Z, Wang L, Luo H, Li F, Kang Q, Dong W, Zhang J, Zhu X, Wang C, Liang L, Peng W. B-Lymphoid Tyrosine Kinase Crosslinks Redox and Apoptosis Signaling Networks to Promote the Survival of Transplanted Bone Marrow Mesenchymal Stem Cells. RESEARCH (WASHINGTON, D.C.) 2025; 8:0660. [PMID: 40235595 PMCID: PMC11999575 DOI: 10.34133/research.0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
Stress-induced apoptosis presents an obstacle to bone marrow mesenchymal stem cell (BMSC) transplantation to repair steroid-induced osteonecrosis of the femoral head (SONFH). Thus, appropriate intervention strategies should be explored to mitigate this. In our previous study, we discovered a new subgroup of BMSCs-the oxidative stress-resistant BMSCs (OSR-BMSCs)-which can survive the oxidative stress microenvironment in the osteonecrotic area, through a mechanism that currently remains unclear. In this study, we found that B-lymphoid tyrosine kinase (BLK) may be the crucial factor regulating the oxidative stress resistance of OSR-BMSCs, as it is highly expressed in these cells. Knockdown of BLK eliminated oxidative stress resistance, aggravated oxidative stress-induced apoptosis, reduced the survival of OSR-BMSCs in the oxidative stress microenvironment of the osteonecrotic area, and greatly weakened the transplantation efficacy of OSR-BMSCs for SONFH. By contrast, BLK was weakly expressed in oxidative stress-sensitive BMSCs (OSS-BMSCs). Overexpression of BLK in susceptible OSS-BMSCs allowed them to acquire oxidative stress resistance, inhibited oxidative stress-induced apoptosis, promoted their survival in the osteonecrotic area, and improved the transplantation efficacy of OSS-BMSCs for SONFH. Mechanistically, BLK concurrently activates redox and apoptotic signaling networks through its tyrosine kinase activity, which confers oxidative stress resistance to BMSCs and inhibits their stress-induced apoptosis of BMSCs. Herein, we report that OSR-BMSCs have intrinsic oxidative stress resistance that is conferred and mediated by BLK. This finding provides a potential new intervention strategy for improving the survival of transplanted BMSCs and the therapeutic efficacy of BMSC transplantation for SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Wei
- Department of Orthopedics,
Warren Alpert Medical School of Brown University,Providence, RI 02912, USA
| | - Zhihong Xie
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lijun Wang
- Department of Critical Care Medicine,
West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Luo
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qinglin Kang
- Department of Orthopedics,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wentao Dong
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jian Zhang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Chuan Wang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Liang Liang
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002, China
| | - Wuxun Peng
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
6
|
Yang X, Li Y, Shen R, Song R, Duan Y, Zhang X, Shi H, Kong X, Hua Y, Zhang L. New insights into the tenderization pattern of yak meat by ROS-ERS: Promotion of ERS-associated apoptosis through feedback regulation of PERK/IRE1/ATF6 and caspase-12 activity. Food Chem 2025; 470:142705. [PMID: 39742610 DOI: 10.1016/j.foodchem.2024.142705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
This study aimed to investigate the molecular mechanisms of reactive oxygen species (ROS)-induced endoplasmic reticulum stress (ERS) in apoptosis and meat tenderization during postmortem aging. Yak longissimus dorsi muscle was incubated with N-acetylcysteine (NAC), 4-phenylbutyric acid (4-PBA) and NAC + 4-PBA, respectively, and stored at 4 °C for 0 h, 12 h, 24 h, 72 h, 120 h and 168 h. The results showed that NAC and 4-PBA treatments significantly reduced ROS content and endoplasmic reticulum stress levels. Meanwhile, the specific inhibitory effect of 4-PBA affected Ca2+ content, caspase-12 activity, endoplasmic reticulum apoptotic cascade reaction and meat tenderization by preventing myogenic fiber degradation. Additionally, the combined treatment of NAC + 4-PBA had a more significant effect than the other groups, confirming the necessity of targeted regulation of the ROS-ERS axis. Overall, our findings provide new insights into the critical role of ROS-mediated ERS in caspase-12-dependent apoptosis and yak meat tenderization during yak meat postmortem.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Rende Song
- Qinghai Work Station of Animal and Veterinary Sciences, Yushu 815000, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinjun Zhang
- Ningxia Xiahua Meat Food Co., Ltd., Zhongwei 75500, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Cao R, Dang Y, Liu X, Sun Q, Zhang W, Xu Z. Target-switchable nanoprobe based on BRD4 inhibition for induction and dynamic visualization of the mitochondrial apoptotic pathway. Biosens Bioelectron 2025; 273:117179. [PMID: 39842059 DOI: 10.1016/j.bios.2025.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition. Cy-JQ1 can affect mitochondrial electron chain transfer and reduce the mitochondrial membrane potential, effectively activating the Bcl-2/Bax/caspase-3 signaling pathway at a concentration of 500 nM and then triggering cell apoptosis. Due to its high specificity and excellent fluorescence properties, the switching of Cy-JQ1 from mitochondria to endoplasmic reticulum could be observed. The difference in fluorescence intensity along the perinuclear aggregates could be well defined as ΔXOR and used as a sensitive indicator of apoptosis. Upon conjugating with polyethylene glycol (PEG) containing disulfide bonds, the performance of the formed nanoprobe (Cy-JQ1-S-S-M) is further enhanced by improving pharmacokinetics and tumor-specific accumulation. This study provides a new analytical method for the dynamic visualization of mitochondria-induced apoptosis pathways triggered by specific proteins, as well as for the development of apoptosis-related target drugs.
Collapse
Affiliation(s)
- Ruijie Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Xinyue Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China.
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
9
|
Nghiem THT, Nguyen KA, Kusuma F, Park S, Park J, Joe Y, Han J, Chung HT. The PERK-eIF2α-ATF4 Axis Is Involved in Mediating ER-Stress-Induced Ferroptosis via DDIT4-mTORC1 Inhibition and Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2025; 14:307. [PMID: 40227255 PMCID: PMC11939615 DOI: 10.3390/antiox14030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Ferroptosis, a regulated form of cell death characterized by lipid peroxidation and iron accumulation, is increasingly recognized for its role in disease pathogenesis. The unfolded protein response (UPR) has been implicated in both endoplasmic reticulum (ER) stress and ferroptosis-mediated cell fate decisions; yet, the specific mechanism remains poorly understood. In this study, we demonstrated that ER stress induced by tunicamycin and ferroptosis triggered by erastin both activate the UPR, leading to the induction of ferroptotic cell death. This cell death was mitigated by the application of chemical chaperones and a ferroptosis inhibitor. Among the three arms of the UPR, the PERK-eIF2α-ATF4 signaling axis was identified as a crucial mediator in this process. Mechanistically, the ATF4-driven induction of DDIT4 plays a pivotal role, facilitating ferroptosis via the inhibition of the mTORC1 pathway. Furthermore, acetaminophen (APAP)-induced hepatotoxicity was investigated as a model of eIF2α-ATF4-mediated ferroptosis. Our findings reveal that the inhibition of eIF2α-ATF4 or ferroptosis protects against APAP-induced liver damage, underscoring the therapeutic potential of targeting these pathways. Overall, this study not only clarifies the intricate role of the PERK-eIF2α-ATF4 axis in ER-stress-and erastin-induced ferroptosis but also extends these findings to a clinically relevant model, providing a foundation for potential therapeutic interventions in conditions characterized by dysregulated ferroptosis and ER stress.
Collapse
Affiliation(s)
- Thu-Hang Thi Nghiem
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea;
| | - Kim Anh Nguyen
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Fedho Kusuma
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Soyoung Park
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
| | - Jeongmin Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| | - Yeonsoo Joe
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| | - Jaeseok Han
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea; (K.A.N.); (F.K.); (S.P.)
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hun Taeg Chung
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea; (J.P.); (Y.J.)
| |
Collapse
|
10
|
Varlamova EG, Gudkov SV, Turovsky EA. Differential effect of cerium nanoparticles on the viability, redox-status and Ca 2+-signaling system of cancer cells of various origins. Arch Biochem Biophys 2025; 764:110261. [PMID: 39645139 DOI: 10.1016/j.abb.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The present study aims to understand the molecular mechanism underlying the therapeutic effect of cerium nanoparticles (CeNPs) in oncology. Cancer cells were treated with different concentrations of pure nanocerium of different sizes synthesized by laser ablation. Due to the not insignificant influence of surface defects and oxygen species on the ROS-modulating properties of cerium nanoparticles, the nanoparticles were not coated with surfactants or organic molecules during synthesis, which could potentially inhibit a number of pro-oxidative effects. Reactive oxygen species (ROS) production, expression of genes encoding redox-status proteins, selenoproteins and proteins regulating cell death and endoplasmic reticulum stress (ER-stress) were investigated as indicators of the molecular mechanism of cancer cell death. Studies were conducted on the effects of cerium nanoparticles on the Ca2+ signaling system of cancer cells of different origins. Mouse fibroblasts (L-929 cell line) were used as non-cancerous ("normal") cells for which a whole series of experiments were performed, and a comparative analysis of the effects of nanoceria. It was found that 75 nm-sized cerium nanoparticles did not affect the redox-status and ROS production of cancer cells. In fibroblast cells, however, this nanoparticle diameter led to a deterioration of the cellular redox status and ROS production in a wide range of nanoparticle concentrations. Larger nanoparticles (100 nm-sized and 160 nm-sized), on the other hand, showed a different effect on cancer cells of different origins. In mouse fibroblast L-929 cells, however, 100 nm-sized or 160 nm-sized CeNPs acted in a high concentration range to disrupt mitochondrial membrane potential and activate early apoptosis. High concentrations of CeNPs were required to increase ROS production, reduce redox-status and induce apoptosis in human A-172 glioblastoma cells compared to the hepatocellular carcinoma cell line HepG2 and the breast cancer cell line MCF-7. In the A-172 glioblastoma cells, ER-stress was also not activated and their Ca2+ signaling system was activated by a significantly higher concentration of CeNPs, which could also contribute to the formation of tolerance of this cancer cell line to nanoceria. The Ca2+ signaling system of mouse fibroblasts was found to be highly sensitive to activation by nanoceria and the cells produced Ca2+ signals with higher amplitude compared to A-172 and MCF-7 cells.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
11
|
Santoro A, Ricci A, Rodriquez M, Buonocore M, D’Ursi AM. A Structural Effect of the Antioxidant Curcuminoids on the Aβ(1-42) Amyloid Peptide. Antioxidants (Basel) 2025; 14:53. [PMID: 39857387 PMCID: PMC11759820 DOI: 10.3390/antiox14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Investigating amyloid-β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1-42) peptide to misfold in solution, correlated to the aetiology of Alzheimer's disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1-42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation. Antioxidants like curcumin, a derivative of Curcuma longa, help mitigate ER stress by scavenging ROS and enhancing antioxidant enzymes. Furthermore, evidence in the literature highlights the effect of curcumin on the secondary structure of Aβ(1-42). This explorative study investigates the Aβ(1-42) peptide conformational behaviour in the presence of curcumin and six derivatives using circular dichroism (CD) to explore their interactions with lipid bilayers, potentially preventing aggregate formation. The results suggest that the synthetic tetrahydrocurcumin (THC) derivative interacts with the amyloid peptide in all the systems presented, while cyclocurcumin (CYC) and bisdemethoxycurcumin (BMDC) only interact when the peptide is in a less stable conformation. Molecular dynamics simulations helped visualise the curcuminoids' effect in an aqueous system and hypothesise the importance of the peptide surface exposition to the solvent, differently modulated by the curcumin derivatives.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Antonio Ricci
- Fresenius Kabi iPSUM, Via San Leonardo, 23, 45010 Villadose, Italy;
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy;
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
- Department of Chemical Sciences and Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Strada Comunale Cintia, 80126 Naples, Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| |
Collapse
|
12
|
Hong S, Park J, Oh Y, Cho H, Kim K. Nanotechnology-Based Strategies for Safe and Effective Immunotherapy. Molecules 2024; 29:5855. [PMID: 39769944 PMCID: PMC11676242 DOI: 10.3390/molecules29245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer immunotherapy using immune checkpoint blockades has emerged as a promising therapeutic approach. However, immunotherapy faces challenges such as low response rates in solid tumors, necessitating strategies to remodel the immune-suppressive tumor microenvironment (TME) into an immune-activated state. One of the primary approaches to achieve this transformation is through the induction of immunogenic cell death (ICD). Herein, we discussed strategies to maximize ICD induction using nanoparticles. In particular, this review highlighted various studies integrating chemotherapy, radiation therapy (RT), photodynamic therapy (PDT), and photothermal therapy (PTT) with nanoparticle-based immunotherapy. The research covered in this review aims to provide valuable insights for future studies on nanoparticle-assisted immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (S.H.); (J.P.); (Y.O.); (H.C.)
| |
Collapse
|
13
|
Xu S, Wu X, Zhu J, Wu Q, Gao L, Yang F, Zhang Z. Research Progress of Endoplasmic Reticulum Targeting Metal Complexes in Cancer Therapy. Drug Dev Res 2024; 85:e70027. [PMID: 39676587 DOI: 10.1002/ddr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The development of anticancer drugs that target different organelles has received extensive attention due to the characteristics of cancer recurrence, metastasis, and drug resistance. The endoplasmic reticulum (ER) is an important structure within the cell that is primarily responsible for protein synthesis, folding, modification, and transport and plays a crucial role in cell function and health. ER stress activation induces cancer cell apoptosis. New anticancer drugs with different anticancer mechanisms and selectivity can be designed because of redox activity, composition diversity, and metal complexes structure regulation. Over the past few decades, dozens of metal complexes have killed cancer cells through ER stress, showing powerful tumor-suppressive effects. This review summarizes the progress of research on anticancer metallic drugs that induce ER stress over the past few years, which is expected to bring more breakthroughs in the field of medicine and life science.
Collapse
Affiliation(s)
- Shihang Xu
- School Hospital, Guangxi Normal University, Guilin, Guangxi, P.R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Xiaoling Wu
- School Hospital, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Jia Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Qiuming Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Lijuan Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| | - Zhenlei Zhang
- School Hospital, Guangxi Normal University, Guilin, Guangxi, P.R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi, P.R. China
| |
Collapse
|
14
|
Cao K, Luo K, Zheng Y, Xue L, Huo W, Ruan P, Wang Y, Xue Y, Yao X, Xia D, Gao X. Disturbing microtubule-endoplasmic reticulum dynamics by gold nanoclusters for improved triple-negative breast cancer treatment. J Mater Chem B 2024; 12:11648-11658. [PMID: 39415636 DOI: 10.1039/d4tb01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. In vivo, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as in vitro. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.
Collapse
Affiliation(s)
- Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Kaidi Luo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yichen Zheng
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Liyuan Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Wendi Huo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Panpan Ruan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yuchen Wang
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yilin Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xiuxiu Yao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Dongfang Xia
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
15
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Chen J, Fan W, Fan J, Xie J, Wang Y, Wang Y, Lin N, Lin B. Tetrahydrocurcumin Attenuates Polymyxin B Sulfate-Induced HK-2 Cells Apoptosis by Inhibiting Endoplasmic Reticulum Stress-Mediated PERK/eIF2α/ATF4/CHOP Signaling Pathway Axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4995-5007. [PMID: 39023307 DOI: 10.1002/tox.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
The clinical application of polymyxin B (PMB) is limited by its nephrotoxic effects, making the reduction of PMB-induced nephrotoxicity has become a pressing concern for clinicians. Tetrahydrocurcumin (THC), known for its beneficial characteristics in biological functions, presents an attractive option for intervention therapy to mitigate PMB-induced nephrotoxicity. However, the underlying mechanism of how THC mitigates PMB-induced nephrotoxicity is still poorly understood. Here, we first evaluated the potential of THC intervention therapy to mitigate PMB-induced nephrotoxicity in an in vitro model of PMB-induced cell injury. Moreover, we demonstrated that THC effectively protected HK-2 cells from PMB-induced apoptosis by using cell counting kit-8 and flow cytometry assay. THC could also suppress PMB-induced endoplasmic reticulum (ER) stress via PERK/eIF2α/ATF4/CHOP pathway. In addition, using PERK inhibitor GSK2606414 to inhibit ER stress also alleviated PMB-induced apoptosis. Taken together, these findings provide novel insights that THC possesses the ability to alleviate PMB-induced nephrotoxicity by inhibiting the ER stress-mediated PERK/eIF2α/ATF4/CHOP axis, which sheds light on the benefits of THC as an intervention strategy to reduce PMB-induced nephrotoxicity, thus providing a potential avenue for improved clinical outcomes in patients receiving PMB treatment.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Intensive Care Medicine, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
| | - Weibin Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jing Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jiao Xie
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yan Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yinhui Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
17
|
Panda SS, Biswal BK. The phytochemical plumbagin: mechanism behind its "pleiotropic" nature and potential as an anticancer treatment. Arch Toxicol 2024; 98:3585-3601. [PMID: 39271481 DOI: 10.1007/s00204-024-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapeutics are most often used to treat cancer, but side effects, drug resistance, and toxicity often compromise their effectiveness. In contrast, phytocompound plumbagin possesses a distinct pleiotropic nature, targeting multiple signaling pathways, such as ROS generation, cell death, cellular proliferation, metastasis, and drug resistance, and is shown to enhance the efficacy of chemotherapeutic drugs. Plumbagin has been shown to act synergistically with various chemotherapeutic drugs and enhance their efficacy in drug-resistant cancers. The pleiotropic nature is believed to be due to plumbagin's unique structure, which contains a naphthoquinone ring and a hydroxyl group responsible for plumbagin's various biological responses. Despite limitations such as restricted bioavailability and delivery, recent developments aim to address these challenges and harness the potential of plumbagin as an anticancer therapeutics. This review delves into the structural aspect of the plumbagin molecule contributing to its pleiotropic nature, explores the diverse mechanism that it targets, and discusses emerging strategies to overcome its limitations.
Collapse
Affiliation(s)
- Shikshya Swarupa Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
18
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
19
|
Chen Z, Yuan H, Zhang S, Sharifuzzaman SM, Chang Z. Microcystin-LR induces histopathological injury and cell apoptosis in the hepatopancreas of white shrimp, Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117059. [PMID: 39303636 DOI: 10.1016/j.ecoenv.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Microcystin-LR (MC-LR), a common hepatotoxin produced by bloom-forming cyanobacteria, presents a serious threat to the health of aquatic animals. In this study, we studied the impact of MC-LR on hepatopancreas histopathology, enzyme activity, transcriptome, and apoptosis of Litopenaeus vannamei. Thus, shrimp postlarvae (1.63 ± 0.5 g) exposed to MC-LR at 500 μg/kg caused morphological lesions in the histology of the shrimp hepatopancreas, which exhibited swollen, lighter coloration and unclear edges. Moreover, MC-LR significantly altered the hepatopancreas enzyme activities such as the levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LZM), including the state of apoptosis in hepatopancreas. From the RNA-seq analysis of the hepatopancreas, a total of 728 differentially expressed genes (DEGs) were identified, and their functions in MC-LR treatment group were involved in cellular processes, metabolic processes, biological regulation, cellular components, catalytic activity and binding. The metabolic pathways primarily associated with the DEGs included reactive oxygen species, glycerophospholipid metabolism and the phospholipase D signaling pathway. Overall, q-PCR results indicated that MC-LR led to significant changes in multiple apoptosis genes of shrimp hepatopancreas. This study expand the understanding of the effect of microcystin-LR on commercially farmed crustaceans.
Collapse
Affiliation(s)
- Zhao Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Haiqing Yuan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shuangyong Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Zhiqiang Chang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
20
|
Brito ML, Coutinho-Wolino KS, Almeida PP, Trigueira PDC, Alves APDP, Magliano DC, Stockler-Pinto MB. Unstressing the Reticulum: Nutritional Strategies for Modulating Endoplasmic Reticulum Stress in Obesity. Mol Nutr Food Res 2024; 68:e2400361. [PMID: 39363792 DOI: 10.1002/mnfr.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Indexed: 10/05/2024]
Abstract
The progression of obesity involves several molecular mechanisms that are closely associated with the pathophysiological response of the disease. Endoplasmic reticulum (ER) stress is one such factor. Lipotoxicity disrupts endoplasmic reticulum homeostasis in the context of obesity. Furthermore, it induces ER stress by activating several signaling pathways via inflammatory responses and oxidative stress. ER performs crucial functions in protein synthesis and lipid metabolism; thus, triggers such as lipotoxicity can promote the accumulation of misfolded proteins in the organelle. The accumulation of these proteins can lead to metabolic disorders and chronic inflammation, resulting in cell death. Thus, alternatives, such as flavonoids, amino acids, and polyphenols that are associated with antioxidant and anti-inflammatory responses have been proposed to attenuate this response by modulating ER stress via the administration of nutrients and bioactive compounds. Decreasing inflammation and oxidative stress can reduce the expression of several ER stress markers and improve clinical outcomes through the management of obesity, including the control of body weight, visceral fat, and lipid accumulation. This review explores the metabolic changes resulting from ER stress and discusses the role of nutritional interventions in modulating the ER stress pathway in obesity.
Collapse
Affiliation(s)
- Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Karen Salve Coutinho-Wolino
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | - Patricia Pereira Almeida
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
| | | | - Ana Paula de Paula Alves
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Endocrinology Post Graduate Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 24210-201, Brazil
- Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, 24020-150, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24070-090, Brazil
- Nutrition Sciences Postgraduate Program, Fluminense Federal University (UFF), Niterói, RJ, 24020-140, Brazil
| |
Collapse
|
21
|
Chen L, Wei M, Zhou B, Wang K, Zhu E, Cheng Z. The roles and mechanisms of endoplasmic reticulum stress-mediated autophagy in animal viral infections. Vet Res 2024; 55:107. [PMID: 39227990 PMCID: PMC11373180 DOI: 10.1186/s13567-024-01360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024] Open
Abstract
The endoplasmic reticulum (ER) is a unique organelle responsible for protein synthesis and processing, lipid synthesis in eukaryotic cells, and the replication of many animal viruses is closely related to ER. A considerable number of viral proteins are synthesised during viral infection, resulting in the accumulation of unfolded and misfolded proteins in ER, which in turn induces endoplasmic reticulum stress (ERS). ERS further drives three signalling pathways (PERK, IRE1, and ATF6) of the cellular unfolded protein response (UPR) to respond to the ERS. In numerous studies, ERS has been shown to mediate autophagy, a highly conserved cellular degradation mechanism to maintain cellular homeostasis in eukaryotic cells, through the UPR to restore ER homeostasis. ERS-mediated autophagy is closely linked to the occurrence and development of numerous viral diseases in animals. Host cells can inhibit viral replication by regulating ERS-mediated autophagy, restoring the ER's normal physiological process. Conversely, many viruses have evolved strategies to exploit ERS-mediated autophagy to achieve immune escape. These strategies include the regulation of PERK-eIF2α-Beclin1, PERK-eIF2α-ATF4-ATG12, IRE1α-JNK-Beclin1, and other signalling pathways, which provide favourable conditions for the replication of animal viruses in host cells. The ERS-mediated autophagy pathway has become a hot topic in animal virological research. This article reviews the most recent research regarding the regulatory functions of ERS-mediated autophagy pathways in animal viral infections, emphasising the underlying mechanisms in the context of different viral infections. Furthermore, it considers the future direction and challenges in the development of ERS-mediated autophagy targeting strategies for combating animal viral diseases, which will contribute to unveiling their pathogenic mechanism from a new perspective and provide a scientific reference for the discovery and development of new antiviral drugs and preventive strategies.
Collapse
Affiliation(s)
- Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Miaozhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bijun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Animal Disease and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
22
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
23
|
Zhang J, He W, Liu D, Zhang W, Qin H, Zhang S, Cheng A, Li Q, Wang F. Phosphoenolpyruvate carboxykinase 2-mediated metabolism promotes lung tumorigenesis by inhibiting mitochondrial-associated apoptotic cell death. Front Pharmacol 2024; 15:1434988. [PMID: 39193344 PMCID: PMC11347759 DOI: 10.3389/fphar.2024.1434988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjuan He
- School of Medicine, Tongji University, Shanghai, China
| | | | - Wenyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Huan Qin
- School of Medicine, Tongji University, Shanghai, China
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ailan Cheng
- Department of Radiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Zhen J, Lin L, Li Z, Sun F, Han Y, Li Q, Yang Y, Liu X, Yu J, Zhang Q, Lu Y, Han C. Regulatory effects of Trichinella spiralis serpin-type serine protease inhibitor on endoplasmic reticulum stress and oxidative stress in host intestinal epithelial cells. Vet Res 2024; 55:78. [PMID: 38877574 PMCID: PMC11179199 DOI: 10.1186/s13567-024-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/04/2024] [Indexed: 06/16/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.
Collapse
Affiliation(s)
- Jingbo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lihao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Zhixin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Qiankun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yuqi Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Xueting Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Junchen Yu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Qi Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yixin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| | - Caixia Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
25
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
26
|
Ma J, Yuan H, Zhang J, Sun X, Yi L, Li W, Li Z, Fu C, Zheng L, Xu X, Wang X, Wang F, Yin D, Yuan J, Xu C, Li Z, Peng X, Wang J. An ultrasound-activated nanoplatform remodels tumor microenvironment through diverse cell death induction for improved immunotherapy. J Control Release 2024; 370:501-515. [PMID: 38703950 DOI: 10.1016/j.jconrel.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Although nanomaterial-based nanomedicine provides many powerful tools to treat cancer, most focus on the "immunosilent" apoptosis process. In contrast, ferroptosis and immunogenic cell death, two non-apoptotic forms of programmed cell death (PCD), have been shown to enhance or alter the activity of the immune system. Therefore, there is a need to design and develop nanoplatforms that can induce multiple modes of cell death other than apoptosis to stimulate antitumor immunity and remodel the immunosuppressive tumor microenvironment for cancer therapy. In this study, a new type of multifunctional nanocomposite mainly consisting of HMME, Fe3+ and Tannic acid, denoted HFT NPs, was designed and synthesized to induce multiple modes of cell death and prime the tumor microenvironment (TME). The HFT NPs consolidate two functions into one nano-system: HMME as a sonosensitizer for the generation of reactive oxygen species (ROS) 1O2 upon ultrasound irradiation, and Fe3+ as a GSH scavenger for the induction of ferroptosis and the production of ROS ·OH through inorganic catalytic reactions. The administration of HFT NPs and subsequent ultrasound treatment caused cell death through the consumption of GSH, the generation of ROS, ultimately inducing apoptosis, ferroptosis, and immunogenic cell death (ICD). More importantly, the combination of HFT NPs and ultrasound irradiation could reshape the TME and recruit more T cell infiltration, and its combination with immune checkpoint blockade anti-PD-1 antibody could eradicate tumors with low immunogenicity and a cold TME. This new nano-system integrates sonodynamic and chemodynamic properties to achieve outstanding therapeutic outcomes when combined with immunotherapy. Collectively, this study demonstrates that it is possible to potentiate cancer immunotherapy through the rational and innovative design of relatively simple materials.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Haitao Yuan
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Jingjing Zhang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Letai Yi
- Inner Mongolia Medical University, Hohhot, PR China
| | - Weihua Li
- Medical Imaging Department, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, PR China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi Province 037009, PR China
| | - Chunjin Fu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Liuhai Zheng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xiaolong Xu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Xiaoxian Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Fujing Wang
- Department of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China
| | - Jimin Yuan
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China.
| | - Chengchao Xu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Integrative Medicine, Laboratory of Pathophysiology, Key Laboratory of Integrative Medicine on Chronic Diseases, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Zhijie Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China.
| | - Jigang Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, PR China; Department of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
27
|
Suárez-Martínez E, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR, Carnero A. Protein homeostasis maintained by HOOK1 levels promotes the tumorigenic and stemness properties of ovarian cancer cells through reticulum stress and autophagy. J Exp Clin Cancer Res 2024; 43:150. [PMID: 38807192 PMCID: PMC11134651 DOI: 10.1186/s13046-024-03071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.
Collapse
Affiliation(s)
- Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sander R Piersma
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, VU University Medical Center, CCA 1-60, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), HUVR/CSIC/Universidad de Sevilla, Avda. Manuel Siurot S/N; Campus HUVR, Ed. IBIS,, Seville, 41013, Spain.
- CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Lee YT, Mohd Yunus MH, Yazid MD, Ugusman A. Unraveling the path to osteoarthritis management: targeting chondrocyte apoptosis for therapeutic intervention. Front Cell Dev Biol 2024; 12:1347126. [PMID: 38827524 PMCID: PMC11140145 DOI: 10.3389/fcell.2024.1347126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
29
|
Tcyganov EN, Kwak T, Yang X, Poli ANR, Hart C, Bhuniya A, Cassel J, Kossenkov A, Auslander N, Lu L, Sharma P, Mendoza MDGC, Zhigarev D, Cadungog MG, Jean S, Chatterjee-Paer S, Weiner D, Donthireddy L, Bristow B, Zhang R, Tyurin VA, Tyurina YY, Bayir H, Kagan VE, Salvino JM, Montaner LJ. Targeting LxCxE cleft pocket of retinoblastoma protein in M2 macrophages inhibits ovarian cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593562. [PMID: 38798466 PMCID: PMC11118332 DOI: 10.1101/2024.05.10.593562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor- associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket, causes cell death in TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways. A reduction of pro-tumor Rb high M2-type macrophages from TME in vivo enhanced T cell infiltration and inhibited cancer progression. We demonstrate an increased Rb expression in TAMs in women with ovarian cancer is associated with poorer prognosis. Ex vivo, we show analogous cell death induction by therapeutic Rb targeting in TAMs in post-surgery ascites from ovarian cancer patients. Overall, our data elucidates therapeutic targeting of the Rb LxCxE cleft pocket as a novel promising approach for ovarian cancer treatment through depletion of TAMs and re-shaping TME immune landscape. Statement of significance Currently, targeting immunosuppressive myeloid cells in ovarian cancer microenvironment is the first priority need to enable successful immunotherapy, but no effective solutions are clinically available. We show that targeting LxCxE cleft pocket of Retinoblastoma protein unexpectedly induces preferential cell death in M2 tumor-associated macrophages. Depletion of immunosuppressive M2 tumor-associated macrophages reshapes tumor microenvironment, enhances anti-tumor T cell responses, and inhibits ovarian cancer. Thus, we identify a novel paradoxical function of Retinoblastoma protein in regulating macrophage viability as well as a promising target to enhance immunotherapy efficacy in ovarian cancer.
Collapse
|
30
|
Yue F, Xu J, Meng L, Wang Q, Tan M, Zhang A, Yan S, Jiang D. A new insight into Cd exposure-induced hemocyte reduction in Lymantria dispar larvae: Involvement of the ROS-ATF6-ER stress-apoptosis pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134061. [PMID: 38508113 DOI: 10.1016/j.jhazmat.2024.134061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Hemocytes are important targets for heavy metal-induced immunotoxicity in insects. This study aimed to investigate the mechanism by which cadmium (Cd) exposure affects the hemocyte count in Lymantria dispar larvae. The results showed that the number of larval hemocytes was significantly decreased under Cd exposure, accompanied by a significant increase in the apoptosis rate and the expression of Caspase-3. The endoplasmic reticulum (ER) of hemocytes in the Cd-treated group showed irregular swelling. Expression levels of ER stress indicator genes (CHOP, Bip1, Bip2, Bip3, and Bip4) were significantly higher in the Cd-treated group. Among the three pathways that potentially mediate ER stress, only the key genes in the ATF6 pathway (ATF6, S1P-1, S1P-2, and WFS1) exhibited differential responses to Cd exposure. Cd exposure significantly increased the levels of reactive oxygen species (ROS) and the expression of oxidative stress-related genes (CNCC, P38, and ATF2) in hemocytes. Studies using inhibitors confirmed that apoptosis mediated the decrease in hemocyte count, ER stress mediated apoptosis, ATF6 pathway mediated ER stress, and ROS or oxidative stress mediated ER stress through the activation of the ATF6 pathway. Taken together, the ROS-ATF6-ER stress-apoptosis pathway is responsible for the reduction in the hemocyte count of Cd-treated L. dispar larvae.
Collapse
Affiliation(s)
- Fusen Yue
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Jinsheng Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Linyi Meng
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Qi Wang
- Forest Conservation Institute, Chinese Academy of Forestry, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
31
|
Hacioglu C, Oral D. Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5. J Cell Mol Med 2024; 28:e18380. [PMID: 38780503 PMCID: PMC11114215 DOI: 10.1111/jcmm.18380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a persistent challenge to conventional therapeutic approaches. SLC12A5 is implicated in an oncogenic capacity and facilitates the progression of cancer. The objective of this investigation is to scrutinize the inhibitory effects of borax on endoplasmic reticulum (ER)-stress and apoptosis mediated by SLC12A5 in HepG2 cells. Initially, we evaluated the cytotoxic impact of borax on both HL-7702 and HepG2 cell lines. Subsequently, the effects of borax on cellular morphology and the cell cycle of these lines were examined. Following this, we explored the impact of borax treatment on the mRNA and protein expression levels of SLC12A5, C/EBP homologous protein (CHOP), glucose-regulated protein-78 (GRP78), activating transcription factor-6 (ATF6), caspase-3 (CASP3), and cytochrome c (CYC) in these cellular populations. The determined IC50 value of borax for HL-7702 cells was 40.8 mM, whereas for HepG2 cells, this value was 22.6 mM. The concentrations of IC50 (22.6 mM) and IC75 (45.7 mM) of borax in HepG2 cells did not manifest morphological aberrations in HL-7702 cells. Conversely, these concentrations in HepG2 cells induced observable morphological and nuclear abnormalities, resulting in cell cycle arrest in the G1/G0 phase. Additionally, the levels of SLC12A5, ATF6, CHOP, GRP78, CASP3, and CYC were elevated in HepG2 cells in comparison to HL-7702 cells. Moreover, SLC12A5 levels decreased following borax treatment in HepG2 cells, whereas ATF6, CHOP, GRP78, CASP3, and CYC levels exhibited a significant increase. In conclusion, our data highlight the potential therapeutic effects of borax through the regulation of ER stress in HCC by targeting SLC12A5.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Faculty of Pharmacy, Department of BiochemistryDüzce UniversityDüzceTurkey
- Faculty of Medicine, Department of Medical BiochemistryDüzce UniversityDüzceTurkey
| | - Didem Oral
- Faculty of Pharmacy, Department of Pharmaceutical ToxicologyDüzce UniversityDüzceTurkey
| |
Collapse
|
32
|
Liu H, Zheng Y, Kan S, Hao M, Jiang H, Li S, Li R, Wang Y, Wang D, Liu W. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon 2024; 10:e29291. [PMID: 38644851 PMCID: PMC11033109 DOI: 10.1016/j.heliyon.2024.e29291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) occupies a high proportion of oral squamous cell carcinoma. TSCC features high lymph node metastasis rates and chemotherapy resistance with a poor prognosis. Therefore, an effective therapy strategy is needed to improve patient prognosis. Melatonin (MT) is a natural indole compound shown to have anti-tumor effects in several cancers. This study focused on the role and mechanism of MT in TSCC cells. The results of the study suggest that MT could inhibit cell proliferation in CRL-1623 cells. Western blot analysis showed the down-regulate of cyclin B1 and the up-regulate P21 protein by MT. MT was also shown to down-regulate the expression of Zeb1, Wnt5A/B, and β-catenin protein and up-regulate E-cadherin to inhibit the migration of CRL-1623 cells. MT also promoted the expression of ATF4, ATF6, Bip, BAP31 and CHOP in CRL-1623 cells leading to endoplasmic reticulum stress, and induced autophagy and apoptosis in CRL-1623 cells. Western blots showed that MT could promote the expression of Bax, LC3, and Beclin1 proteins and inhibit the expression of p62. We screened differentially expressed long non-coding RNAs (lncRNAs) in MT-treated cells and found that the expression of MALAT1 and H19 decreased. Moreover, MT inhibited tumor growth in nude mice inoculated with CRL-1623 cells. These results suggest that MT could induce autophagy, promote apoptosis, and provide a potential natural compound for the treatment of TSCC.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Stomatology, Shunyi District Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Ye Zheng
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yinyu Wang
- Stomatology Hospital, Baicheng Medical College, Baicheng, 130300, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
33
|
AlBashtawi J, Al-Jaber H, Ahmed S, Al-Mansoori L. Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets. Biomedicines 2024; 12:793. [PMID: 38672148 PMCID: PMC11047871 DOI: 10.3390/biomedicines12040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in cancer, influencing tumor cell survival and growth by releasing factors like vascular endothelial growth factor (VEGF). The unfolded protein response (UPR) is pivotal in this process, offering both pro-survival and apoptotic pathways. This review offers an extensive exploration of the sophisticated connection between ER stress provoked by obesity and its role in both the onset and advancement of cancer. It delves into the intricate interplay between oncogenic signaling and the pathways associated with ER stress in individuals who are obese. Furthermore, this review sheds light on potential therapeutic strategies aimed at managing ER stress induced by obesity, with a focus on addressing cancer initiation and progression. The potential to alleviate ER stress through therapeutic interventions, which may encompass the use of small molecules, FDA-approved medications, and gene therapy, holds great promise. A more in-depth examination of pathways such as UPR, ER-associated protein degradation (ERAD), autophagy, and epigenetic regulation has the potential to uncover innovative therapeutic approaches and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Joud AlBashtawi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Sara Ahmed
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.-J.); (S.A.)
| |
Collapse
|
34
|
Roy A, Chakraborty AR, DePamphilis ML. PIKFYVE inhibitors trigger interleukin-24-dependent cell death of autophagy-dependent melanoma. Mol Oncol 2024; 18:988-1011. [PMID: 38414326 PMCID: PMC10994231 DOI: 10.1002/1878-0261.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Inhibitors specifically targeting the 1-phosphatidylinositol 3-phosphate 5-kinase (PIKFYVE) disrupt lysosome homeostasis, thereby selectively terminating autophagy-dependent human cancer cells in vivo as well as in vitro without harming the viability of nonmalignant cells. To elucidate the mechanism by which PIKFYVE inhibition induces cell death, autophagy-dependent melanoma cells were compared with normal foreskin fibroblasts. RNA sequence profiling suggested that PIKFYVE inhibitors upregulated an endoplasmic reticulum (ER) stress response involving interleukin-24 (IL24; also known as MDA7) selectively in melanoma cells. Subsequent biochemical and genetic analyses confirmed these results and extended them to tumor xenografts in which tumor formation and expansion were inhibited. IL24 expression was upregulated by the DDIT3/CHOP/CEBPz transcription factor, a component of the PERK-dependent ER-stress response. Ectopic expression of IL24-induced cell death in melanoma cells, but not in foreskin fibroblasts, whereas ablation of the IL24 gene in melanoma cells prevented death. IL24 upregulation was triggered specifically by PIKFYVE inhibition. Thus, unlike thapsigargin and tunicamycin, which induce ER-stress indiscriminately, PIKFYVE inhibitors selectively terminated PIKFYVE-sensitive melanoma by inducing IL24-dependent ER-stress. Moreover, induction of cell death by a PIKFYVE inhibitor together with ectopic expression of IL24 protein was cumulative, thereby confirming the therapeutic potential of PIKFYVE inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Ajit Roy
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Arup R. Chakraborty
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Melvin L. DePamphilis
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
35
|
Zhang F, Qi Y, Li J, Liu B, Liu Z, Cui X. Activin A induces apoptosis of human lung adenocarcinoma A549 cells through endoplasmic reticulum stress pathway. Oncol Rep 2024; 51:29. [PMID: 38131250 PMCID: PMC10777458 DOI: 10.3892/or.2023.8688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Activin A, a member of the transforming growth factor‑β (TGF‑β) superfamily, has been implicated in the tumorigenesis and progression of various cancers. However, it remains unclear whether activin A induces apoptosis in human lung adenocarcinoma cells through the endoplasmic reticulum (ER) stress pathway. In the present study, BrdU, flow cytometry and western blotting were used to examine cell proliferation, apoptosis and protein expression, respectively. The present study revealed that activin A inhibited human lung adenocarcinoma A549 cell proliferation, induced apoptosis, and upregulated the protein levels of C/EBP homologous protein (CHOP), growth arrest and DNA damage‑inducible protein 34 (GADD34), cleaved‑caspase‑3 and caspase‑12. Furthermore, the administration of activin A did not alter the levels of suppressor of mothers against decapentaplegic 3 (Smad3) or phosphorylated (p)‑Smad3 proteins, whereas, it significantly elevated the levels of ActRIIA and p‑extracellular signal regulated kinase proteins 1 and 2 (ERK1/2) proteins in A549 cells. The apoptotic effects of activin A on A549 cells were attenuated by the ERK inhibitor FR180204, which also downregulated CHOP and caspase‑12 protein levels. Additionally, activin A increased intracellular calcium flux in A549 cells, and the calcium ion chelator BAPTA acetoxymethyl ester (BAPTA‑AM) inhibited activin A‑induced A549 cell apoptosis, whereas the calcium agonist ionomycin significantly increased apoptosis of A549 cells induced by activin A. These findings indicated that the activation of the ER stress pathway resulting in apoptosis of A549 cells triggered by activin A is facilitated by the ActRIIA‑ERK1/2 signaling and calcium signaling. The present findings suggest that the agonists of ERK and calcium signaling exhibit promising clinical therapeutic potential for the induction of apoptosis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Boyang Liu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Scientific Research, Jilin Jianzhu University, Changchun, Jilin 130118, P.R. China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology and Clinical Immunology in Jilin, Changchun, Jilin 130021, P.R. China
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
36
|
Liu LY, He SJ, Chen Z, Ge M, Lyu CY, Gao D, Yu JP, Cai MH, Yuan JX, Zhang JL. The Role of Regulatory Cell Death in Vitiligo. DNA Cell Biol 2024; 43:61-73. [PMID: 38153369 DOI: 10.1089/dna.2023.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Vitiligo is one of the common chronic autoimmune skin diseases in clinic, which is characterized by localized or generalized depigmentation and seriously affects the physical and mental health of patients. At present, the pathogenesis of vitiligo is not clear; mainly, heredity, autoimmunity, oxidative stress, melanocyte (MC) self-destruction, and the destruction, death, or dysfunction of MCs caused by various reasons are always the core of vitiligo. Regulatory cell death (RCD) is an active and orderly death mode of cells regulated by genes, which widely exists in various life activities, plays a pivotal role in maintaining the homeostasis of the organism, and is closely related to the occurrence and development of many diseases. With the deepening of the research and understanding of RCD, people gradually found that there are many different forms of RCD in the lesions and perilesional skin of vitiligo patients, such as apoptosis, autophagy, pyroptosis, ferroptosis, and so on. Different cell death modes have different mechanisms in vitiligo, and different RCDs can interact and regulate each other. In this article, the mechanism related to RCD in the pathogenesis of vitiligo is reviewed, which provides new ideas for exploring the pathogenesis and targeted treatment of vitiligo.
Collapse
Affiliation(s)
- Lyu-Ye Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Si-Jia He
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| | - Zhao Chen
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Man Ge
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chun-Yi Lyu
- First Clinical Medical College Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dandan Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ji-Peng Yu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meng-Han Cai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jin-Xiang Yuan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jun-Ling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Bozic D, Živanović J, Živančević K, Baralić K, Đukić-Ćosić D. Trends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effects. Cancers (Basel) 2024; 16:524. [PMID: 38339275 PMCID: PMC10854591 DOI: 10.3390/cancers16030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Jovana Živanović
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.Ž.); (K.Ž.); (K.B.); (D.Đ.-Ć.)
- Center for Toxicological Risk Assessment, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
38
|
Holczer M, Besze B, Lehel A, Kapuy O. The Dual Role of Sulforaphane-Induced Cellular Stress-A Systems Biological Study. Int J Mol Sci 2024; 25:1220. [PMID: 38279216 PMCID: PMC11154497 DOI: 10.3390/ijms25021220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress. Our goal was to investigate how SFN-dependent autophagy activation affects different stages of ER stress induction. We approached our scientific analysis from a systems biological perspective using both theoretical and molecular biological techniques. We found that SFN induced the various cell-death mechanisms in a concentration- and time-dependent manner. The short SFN treatment at low concentrations promoted autophagy, whereas the longer treatment at higher concentrations activated cell death. We proved that SFN activated autophagy in a mTORC1-dependent manner and that the presence of ULK1 was required for its function. A low concentration of SFN pre- or co-treatment combined with short and long ER stress was able to promote cell survival via autophagy induction in each treatment, suggesting the potential medical importance of SFN in ER stress-related diseases.
Collapse
Affiliation(s)
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary; (M.H.); (B.B.); (A.L.)
| |
Collapse
|
39
|
Liu N, Li M, Pang H, Tiantian T, Li X, Su Y, Jin M, Wu H, Qian C, Sun M. Bioinformatics-driven discovery of silica nanoparticles induces apoptosis and renal damage via the unfolded protein response in NRK-52E cells and rat kidney. Comput Biol Med 2024; 168:107816. [PMID: 38064850 DOI: 10.1016/j.compbiomed.2023.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Silica nanoparticles (SiNPs) are nanomaterials with widespread applications in drug delivery and disease diagnosis. Despite their utility, SiNPs can cause chronic kidney disease, hindering their clinical translation. The molecular mechanisms underlying SiNP-induced renal toxicity are complex and require further investigation. To address this challenge, we employed bioinformatics tools to predict the potential mechanisms underlying renal damage caused by SiNPs. We identified 1627 upregulated differentially expressed genes (DEGs) and 1334 downregulated DEGs. Functional enrichment analysis and protein-protein interaction network revealed that SiNP-induced renal damage is associated with apoptosis. Subsequently, we verified that SiNPs induced apoptosis in an in vitro model of NRK-52E cells via the unfolded protein response (UPR) in a dose-dependent manner. Furthermore, in an in vivo rat model, high-dose SiNP administration via tracheal drip caused hyalinization of the renal tubules, renal interstitial lymphocytic infiltration, and collagen fiber accumulation. Concurrently, we observed an increase in UPR-related protein levels at the onset of renal damage. Thus, our study confirmed that SiNPs induce apoptosis and renal damage through the UPR, adding to the theoretical understanding of SiNP-related kidney damage and offering a potential target for preventing and treating kidney injuries in SiNP clinical applications.
Collapse
Affiliation(s)
- Naimeng Liu
- Breast Surgery Department, General Surgery Center, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Meng Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Huan Pang
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Tian Tiantian
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Xinyue Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Yanchi Su
- School of Artificial Intelligence, Jilin University, No.2699 Qianjin Street, Changchun, China.
| | - Minghua Jin
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Chuyue Qian
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Mindan Sun
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| |
Collapse
|
40
|
Kim TW. Paeoniflorin Induces ER Stress-Mediated Apoptotic Cell Death by Generating Nox4-Derived ROS under Radiation in Gastric Cancer. Nutrients 2023; 15:5092. [PMID: 38140352 PMCID: PMC10745742 DOI: 10.3390/nu15245092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Gastric cancer is one of the most prevalent cancer types worldwide, and its resistance to cancer therapies, such as chemotherapy and radiotherapy, has made treating it a major challenge. Paeoniflorin (PF) is one potential pharmacological treatment derived from paeony root. However, in cancer, the molecular mechanisms and biological functions of PF are still unclear. In the present study, we found that PF exerts anti-tumor effects in vivo and in vitro and induces apoptotic cell death through ER stress, calcium (Ca2+), and reactive oxygen species (ROS) release in gastric cancer cells. However, ROS inhibition by DPI and NAC blocks cell death and the PERK signaling pathway via the reduction of Nox4. Moreover, PF triggers a synergistic inhibitory effect of the epithelial-mesenchymal transition (EMT) process under radiation exposure in radiation-resistant gastric cancer cells. These findings indicate that PF-induced Ca2+ and ROS release overcomes radioresistance via ER stress and induces cell death under radiation in gastric cancer cells. Therefore, PF, in combination with radiation, may be a powerful strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
| |
Collapse
|
41
|
Hung CS, Lee KL, Huang WJ, Su FH, Liang YC. Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16467. [PMID: 38003657 PMCID: PMC10671009 DOI: 10.3390/ijms242216467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-He Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
42
|
Albassam H, Ladin DA, Elhassanny A, Burns C, Van Dross-Anderson R. Apoptosis mechanisms induced by 15d-PMJ 2 in HCT116 colon cancer cells: insights into CHOP10/TRB3/Akt signaling. Front Pharmacol 2023; 14:1283677. [PMID: 38026967 PMCID: PMC10652392 DOI: 10.3389/fphar.2023.1283677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Agents that stimulate the endoplasmic reticulum (ER) stress pathway are being exploited pharmacologically to induce cancer cell death. Cytotoxic ER stress is typically regulated by the transcription factor, C/EBP homologous protein 10 (CHOP10). Products of CHOP10 transcription include the pro-apoptotic proteins: ER oxidoreductase 1α (ERO1α), death receptor-5 (DR5), and tribbles-related protein 3 (TRB3). Our previous findings showed cell death induced by 15-deoxy- Δ12,14 prostamide J2 (15d-PMJ2) occurred in an ER stress-dependent manner. However, the pathway by which 15d-PMJ2 regulates ER stress-mediated death downstream of CHOP10 has not been identified. Our results demonstrate 5 µM 15d-PMJ2 increased CHOP10 expression and apoptosis in HCT116 colon cancer cells. In cells treated with pharmacological inhibitors of ER stress, 15d-PMJ2-induced apoptosis was reliant upon the ER stress pathway. To investigate the role of CHOP10 and its transcriptional products in apoptosis, genetic deletion of CHOP10 (CHOP10-KO) was performed using the CRISPR/Cas9 system. The apoptotic action of 15d-PMJ2 was blunted in cells lacking CHOP10 expression. The deletion of CHOP10 reduced the expression of DR5, ERO1α, and TRB3 although only the expression of TRB3 was significantly reduced. Therefore, we overexpressed TRB3 in CHOP10-KO cells and observed that the activation of Akt was inhibited and 15d-PMJ2-induced apoptosis was restored. Thus, a mechanism of apoptosis elicited by 15d-PMJ2 includes the stimulation of CHOP10/TRB3/Akt inhibition. Given the important role these signaling molecules play in cancer cell fate, 15d-PMJ2 may be an effective inducer of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Hussam Albassam
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Daniel A. Ladin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Ahmed Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Colin Burns
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Rukiyah Van Dross-Anderson
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
43
|
Wang Q, Feng H, Li Z, Wu Q, Li L, Sun D, Tan J, Fan M, Yu C, Xu C, Lai Y, Shen W, Cheng H. α-Hederin induces human colorectal cancer cells apoptosis through disturbing protein homeostasis. Chem Biol Interact 2023; 386:110785. [PMID: 39492501 DOI: 10.1016/j.cbi.2023.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Protein homeostasis and quality control are crucial for normal cellular activities, and a severe imbalance in protein homeostasis can lead to cell death. α-Hederin, a pentacyclic triterpenoid saponin isolated from Fructus Akebia, has a clear role in promoting colorectal cancer (CRC) cell apoptosis and has been recently used for CRC therapy. However, whether the pro-apoptotic activity of α-hederin in CRC cells involves disturbing protein homeostasis remains unknown. Here, we aimed to uncover the underlying molecular mechanism of α-hederin-induced apoptosis in CRC cells. Cell viability and proliferation were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays, respectively. Apoptosis was detected using flow cytometry and western blotting. Autophagic flux was examined by western blotting and AdPlus-mCherry-GFP-LC3B adenovirus infection assays, and western blotting and immunofluorescence staining were performed to detect the expression of proteins in related pathways. The results showed that α-hederin significantly inhibited the growth and promoted the apoptosis of human CRC cells. Furthermore, α-Hederin induced endoplasmic reticulum (ER) stress, but inhibited proteasomal degradation. Also, the autophagic flux was blocked by α-hederin although this drug promoted autophagosome formation, and the lysosomal degradation was inhibited. Expression of p-JNK and p-p38 were increased by α-hederin. So, our findings provide strong evidence that α-hederin disrupts protein homeostasis by blocking ER-associated degradation (ERAD) and autophagic flux, thereby contributing to apoptosis. PERK-eIF2α-ATF4-CHOP and IRE1-ASK1-JNK/p38 signal pathway may be involved in those regulation. Our results make it a promising alternative or adjunct therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Qijuan Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212000, Jiangsu, China
| | - Hui Feng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ziwen Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liu Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Dongdong Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Jiani Tan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Minmin Fan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Chengtao Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Changliang Xu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Yueyang Lai
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China
| | - Weixing Shen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China.
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, 210023, Jiangsu, China; Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
44
|
Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, Huang P, Ye X, Wang W, Tao X, Zhou BH, Chen W, Tang KL. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience 2023; 26:107784. [PMID: 37876608 PMCID: PMC10590817 DOI: 10.1016/j.isci.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Calcific tendinopathy (CT) is defined by the progressive accumulation of calcium crystals in tendonic regions that results in severe pain in patients. The etiology of CT is not fully elucidated. In this study, we elucidate the role of PPP1R3A in CT. A significant decrease in PPP1R3A expression was observed in CT patient tissues, which was further confirmed in tissues from a CT-induced rat model. Overexpression of PPP1R3A ex vivo reduced the expression of osteo/chondrogenic markers OCN and Sox9, improved tendon tissue architecture, and reduced intracellular Ca2+ levels. Overexpression of SERCA2 and knockdown of Piezo1 decreased expression of osteo/chondrogenic markers and intracellular calcium in PPP1R3A-knockdown tendon cells. Lastly, PPP1R3A expression was regulated at the posttranscriptional level by binding of HuR. Collectively, the present study indicates that PPP1R3A plays an important role in regulating calcium homeostasis in tendon cells via Piezo1/SERCA2, rendering it a promising target for therapeutic interventions of CT.
Collapse
Affiliation(s)
- Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
- Department of Orthopedics, 904 Hospital of PLA, Wuxi 214000 Jiangsu, China
| | - Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Shang Gao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Ming-Yu Yang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Mi-Duo Mu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xiao Ye
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wei Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Bing-Hua Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Kang-Lai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| |
Collapse
|
45
|
Guo F, Wei J, Song Y, Li B, Qian Z, Wang X, Wang H, Xu T. Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines. Front Immunol 2023; 14:1255920. [PMID: 37841250 PMCID: PMC10569470 DOI: 10.3389/fimmu.2023.1255920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines.
Collapse
Affiliation(s)
- Fangzheng Guo
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
46
|
Chen X, Yu Z, Nong C, Xue R, Zhang M, Zhang Y, Sun L, Zhang L, Wang X. Activation of cDCs and iNKT cells contributes to triptolide-induced hepatotoxicity via STING signaling pathway and endoplasmic reticulum stress. Cell Biol Toxicol 2023; 39:1753-1772. [PMID: 36520315 DOI: 10.1007/s10565-022-09782-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Triptolide (TP) exhibits therapeutic potential against multiple diseases. However, its application in clinics is limited by TP-induced hepatoxicity. TP can activate invariant natural killer T (iNKT) cells in the liver, shifting Th1 cytokine bias to Th2 cytokine bias. The damaging role of iNKT cells in TP-induced hepatoxicity has been established, and iNKT cell deficiency can mitigate hepatotoxicity. However, the activation of iNKT cells in vitro by TP requires the presence of antigen-presenting cells. Therefore, we hypothesized that TP could induce dendritic cells (DCs) to activate iNKT cells, thereby leading to hepatotoxicity. The hepatic conventional DCs (cDCs) exhibited immunogenic activities after TP administration, upregulating the expression of CD1d, co-stimulatory molecules, and IL-12. Neutralization with IL-12p40 antibody extenuated TP-induced hepatotoxicity and reduced iNKT cell activation, suggesting that IL-12 could cause liver injury by activating iNKT cells. TP triggered the activation and upregulation of STING signaling pathway and increased endoplasmic reticulum (ER) stress. Downregulation of STING reduced cDC immunogenicity, inhibiting the activation of iNKT cells and hepatic damage. These indicated the regulatory effects of STING pathway on cDCs and iNKT cells, and the important roles it plays in hepatoxicity. ER stress inhibitor, 4-phenylbutyrate (4-PBA), also suppressed iNKT cell activation and liver injury, which might be regulated by the STING signaling pathway. Our results demonstrated the possible mechanisms underlying TP-induced hepatoxicity, where the activation of cDCs and iNKT cells was stimulated by upregulated STING signaling and increased ER stress as a result of TP administration.
Collapse
Affiliation(s)
- Xin Chen
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Zixun Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Nong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingxuan Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiying Zhang
- Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Lixin Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xinzhi Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
47
|
Guo H, Zhang S, Zhang B, Shang Y, Liu X, Wang M, Wang H, Fan Y, Tan K. Immunogenic landscape and risk score prediction based on unfolded protein response (UPR)-related molecular subtypes in hepatocellular carcinoma. Front Immunol 2023; 14:1202324. [PMID: 37457742 PMCID: PMC10348016 DOI: 10.3389/fimmu.2023.1202324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of cancer and causes a significant number of cancer-related deaths worldwide. The molecular mechanisms underlying the development of HCC are complex, and the heterogeneity of HCC has led to a lack of effective prognostic indicators and drug targets for clinical treatment of HCC. Previous studies have indicated that the unfolded protein response (UPR), a fundamental pathway for maintaining endoplasmic reticulum homeostasis, is involved in the formation of malignant characteristics such as tumor cell invasiveness and treatment resistance. The aims of our study are to identify new prognostic indicators and provide drug treatment targets for HCC in clinical treatment based on UPR-related genes (URGs). Methods Gene expression profiles and clinical information were downloaded from the TCGA, ICGC and GEO databases. Consensus cluster analysis was performed to classify the molecular subtypes of URGs in HCC patients. Univariate Cox regression and machine learning LASSO algorithm were used to establish a risk prognosis model. Kaplan-Meier and ROC analyses were used to evaluate the clinical prognosis of URGs. TIMER and XCell algorithms were applied to analyze the relationships between URGs and immune cell infiltration. Real time-PCR was performed to analyze the effect of sorafenib on the expression levels of four URGs. Results Most URGs were upregulated in HCC samples. According to the expression pattern of URGs, HCC patients were divided into two independent clusters. Cluster 1 had a higher expression level, worse prognosis, and higher expression of immunosuppressive factors than cluster 2. Patients in cluster 1 were more prone to immune escape during immunotherapy, and were more sensitive to chemotherapeutic drugs. Four key UPR genes (ATF4, GOSR2, PDIA6 and SRPRB) were established in the prognostic model and HCC patients with high risk score had a worse clinical prognosis. Additionally, patients with high expression of four URGs are more sensitive to sorafenib. Moreover, ATF4 was upregulated, while GOSR2, PDIA6 and SRPRB were downregulated in sorafenib-treated HCC cells. Conclusion The UPR-related prognostic signature containing four URGs exhibits high potential application value and performs well in the evaluation of effects of chemotherapy/immunotherapy and clinical prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yumei Fan
- *Correspondence: Yumei Fan, ; Ke Tan,
| | - Ke Tan
- *Correspondence: Yumei Fan, ; Ke Tan,
| |
Collapse
|
48
|
Fu JN, Liu SC, Chen Y, Zhao J, Lu N, Ma T. Forsythiaside A alleviates Lipopolysacchrride-induced acute liver Injury through inhibiting endoplasmic reticulum stress and NLRP3 inflammasome activation. Biol Pharm Bull 2023. [PMID: 37183023 DOI: 10.1248/bpb.b23-00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The liver is the primary site of inflammation caused by bacterial endotoxins in sepsis, and septic acute liver injury (SALI) is usually associated with poor outcomes in sepsis. Forsythiaside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory properties, antioxidant properties, and protective properties against neuroinflammation, sepsis, and edema.Therefore, the purpose of the present study was to examine FTA's potential effects on lipopolysaccharide (LPS)-induced SALI in mice.Our results indicated that pretreatment with FTA significantly attenuated aspartate aminotransferase (AST) and aminoleucine transferase (ALT) levels in plasma, ameliorated histopathological damage, inhibited hepatocyte apoptosis, diminished the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the liver from mice exposed to LPS. Furthermore, our data showed that the administration of LPS resulted in robust endoplasmic reticulum (ER) stress response, as evidenced by GRP78 upregulation, p-PERK activation, elF2α phosphorylation, and ATF4 and CHOP overexpression in the liver. This, in turn, led to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome activation, including the cleavage of caspase-1, secretion of IL-1β, and pyroptotic cell death in the liver specimens. Importantly, the ER stress response induced by the LPS challenge was blocked by FTA administration. Correspondingly, NLRP3 inflammasome activation was significantly ameliorated by the pretreatment with FTA. Thus, we demonstrated that FTA pretreatment could protect mice from LPS-induced SALI, and its protective effects were possibly mediated by inhibiting ER stress response and subsequent NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing-Nan Fu
- Department of General Surgery, Tianjin Medical University General Hospital
- Department of Minimally Invasive Surgery, Characteristics Medical Center of Chinese People Armed Police Force
| | - Shu-Chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Yi Chen
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital
| | - Ning Lu
- Department of General Surgery, Tianjin Medical University General Hospital
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital
| |
Collapse
|
49
|
Orel VB, Papazoglou ΑS, Tsagkaris C, Moysidis DV, Papadakos S, Galkin OY, Orel VE, Syvak LA. Nanotherapy based on magneto-mechanochemical modulation of tumor redox state. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1868. [PMID: 36289050 DOI: 10.1002/wnan.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | - Christos Tsagkaris
- Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Dimitrios V Moysidis
- Department of Cardiology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Olexander Yu Galkin
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Valerii E Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | |
Collapse
|
50
|
Meng Q, Ding B, Ma P, Lin J. Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example. SMALL METHODS 2023; 7:e2201406. [PMID: 36707416 DOI: 10.1002/smtd.202201406] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD, mainly including apoptosis, necrosis, ferroptosis, pyroptosis, and autophagy) and immunogenic cell death (ICD), as important cell death mechanisms, are widely reported in cancer therapy, and understanding the relationship between the two is significant for clinical tumor treatments. Considering that vast nanodrugs are developed to induce tumor PCD and ICD simultaneously, in this review, the interrelationship between PCD and ICD is described using nanomedicines as examples. First, an overview of PCD patterns and focus on the morphological differences and interconnections among them are provided. Then the interrelationship between apoptosis and ICD in terms of endoplasmic reticulum stress is described by introducing various cancer treatments and the recent developments of nanomedicines with inducible immunogenicity. Next, the crosstalk between non-apoptotic (including necrosis, ferroptosis, pyroptosis, and autophagy) signaling pathways and ICD is introduced and their relationship through various nanomedicines as examples is further illustrated. Finally, the relationship between PCD and ICD and its application prospects in the development of new ICD nanomaterials are summarized. This review is believed to deepen the understanding of the relationship between PCD and ICD, extend the biomedical applications of various nanodrugs, and promote the progress of clinical tumor therapy.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|