1
|
Niu L, Gao M, Li Y, Wang C, Zhang C, Duan H, Li H, Wang F, Ge J. Effects of the stress hormone norepinephrine on the probiotic properties of Levilactobacillus: antibacterial colonization, anti-inflammation, and antioxidation. Front Microbiol 2025; 16:1526362. [PMID: 39996081 PMCID: PMC11849050 DOI: 10.3389/fmicb.2025.1526362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Probiotics as antibiotic alternatives are unstable for use under stress in clinical applications. To explore the influence of catecholamine hormones on probiotic bacterial inhibition and antimicrobial activity, we tested the effects of norepinephrine (NE) on Levilactobacillus in vitro and in a mouse model. The in vitro results showed that in the presence of NE, 80% of Levilactobacillus strains showed increased growth rate and more than 80% of the strains indicated lower antimicrobial activity at 22 h. Furthermore, in the mouse model, NE weakens the protective effect of L. brevis 23,017 on Escherichia coli infection, which is shown by the decreased ability of antibacterial colonization, antioxidation, and anti-inflammation, and downregulating the expression of antioxidant genes and intestinal mucosal barrier-related genes. At the same time, the addition of NE modulates the bacterial microbiota richness and diversity in the intestine, disrupting the balance of intestinal probiotics. These findings provide evidence that NE reduces the probiotic ability of Levilactobacillus and illustrates the plasticity of the probiotics in response to the intestinal microenvironment under stress.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yifan Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaonan Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Zhang C, Wang C, Dai J, Xiu Z. The inhibition mechanism of co-cultured probiotics on biofilm formation of Klebsiella pneumoniae. J Appl Microbiol 2024; 135:lxae138. [PMID: 38857885 DOI: 10.1093/jambio/lxae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
AIMS Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.
Collapse
Affiliation(s)
- Chaolei Zhang
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian 116036, China
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
3
|
Choudhari S, Krithikadatta J, Vejendla I, S S, Doble M. Microbial Interactions in Oral Biofilm: Evaluating Therapeutic Interventions and the Emergence of Resistance: A Narrative Review. Cureus 2023; 15:e48021. [PMID: 38034252 PMCID: PMC10687662 DOI: 10.7759/cureus.48021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The oral cavity comprises numerous anatomical surfaces that are inhabited by a diverse array of bacteria, collectively forming a bacterial biofilm. Within this complex microbial community, certain bacterial species are etiologically linked to the development of common oral pathologies, such as dental caries and periodontitis, which stand as prominent instances of bacterial infections frequently encountered in clinical settings. Most biofilms are believed to be multispecies consortia. While single-species biofilms have been well-researched, mixed-species biofilms and their interactions amongst themselves have not drawn interest. The aim of the current review was to assess the various interactions of dual-species microorganisms in oral biofilm formation. Farnesol given exogenously for the treatment of biofilm can enhance or inhibit the growth of certain organisms, as seen in Candida albicans. In the age of antibiotic resistance, it is imperative to develop and uncover drugs capable of simultaneously targeting multiple species in order to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Sahil Choudhari
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Ipsitha Vejendla
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Swathi S
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Mukesh Doble
- Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Leñini C, Rodriguez Ayala F, Goñi AJ, Rateni L, Nakamura A, Grau RR. Probiotic properties of Bacillus subtilis DG101 isolated from the traditional Japanese fermented food nattō. Front Microbiol 2023; 14:1253480. [PMID: 37840737 PMCID: PMC10569484 DOI: 10.3389/fmicb.2023.1253480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Spore-forming probiotic bacteria offer interesting properties as they have an intrinsic high stability, and when consumed, they are able to survive the adverse conditions encountered during the transit thorough the host gastrointestinal (GI) tract. A traditional healthy food, nattō, exists in Japan consisting of soy fermented by the spore-forming bacterium Bacillus subtilis natto. The consumption of nattō is linked to many beneficial health effects, including the prevention of high blood pressure, osteoporosis, and cardiovascular-associated disease. We hypothesize that the bacterium B. subtilis natto plays a key role in the beneficial effects of nattō for humans. Here, we present the isolation of B. subtilis DG101 from nattō and its characterization as a novel spore-forming probiotic strain for human consumption. B. subtilis DG101 was non-hemolytic and showed high tolerance to lysozyme, low pH, bile salts, and a strong adherence ability to extracellular matrix proteins (i.e., fibronectin and collagen), demonstrating its potential application for competitive exclusion of pathogens. B. subtilis DG101 forms robust liquid and solid biofilms and expresses several extracellular enzymes with activity against food diet-associated macromolecules (i.e., proteins, lipids, and polysaccharides) that would be important to improve food diet digestion by the host. B. subtilis DG101 was able to grow in the presence of toxic metals (i.e., chromium, cadmium, and arsenic) and decreased their bioavailability, a feature that points to this probiotic as an interesting agent for bioremediation in cases of food and water poisoning with metals. In addition, B. subtilis DG101 was sensitive to antibiotics commonly used to treat infections in medical settings, and at the same time, it showed a potent antimicrobial effect against pathogenic bacteria and fungi. In mammalians (i.e., rats), B. subtilis DG101 colonized the GI tract, and improved the lipid and protein serum homeostasis of animals fed on the base of a normal- or a deficient-diet regime (dietary restriction). In the animal model for longevity studies, Caenorhabditis elegans, B. subtilis DG101 significantly increased the animal lifespan and prevented its age-related behavioral decay. Overall, these results demonstrate that B. subtilis DG101 is the key component of nattō with interesting probiotic properties to improve and protect human health.
Collapse
Affiliation(s)
- Cecilia Leñini
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo Rodriguez Ayala
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anibal Juan Goñi
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Liliana Rateni
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Roberto Ricardo Grau
- Departamento de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
5
|
Habteweld HA, Asfaw T. Novel Dietary Approach with Probiotics, Prebiotics, and Synbiotics to Mitigate Antimicrobial Resistance and Subsequent Out Marketplace of Antimicrobial Agents: A Review. Infect Drug Resist 2023; 16:3191-3211. [PMID: 37249957 PMCID: PMC10224695 DOI: 10.2147/idr.s413416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a significant public health concern worldwide. The continuous use and misuse of antimicrobial agents have led to the emergence and spread of resistant strains of bacteria, which can cause severe infections that are difficult to treat. One of the reasons for the constant development of new antimicrobial agents is the need to overcome the resistance that has developed against existing drugs. However, this approach is not sustainable in the long term, as bacteria can quickly develop resistance to new drugs as well. Additionally, the development of new drugs is costly and time-consuming, and there is no guarantee that new drugs will be effective or safe. An alternative approach to combat AMR is to focus on improving the body's natural defenses against infections by using probiotics, prebiotics, and synbiotics, which are helpful to restore and maintain a healthy balance of bacteria in the body. Probiotics are live microorganisms that can be consumed as food or supplements to promote gut health and improve the body's natural defenses against infections. Prebiotics are non-digestible fibers that stimulate the growth of beneficial bacteria in the gut, while synbiotics are a combination of probiotics and prebiotics that work together to improve gut health. By promoting a healthy balance of bacteria in the body, these can help to reduce the risk of infections and the need for antimicrobial agents. Additionally, these approaches are generally safe and well tolerated, and they do not contribute to the development of AMR. In conclusion, the continuous development of new antimicrobial agents is not a sustainable approach to combat AMR. Instead, alternative approaches such as probiotics, prebiotics, and synbiotics should be considered as they can help to promote a healthy balance of bacteria in the body and reduce the need for antibiotics.
Collapse
Affiliation(s)
| | - Tsegahun Asfaw
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
6
|
Kruse S, Becker S, Pierre F, Morlock GE. Metabolic profiling of bacterial co-cultures reveals intermicrobiome interactions and dominant species. J Chromatogr A 2023; 1694:463911. [PMID: 36931138 DOI: 10.1016/j.chroma.2023.463911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
In animal production, the use of probiotic microorganisms has increased since the ban on antibiotic growth promoters in 2006. The added microorganisms interact with the microbiome of the animals, whereby the probiotic activity is not fully understood. Several microorganisms of the genus Bacillus are already known for their probiotic activity and are applied as feed supplements to increase the health status of the animals. They are thought to interact with Escherichia coli, one of the most abundant bacteria in the animal gut. In biotechnological applications, co-culturing enables the regulation of bacterial interaction or the production of target metabolites. The basic principles of multi-imaging high-performance thin-layer chromatography (HPTLC) with upstream cultivation were further developed to analyze the metabolic profiles of three axenic bacilli cultures compared to their co-cultures with E. coli DSM 18039 (K12). The comparative profiling visualized bacteria's metabolic interactions and showed how the presence of E. coli affects the metabolite formation of bacilli. The characteristic metabolic profile images showed not only the influence of microbiomes but also of inoculation, cultivation and nutrients on the commercial probiotic. The formation of antimicrobially active metabolites, detected via three different planar bioassays, was influenced by the presence of other microorganisms, especially in the probiotic. This first application of multi-imaging HPTLC in the field of co-culturing enabled visualization of metabolic interactions of bacteria via their produced chemical as well as bioactive metabolite profiles. The metabolic profiling provided evidence of bacterial interactions, intermicrobiome influences and dominant species in the co-culture.
Collapse
Affiliation(s)
- Stefanie Kruse
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Selina Becker
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Francis Pierre
- Adisseo France S.A.S, Immeuble Anthony Parc 2, 10 Place du Général de Gaulle, 92160 Antony, France
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Jinno C, Li X, Liu Y. Dietary supplementation of Bacillus subtilis or antibiotics modified intestinal microbiome of weaned pigs under enterotoxigenic Escherichia coli infection. Front Microbiol 2022; 13:1064328. [PMID: 36620005 PMCID: PMC9816667 DOI: 10.3389/fmicb.2022.1064328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Our previous research reported that supplementation of Bacillus subtilis DSM 25841 promoted growth and disease resistance of weaned pigs under enterotoxigenic Escherichia coli (ETEC) challenge and its efficacy is comparable to carbadox. This follow-up study aimed to characterize the effects of ETEC infection, supplementing B. subtilis DSM 25841 or carbadox on intestinal microbiota of pigs. Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were randomly allotted to one of four treatments: negative control (NC), positive control (PC), antibiotics (AGP, 50 mg/kg of carbadox), and direct fed microbials (DFM, 2.56 × 109 CFU/kg of B. subtilis). The experiment lasted 28 days with 7 days before and 21 days after first E. coli inoculation (day 0). Pigs in the PC, AGP, and DFM groups were orally inoculated with F18 ETEC for 3 consecutive days with 1010 CFU per dose per day. Fecal samples were collected on day -7, and day 7 and day 21 post inoculation, digesta samples were collected from jejunum, ileum, and distal colon on day 21 post inoculation to perform 16S rRNA sequencing. Sampling days and locations influenced (p < 0.05) Chao1 index and beta-diversity. Age increased (p < 0.05) the relative abundance of Firmicutes but decreased (p < 0.05) the relative abundance of Bacteroidetes in feces. ETEC infection increased (p < 0.05) the relative abundance of Proteobacteria in feces on day 7 post inoculation. AGP reduced (p < 0.05) relative abundance of Firmicutes and Lactobacillaceae in feces compared with PC and DFM. AGP reduced (p < 0.05) relative abundance of Bifidobacteriaceae in jejunum and ileum, while DFM reduced (p < 0.05) relative abundance of Actinomycetaceae in jejunum and Lachnospiraceae in ileum, compared with PC. Pigs fed with DFM had greater (p < 0.05) relative abundance of Ruminococcaceae, Veillonellaceae, Bifidobacteriaceae in jejunum, Lactobacillaceae in ileum and colon, and Bifidobacteriaceae in colon than pigs in AGP. Current results indicate that carbadox or B. subtilis had stronger influences on microbial diversity and composition in ileum than other intestinal segments and feces. Supplementation of B. subtilis could increase or maintain the relative abundance of beneficial bacteria in ileum compared with carbadox.
Collapse
Affiliation(s)
- Cynthia Jinno
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States,*Correspondence: Yanhong Liu,
| |
Collapse
|
8
|
Li H, Lin X, Yu L, Li J, Miao Z, Wei Y, Zeng J, Zhang Q, Sun Y, Huang R. Comprehensive characterization of the bacterial community structure and metabolite composition of food waste fermentation products via microbiome and metabolome analyses. PLoS One 2022; 17:e0264234. [PMID: 35290990 PMCID: PMC9048815 DOI: 10.1371/journal.pone.0264234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/06/2022] [Indexed: 11/25/2022] Open
Abstract
Few studies have characterized the microbial community and metabolite profile of solid food waste fermented products from centralized treatment facilities, which could potentially be processed into safe animal feeds. In this study, 16S rRNA gene sequencing and liquid/gas chromatography-mass spectrometry were conducted to investigate the bacterial community structure and metabolite profile of food waste samples inoculated with or without 0.18% of a commercial bacterial agent consisting of multiple unknown strains and 2% of a laboratory-made bacterial agent consisting of Enterococcus faecalis, Bacillus subtilis and Candida utilis. Our findings indicated that microbial inoculation increased the crude protein content of food waste while reducing the pH value, increasing lactic acid production, and enhancing aerobic stability. Microbial inoculation affected the community richness, community diversity, and the microbiota structure (the genera with abundances above 1.5% in the fermentation products included Lactobacillus (82.28%) and Leuconostoc (1.88%) in the uninoculated group, Lactobacillus (91.85%) and Acetobacter (2.01%) in the group inoculated with commercial bacterial agents, and Lactobacillus (37.11%) and Enterococcus (53.81%) in the group inoculated with homemade laboratory agents). Microbial inoculation reduced the abundance of potentially pathogenic bacteria. In the metabolome, a total of 929 substances were detected, 853 by LC-MS and 76 by GC-MS. Our results indicated that inoculation increased the abundance of many beneficial metabolites and aroma-conferring substances but also increased the abundance of undesirable odors and some harmful compounds such as phenol. Correlation analyses suggested that Leuconostoc, Lactococcus, and Weissella would be promising candidates to improve the quality of fermentation products. Taken together, these results indicated that inoculation could improve food waste quality to some extent; however, additional studies are required to optimize the selection of inoculation agents.
Collapse
Affiliation(s)
- Hongmei Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University,
Guangzhou, China
| | - Xiaoyang Lin
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lujun Yu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zongyu Miao
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuanzheng Wei
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jin Zeng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Qi Zhang
- Shenzhen Teng Lang Renewable Resource Development Co., Ltd, Shenzhen,
China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University,
Guangzhou, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
9
|
Bacillaene Mediates the Inhibitory Effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Appl Environ Microbiol 2021; 87:e0295520. [PMID: 33837012 DOI: 10.1128/aem.02955-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biofilms are the predominant bacterial lifestyle and can protect microorganisms from environmental stresses. Multispecies biofilms can affect the survival of enteric pathogens that contaminate food products, and thus, investigating the underlying mechanisms of multispecies biofilms is essential for food safety and human health. In this study, we investigated the ability of the natural isolate Bacillus subtilis PS-216 to restrain Campylobacter jejuni biofilm formation and adhesion to abiotic surfaces as well as to disrupt preestablished C. jejuni biofilms. Using confocal laser scanning microscopy and colony counts, we demonstrate that the presence of B. subtilis PS-216 prevents C. jejuni biofilm formation, decreases growth of the pathogen by 4.2 log10, and disperses 26-h-old preestablished C. jejuni biofilms. Furthermore, the coinoculation of B. subtilis and C. jejuni interferes with the adhesion of C. jejuni to abiotic surfaces, reducing it by 2.4 log10. We also show that contact-independent mechanisms contribute to the inhibitory effect of B. subtilis PS-216 on C. jejuni biofilm. Using B. subtilis mutants in genes coding for nonribosomal peptides and polyketides revealed that bacillaene significantly contributes to the inhibitory effect of B. subtilis PS-216. In summary, we show a strong potential for the use of B. subtilis PS-216 against C. jejuni biofilm formation and adhesion to abiotic surfaces. Our research could bring forward novel applications of B. subtilis in animal production and thus contribute to food safety. IMPORTANCE Campylobacter jejuni is an intestinal commensal in animals (including broiler chickens) but also the most frequent cause of bacterial foodborne infection in humans. This pathogen forms biofilms which enhance survival of C. jejuni in food processing and thus threaten human health. Probiotic bacteria represent a potential alternative in the prevention and control of foodborne infections. The beneficial bacterium Bacillus subtilis has an excellent probiotic potential to reduce C. jejuni in the animal gastrointestinal tract. However, data on the effect of B. subtilis on C. jejuni biofilms are scarce. Our study shows that the B. subtilis natural isolate PS-216 prevents adhesion to the abiotic surfaces and the development of submerged C. jejuni biofilm during coculture and destroys the preestablished C. jejuni biofilm. These insights are important for development of novel applications of B. subtilis that will reduce the use of antibiotics in human and animal health and increase productivity in animal breeding.
Collapse
|
10
|
Kuprys PV, Cannon AR, Shieh J, Iftekhar N, Park SK, Eberhardt JM, Ding X, Choudhry MA. Alcohol decreases intestinal ratio of Lactobacillus to Enterobacteriaceae and induces hepatic immune tolerance in a murine model of DSS-colitis. Gut Microbes 2020; 12:1-16. [PMID: 33180663 PMCID: PMC7671045 DOI: 10.1080/19490976.2020.1838236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Alcohol can potentiate disease in a mouse model of dextran sodium sulfate (DSS) colitis; however, the underlying mechanism remains to be established. In this study, we assessed whether the potentiated disease could be related to Enterobacteriaceae and Lactobacillus, as changes in their relative abundance can impact intestinal health. We also assessed whether the intestinal barrier is compromised after alcohol and DSS as it may increase bacterial translocation and liver inflammation. Mice were administered DSS followed by binge ethanol or water vehicle, generating four experimental groups: (Control+Vehicle, Control+Ethanol, DSS+Vehicle, DSS+Ethanol). DNA was isolated from colon and cecal contents followed by qPCR for levels of Enterobacteriaceae and Lactobacillus. Colon and liver sections were taken for histology. Intestinal epithelial cells were isolated from the colon for RNA expression. DSS+Ethanol cecal contents exhibited a 1 log increase in Enterobacteriaceae (p < .05), a 0.5 log decrease in Lactobacillus, and a 1.5 log decrease (p < .05) in the Lactobacillus:Enterobacteriaceae ratio compared to DSS+Vehicle, with similar trends in colon contents. These changes correlated with shorter colons and more weight loss. Irrespective of ethanol administration, DSS compromised the mucosal barrier integrity, however only DSS+Ethanol exhibited significant increases in circulating endotoxin. Furthermore, the livers of DSS+Ethanol mice had significantly increased levels of triglycerides, mononuclear cells, yet exhibited significantly depressed expression of liver inflammatory pathways, suggestive of tolerance induction, compared to mice receiving DSS+Vehicle. Our results suggest that ethanol after DSS colitis increases the intestinal burden of Enterobacteriaceae which may contribute to intestinal and liver damage, and the induction of immune tolerance.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Abigail R. Cannon
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Jennifer Shieh
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Noama Iftekhar
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Sun K. Park
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Joshua M. Eberhardt
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| |
Collapse
|
11
|
Wu P, Golly MK, Guo Y, Ma H, He R, Luo X, Luo S, Zhang C, Zhang L, Zhu J. Effect of partial replacement of soybean meal with high-temperature fermented soybean meal in antibiotic-growth-promoter-free diets on growth performance, organ weights, serum indexes, intestinal flora and histomorphology of broiler chickens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Experimental investigation into indole production using passaging of E. coli and B. subtilis along with unstructured modeling and parameter estimation using dynamic optimization: An integrated framework. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Jin W, Zhang Z, Zhu K, Xue Y, Xie F, Mao S. Comprehensive Understanding of the Bacterial Populations and Metabolites Profile of Fermented Feed by 16S rRNA Gene Sequencing and Liquid Chromatography-Mass Spectrometry. Metabolites 2019; 9:metabo9100239. [PMID: 31640120 PMCID: PMC6835224 DOI: 10.3390/metabo9100239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/01/2023] Open
Abstract
The comprehensive bacterial populations and metabolites profile in fermented feed is unclear, which may have significant effects on the stability of fermented feed quality and animal gut health. In this study, 16S rRNA gene sequencing and liquid chromatography–mass spectrometry were used to explore the bacterial populations and metabolites profile in the fermented feed incubated with probiotics (MF) or without probiotics (SF). The probiotics were a combination of Lactobacillus salivarius, Bacillus subtilis, and Saccharomyces cerevisiae. The pH and lactic acid levels were higher in MF than in SF (P < 0.05), while the total volatile fatty acid content was lower (P < 0.05). Interestingly, after fermentation, the most abundant bacterial genus in MF was Enterococcus, rather than the added probiotics Lactobacillus or Bacillus. Weissella and a few potential pathogens (Enterobacter, Escherichia-Shigella, and Pantoea) were dominant in SF (P < 0.05). Metabolomics analysis identified 32 different metabolites in the two types of fermented feed. These metabolites enriched in MF, such as maleic acid, phenylacetic acid, ethyl linoleate, dihomo-gamma-linolenic acid, and L-theanine had potential antimicrobial activities. Conclusively, the addition of probiotics enriched a few potentially beneficial microbes and small molecular compounds with antimicrobial activities, and inhibited the potential pathogens in fermented feed.
Collapse
Affiliation(s)
- Wei Jin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zheng Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Xie
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Horie M, Koike T, Sugino S, Umeno A, Yoshida Y. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli. J GEN APPL MICROBIOL 2018; 64:26-33. [DOI: 10.2323/jgam.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Masanori Horie
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | | | - Sakiko Sugino
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Aya Umeno
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasukazu Yoshida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
15
|
Liu P, Zhao J, Guo P, Lu W, Geng Z, Levesque CL, Johnston LJ, Wang C, Liu L, Zhang J, Ma N, Qiao S, Ma X. Dietary Corn Bran Fermented by Bacillus subtilis MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs. Front Cell Infect Microbiol 2017; 7:526. [PMID: 29312900 PMCID: PMC5744180 DOI: 10.3389/fcimb.2017.00526] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/12/2017] [Indexed: 01/29/2023] Open
Abstract
Solid-state fermentation of feedstuffs by Bacillus subtilis MA139 can reduce insoluble dietary fiber content in vitro and improve growth performance in pigs. This study was conducted to investigate the effects of dietary corn bran (CB) fermented by B. subtilis on growth performance and gut microbiota composition in finishing pigs. A total of 60 finishing pigs were allocated to 3 dietary treatments consisting of a control (CON) diet, a 10% CB diet, and a 10% fermented CB (FCB) diet in a 21 d feeding trial. Growth performance and nutrient digestibility were evaluated. Fecal samples were determined for bacterial community diversity by 16S rRNA gene amplicon sequencing. The dietary CB and FCB did not affect growth performance of finishing pigs. The digestibility of organic matter was decreased in both CB and FCB treatments compared with CON group (P < 0.05). The α-diversity for bacterial community analysis of Chao 1 in FCB treatment was lower than CON treatment (P < 0.05). The Fibrobacteres phylum belongs to cellulolytic bacteria was isolated, and their relative abundance in CB group showed no difference between CON and FCB treatments. The abundance of Lachnospiraceae_NK4A136_group in CB treatment was higher than CON and FCB groups (P < 0.05), whereas the population of norank_f_Prevotellaceae was higher in FCB group compared to CON and CB groups (P < 0.05). In conclusion, dietary FCB decreased the abundance of bacterial communities, particularly the population of bacteria related to cellulolytic degradation.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenqing Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengying Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|