1
|
Abreu MC, Conrad NL, Gonçalves VS, Leite FPL. Bacillus toyonensis amplifies the immunogenicity of an experimental recombinant tetanus vaccine in horses. J Equine Vet Sci 2024; 140:105135. [PMID: 38914241 DOI: 10.1016/j.jevs.2024.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Probiotic microorganisms can stimulate an immune response and increase the efficiency of vaccines. For example, Bacillus toyonensis is a nonpathogenic, Gram-positive bacterium that has been used as a probiotic in animal supplementation. It induces immunomodulatory effects and increases the vaccine response in several species. This study aimed to evaluate the effect of B. toyonensis supplementation on the modulation of the immune response in horses vaccinated with recombinant Clostridium tetani toxin. Twenty horses were vaccinated twice, with an interval of 21 days between doses, and equally divided into two groups: the first group was supplemented orally for 42 days with feed containing viable spores of B. toyonensis (1 × 108) mixed with molasses (40 ml), starting 7 days before the first vaccination; the second (control) group received only feed mixed with molasses, starting 7 days before the first vaccination. Serum samples were collected to evaluate the humoral immune response using an in-house indirect enzyme-linked immunosorbent assay (ELISA), and peripheral blood mononuclear cells (PBMCs) were collected to evaluate cytokine transcription (qPCR). For the specific IgG-anti-rTENT titer, the supplemented group had ELISA values that were four times higher than those of the control group (p < 0.05). The supplemented group also showed higher ELISA values for the IgGa and IgGT sub-isotypes compared to the control group. In PBMCs stimulated with B. toyonensis, relative cytokine transcription of the supplemented group showed 15-, 8-, 7-, and 6-fold increases for IL1, TNFα, IL10 and IL4, respectively. When stimulated with a vaccine antigen, the supplemented group showed 1.6-, 1.8-, and 0.5-fold increases in IL1, TNFα, and IL4, respectively, compared to the control group. Horses supplemented with B. toyonensis had a significantly improved vaccine immune response compared to those in the control group, which suggests a promising approach for improving vaccine efficacy with probiotics.
Collapse
Affiliation(s)
- Mayara Caetano Abreu
- Departament of Veterinary Medicine, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Neida Lucia Conrad
- Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Vitória Sequeira Gonçalves
- Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil
| | - Fábio Pereira Leivas Leite
- Departament of Veterinary Medicine, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil; Center for Technological Development, Biotecnology, Federal University of Pelotas, UFPel, Capão do Leão, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Quintero Barbosa JS, Alméciga-Díaz CJ, Pérez SE, Gutierrez MF. Humoral Immune Response of Mice against a Vaccine Candidate Composed of a Chimera of gB of Bovine Alphaherpesviruses 1 and 5. Vaccines (Basel) 2023; 11:1173. [PMID: 37514988 PMCID: PMC10386439 DOI: 10.3390/vaccines11071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious bovine rhinotracheitis (IBR) and bovine meningoencephalitis are caused by Bovine alphaherpesvirus (BoHV) types 1 and 5, which seriously threaten the global cattle industry. Vaccination to improve immunity is the most direct and effective means to prevent these conditions. Glycoprotein B (gB) is essential for the attachment of both viruses to permissive cells, and is a major target of the host immune system, inducing a strong humoral response. The aim of this study was to evaluate, in a murine model, the immune response of a candidate vaccine formulation composed of a chimeric BoHV-1 and BoHV-5 gB (DgB), expressed in Komagataella phaffii. The chimeric DgB vaccine adjuvanted with Montanide 50 ISA V2 or aluminum hydroxide was administered intramuscularly or subcutaneously. A control group and a group that received a commercial vaccine were inoculated subcutaneously. Higher titers of neutralizing antibodies against BoHV-1, BoHV-5, and a natural BoHV-1/5 recombinant strain were obtained with the oil-based candidate vaccine formulation administered intramuscularly. The results demonstrated that the chimeric DgB conserved important epitopes that were able to stimulate a humoral immune response capable of neutralizing BoHV-1, BoHV-5, and the recombinant strain, suggesting that the vaccine antigen is a promising candidate to be further evaluated in cattle.
Collapse
Affiliation(s)
- Juan Sebastian Quintero Barbosa
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Sandra E Pérez
- Tandil Veterinary Research Center (CIVETAN)-CONICET, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil B7000GHG, Argentina
| | - María Fernanda Gutierrez
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| |
Collapse
|
3
|
Effect of oral administration of Bacillus thuringiensis var. oswaldocruzi to sheep on the development of larvae in fecal cultures. Vet Parasitol 2022; 306:109718. [DOI: 10.1016/j.vetpar.2022.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
4
|
Santos FDS, Maubrigades LR, Gonçalves VS, Alves Ferreira MR, Brasil CL, Cunha RC, Conceição FR, Leite FPL. Immunomodulatory effect of short-term supplementation with Bacillus toyonensis BCT-7112 T and Saccharomyces boulardii CNCM I-745 in sheep vaccinated with Clostridium chauvoei. Vet Immunol Immunopathol 2021; 237:110272. [PMID: 34029878 DOI: 10.1016/j.vetimm.2021.110272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023]
Abstract
The bacterium Clostridium chauvoei is the causative agent of blackleg in livestock, and vaccination is the most effective means of prevention. The aim of this study was to assess the effect of short-term supplementation with Bacillus toyonensis and Saccharomyces boulardii on the immune response to a C. chauvoei vaccine in sheep. Sheep were vaccinated subcutaneously on day 0 and received a booster dose on day 21, with 2 mL of a commercial vaccine formulated with inactivated C. chauvoei bacterin adsorbed on aluminum hydroxide. Probiotics were orally administered B. toyonensis (3 × 108 cfu) and S. boulardii (3 × 108 cfu) over five days prior to the first and second doses of the vaccine. Sheep supplemented with B. toyonensis and S. boulardii showed significantly higher specific IgG, IgG1, and IgG2 titers (P<0.05), with approximately 24- and 14-fold increases in total IgG levels, respectively, than the nonsupplemented group. Peripheral blood mononuclear cells from the supplemented group had increased mRNA transcription levels of the IFN-γ, IL2, and Bcl6 genes. These results demonstrate an adjuvant effect of short-term supplementation with B. toyonensis and S. boulardii on the immune response against the C. chauvoei vaccine in sheep.
Collapse
Affiliation(s)
- Francisco Denis Souza Santos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Lucas Reichert Maubrigades
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Vitória Sequeira Gonçalves
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Carolina Litchina Brasil
- Instituto de Biologia, Programa de Pós-Graduação em Parasitologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Rodrigo Casquero Cunha
- Faculdade de Veterinária, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil
| | - Fábio Pereira Leivas Leite
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-900, Brazil.
| |
Collapse
|
5
|
Piraine REA, Gonçalves VS, Dos Santos Junior AG, Cunha RC, de Albuquerque PMM, Conrad NL, Leite FPL. Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae. Biotechnol Lett 2021; 43:1649-1657. [PMID: 33934257 DOI: 10.1007/s10529-021-03142-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Develop a Cell Surface Display system in Saccharomyces cerevisiae, based on the construction of an expression cassette for pYES2 plasmid. RESULTS The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin. The construction allows surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD. CONCLUSIONS These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.
Collapse
Affiliation(s)
- Renan Eugênio Araujo Piraine
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitória Sequeira Gonçalves
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Rodrigo Casquero Cunha
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Neida Lucia Conrad
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Luo JC, Long H, Zhang J, Zhao Y, Sun L. Characterization of a Deep Sea Bacillus toyonensis Isolate: Genomic and Pathogenic Features. Front Cell Infect Microbiol 2021; 11:629116. [PMID: 33777842 PMCID: PMC7988205 DOI: 10.3389/fcimb.2021.629116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023] Open
Abstract
Bacillus toyonensis is a group of Gram-positive bacteria belonging to the Bacillus cereus group and used in some cases as probiotics or biocontrol agents. To our knowledge, B. toyonensis from the deep sea (depth >1,000 m) has not been documented. Here, we report the isolation and characterization of a B. toyonensis strain, P18, from a deep sea hydrothermal field. P18 is aerobic, motile, and able to grow at low temperatures (4°C) and high concentrations of NaCl (8%). P18 possesses a circular chromosome of 5,250,895 bp and a plasmid of 536,892 bp, which encode 5,380 and 523 genes, respectively. Of these genes, 2,229 encode hypothetical proteins that could not be annotated based on the COG database. Comparative genomic analysis showed that P18 is most closely related to the type strain of B. toyonensis, BCT-7112T. Compared to BCT-7112T, P18 contains 1,401 unique genes, 441 of which were classified into 20 COG functional categories, and the remaining 960 genes could not be annotated. A total of 319 putative virulence genes were identified in P18, including toxin-related genes, and 24 of these genes are absent in BCT-7112T. P18 exerted strong cytopathic effects on fish and mammalian cells that led to rapid cell death. When inoculated via injection into fish and mice, P18 rapidly disseminated in host tissues and induced acute infection and mortality. Histopathology revealed varying degrees of tissue lesions in the infected animals. Furthermore, P18 could survive in fish and mouse sera and possessed hemolytic activity. Taken together, these results provide the first evidence that virulent B. toyonensis exists in deep sea environments.
Collapse
Affiliation(s)
- Jing-Chang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jian Zhang
- School of Ocean, Yan Tai University, Yantai, China
| | - Yan Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Bacillus Toyonensis BCT-7112 T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model. Probiotics Antimicrob Proteins 2021; 13:655-663. [PMID: 33608827 DOI: 10.1007/s12602-021-09753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we investigate whether subcutaneously administered spores of B. toyonensis BCT-7112T could enhance a vaccine immune response in mice. Three groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: 40 µg of recombinant glycoprotein D (rgD) from bovine herpesvirus type 5 (BoHV-5) adsorbed in 10% aluminum hydroxide (alum) without B. toyonensis spores (group 1) and B. toyonensis (1 × 106 viable spores) + 40 µg of rgD adsorbed in 10% alum (group 2); and B. toyonensis (1 × 106 viable spores) without rgD (group 3). Group 2 showed significantly higher titers (P < 0.05) of total specific serum IgG, IgG2a, and neutralizing antibodies, when compared with the groups 1 and 3. A significantly higher (P < 0.05) transcription level of cytokines IL-4, IL-12, and IFN-γ was observed in splenocytes from mice that received the B. toyonensis spores in the vaccine formulation. In addition, stimulation of the macrophage-like cell line RAW264.7 with spores of B. toyonensis markedly enhanced the cell proliferation and mRNA transcription levels of IL-4, and IL-12 cytokines in these cells. Our findings indicated that the subcutaneous administration of B. toyonensis BCT-7112T spores enhanced the humoral and cellular immune response against BoHV-5 in mice.
Collapse
|
8
|
Maubrigades LR, Santos FDS, Gonçalves VS, Rodrigues PRC, Leite FPL. Association of Bacillus toyonensis spores with alum improves bovine herpesvirus 5 subunit vaccine immune response in mice. Vaccine 2020; 38:8216-8223. [PMID: 33172696 DOI: 10.1016/j.vaccine.2020.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Spores of the genus Bacillus are molecules capable of increasing the vaccine adjuvanticity. Bovine herpesvirus type 5 (BoHV-5) is responsible for meningoencephalitis that causes important economic losses in cattle. BoHV-5 glycoprotein D (gD) is a target of vaccine antigen and plays an important role in host cell penetration. The present study aimed to evaluate the adjuvanticity of Bacillus toyonensis (B.t) spores, live and heat-killed, associated with a vaccine formulated with aluminum hydroxide (alum) and the recombinant BoHV-5 glycoprotein D (rgD) in an experimental murine model. Six experimental groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: rgD (40 µg) + live spores (2 × 109 CFU); rgD + killed spores; rgD + live spores + alum (2.0 mg); rgD + killed spores + alum; rgD + alum, and rgD + PBS. Mice from rgD + live spores group showed an increase in rgD IgG titers from the 21st day until the end of the experiment. The groups of live and killed spores, associated to alum, had similar levels of IgG titers with no significant difference between each other; however, by the 14th and 28th day until the end of the experiment, presented higher IgG titers in comparison to the rgD + alum group. Moreover, increased serum levels of IgG1, IgG2a, and IgG2b were detected in mice that received spores in the vaccine formulation. The spores associated with alum groups showed neutralizing BoHV-5 antibodies and high mRNA transcription of the cytokines IFN-γ (66-fold), IL-17 (14-fold), and IL-12 (2.8-fold). In conclusion, our data demonstrated that the B. toyonensis spores, live or killed, associated with alum increased the adjuvanticity for BoHV-5 rgD in mice, suggesting the use of B. toyonensis spores as a promising component for vaccine formulations.
Collapse
Affiliation(s)
- Lucas Reichert Maubrigades
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Francisco Denis Souza Santos
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Vitória Sequeira Gonçalves
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Paulo Ricardo Centeno Rodrigues
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil; Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, 96160-900 Capão do Leão, RS, Brazil.
| |
Collapse
|
9
|
Chen J, Hu S, Ji D, Gao Z, Wang H, Yang Y, Chen Y, Gu J. Hemolysin BL from novel Bacillus toyonensis BV-17 induces antitumor activity both in vitro and in vivo. Gut Microbes 2020; 12:1782158. [PMID: 32618494 PMCID: PMC7524337 DOI: 10.1080/19490976.2020.1782158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays an important role in cancer development and immunotherapy. Bacterial toxins have enormous antitumor potential due to their cytotoxicity and ability to activate the immune system. Using 16S rRNA gene sequencing, we compared the gut microbiota composition of fecal samples from healthy individuals and patients with colorectal cancer (CRC) and observed that the genus Bacillus was common in the healthy donors but was absent in the CRC patients. Further, we isolated a novel Bacillus toyonensis BV-17 from the fecal samples of the healthy individuals. Our results showed that the supernatant of the Bacillus toyonensis BV-17 cultures could quickly kill various tumor cell lines within minutes in vitro, by causing cell membrane disruption, blebbing, and leakage of cytoplasmic content. Fast protein liquid chromatography (FPLC) and mass spectrometry analysis identified hemolysin BL (HBL) as the effector molecule, which exhibits a different cytotoxicity mechanism compared to previous studies. Intra-tumor injection of low dose HBL inhibited the growth of both treated and untreated tumors in mice. The outcomes of this pioneer study suggest that HBL exhibits antitumor activity and is a potential chemotherapeutic agent that could be engineered to target only tumor cells in future.
Collapse
Affiliation(s)
- Jiajia Chen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shoukui Hu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Hanyang Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongkang Chen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China,Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China,Peking-Tsinghua Center for Life Sciences, Beijing, China,CONTACT Jin Gu Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education,Peking University Cancer Hospital & Institute, Beijing100142, China; Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
10
|
Santos FDS, Ferreira MRA, Maubrigades LR, Gonçalves VS, de Lara APS, Moreira C, Salvarani FM, Conceição FR, Leivas Leite FP. Bacillus toyonensis BCT-7112 T transient supplementation improves vaccine efficacy in ewes vaccinated against Clostridium perfringens epsilon toxin. J Appl Microbiol 2020; 130:699-706. [PMID: 32767796 DOI: 10.1111/jam.14814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023]
Abstract
AIM The aim of the present study was to examine the vaccine immune response in ewes supplemented with Bacillus toyonensis BCT-7112T during a period of 5-day supplementation before vaccination against a recombinant Clostridium perfringens epsilon toxin (rETX). METHODS AND RESULTS Ewes were vaccinated with 200 µg of rETX adjuvanted with 10% aluminium hydroxide. The treat group was orally supplemented with B. toyonensis BCT-7112T (3 × 108 viable spores) for 5 days prior to the first and second vaccination. Ewes supplemented with B. toyonensis BCT-7112T showed higher neutralizing antibody titres than the non-supplemented ewes (P < 0·05), with an increase in serum levels for total IgG anti-rETX by 3·2-fold (P < 0·0001), and for both IgG isotypes IgG1 and IgG2 by 2·1-fold and 2·3-fold (P < 0·01), respectively, compared with the control group. The peripheral blood mononuclear cells of ewes in the supplemented group had a higher (P < 0·05) cytokine mRNA transcription levels for IL-2 (6·4-fold increase), IFN-γ (2·9-fold increase) and transcription factor Bcl6 (2·3-fold increase) compared with the control group. CONCLUSION We conclude that a 5 days of supplementation with B. toyonensis BCT-7112T prior vaccination is sufficient to significantly improve the humoral immune response of ewes against C. perfringens recombinant ETX vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY These findings open a new perspective in the utilization of B. toyonensis BCT-7112T as an immunomodulator since a 5 days period of probiotic supplementation is sufficient to improve the vaccine immune response.
Collapse
Affiliation(s)
- F D S Santos
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - M R A Ferreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - L R Maubrigades
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - V S Gonçalves
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - A P S de Lara
- Institute of Biology, Postgraduate Program in Parasitology, Federal University of Pelotas, Pelotas, Brazil
| | - C Moreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F M Salvarani
- Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - F R Conceição
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F P Leivas Leite
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
11
|
Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L. A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 2020; 19:42. [PMID: 32075660 PMCID: PMC7029466 DOI: 10.1186/s12934-020-01308-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. Results Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. Conclusion Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.
Collapse
Affiliation(s)
- Francisco Denis S Santos
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.,Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arianna Mazzoli
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ana Raquel Maia
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Anella Saggese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Rachele Isticato
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Fabio Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Susanna Iossa
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ezio Ricca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.
| | - Loredana Baccigalupi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
12
|
Roos TB, de Moraes CM, Sturbelle RT, Dummer LA, Fischer G, Leite FPL. Probiotics Bacillus toyonensis and Saccharomyces boulardii improve the vaccine immune response to Bovine herpesvirus type 5 in sheep. Res Vet Sci 2018; 117:260-265. [DOI: 10.1016/j.rvsc.2017.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|