1
|
Kodikara S, Lê Cao KA. Microbial network inference for longitudinal microbiome studies with LUPINE. MICROBIOME 2025; 13:64. [PMID: 40033386 DOI: 10.1186/s40168-025-02041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The microbiome is a complex ecosystem of interdependent taxa that has traditionally been studied through cross-sectional studies. However, longitudinal microbiome studies are becoming increasingly popular. These studies enable researchers to infer taxa associations towards the understanding of coexistence, competition, and collaboration between microbes across time. Traditional metrics for association analysis, such as correlation, are limited due to the data characteristics of microbiome data (sparse, compositional, multivariate). Several network inference methods have been proposed, but have been largely unexplored in a longitudinal setting. RESULTS We introduce LUPINE (LongitUdinal modelling with Partial least squares regression for NEtwork inference), a novel approach that leverages on conditional independence and low-dimensional data representation. This method is specifically designed to handle scenarios with small sample sizes and small number of time points. LUPINE is the first method of its kind to infer microbial networks across time, while considering information from all past time points and is thus able to capture dynamic microbial interactions that evolve over time. We validate LUPINE and its variant, LUPINE_single (for single time point analysis) in simulated data and four case studies, where we highlight LUPINE's ability to identify relevant taxa in each study context, across different experimental designs (mouse and human studies, with or without interventions, and short or long time courses). To detect changes in the networks across time and groups or in response to external disturbances, we used different metrics to compare the inferred networks. CONCLUSIONS LUPINE is a simple yet innovative network inference methodology that is suitable for, but not limited to, analysing longitudinal microbiome data. The R code and data are publicly available for readers interested in applying these new methods to their studies. Video Abstract.
Collapse
Affiliation(s)
- Saritha Kodikara
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Parkville, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Zhu L, Yang X. Gut Microecological Prescription: A Novel Approach to Regulating Intestinal Micro-Ecological Balance. Int J Gen Med 2025; 18:603-626. [PMID: 39931312 PMCID: PMC11807788 DOI: 10.2147/ijgm.s504616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The intestinal microecology is comprises intestinal microorganisms and other components constituting the entire ecosystem, presenting characteristics of stability and dynamic balance. Current research reveals intestinal microecological imbalances are related to various diseases. However, fundamental research and clinical applications have not been effectively integrated. Considering the importance and complexity of regulating the intestinal microecological balance, this study provides an overview of the high-risk factors affecting intestinal microecology and detection methods. Moreover, it proposes the definition of intestinal microecological imbalance and the definition, formulation, and outcomes of gut microecological prescription to facilitate its application in clinical practice, thus promoting clinical research on intestinal microecology and improving the quality of life of the population.
Collapse
Affiliation(s)
- Lingping Zhu
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- School of Public Health, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xuefeng Yang
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
3
|
Ma G, Yang P, Lu T, Chen Z, Zhou J, Tye KD, Xiao X. The impact of gut microbiota in full-term pregnant women on immune regulation during pregnancy: A prospective, exploratory study. J Obstet Gynaecol Res 2025; 51:e16180. [PMID: 39632255 DOI: 10.1111/jog.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
AIM This study aims to investigate the correlation between gut microbiota and both placental local immune function and the maternal systemic immune system in pregnant women. METHODS Twenty-six pregnant women were included in this study, utilizing high-throughput sequencing for gut microbiota analysis. Immune cells and cytokine levels were measured in placental tissue and peripheral venous blood. Integration of gut microbiota data with immune parameters was performed using R, and network correlation analysis was conducted with Cytoscape software. RESULTS In placental tissues, gut microbiota predominantly influences B lymphocytes (CD3-CD19+/CD3-), indicating a potential bidirectional regulatory role. The impact on CD56+CD16+/CD56+CD16- and CD4+/CD8+ ratios appear minor. Notably, a significant positive correlation was observed between gut microbiota and the placental cytokine interleukin (IL)-5. In peripheral blood, gut microbiota was primarily associated with negative regulation of peripheral B lymphocytes and positive regulation of peripheral Treg cells. Minimal effects are observed on peripheral macrophages and NK cell subtypes. The most substantial impact on peripheral immune balance was reflected in the CD4+/CD8+ ratio, showing a predominant negative correlation, while the influence on the CD56+CD16+/CD56+CD16- ratio is minimal. A significant negative correlation was found between gut microbiota and peripheral cytokines IL-1 and IL-18, while the interaction with the peripheral interferon-γ/IL-4 ratio appears relatively less pronounced. CONCLUSIONS The close correlation between gut microbiota and placental local immune function, as well as maternal systemic immune responses, is evident. This study contributes to a preliminary understanding of the immunomodulatory relationship of gut microbiota during pregnancy.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Dicks LMT. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int J Mol Sci 2024; 25:10634. [PMID: 39408963 PMCID: PMC11476619 DOI: 10.3390/ijms251910634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease (CVD) may be inherited, as recently shown with the identification of single nucleotide polymorphisms (SNPs or "snips") on a 250 kb DNA fragment that encodes 92 proteins associated with CVD. CVD is also triggered by microbial dysbiosis, microbial metabolites, metabolic disorders, and inflammatory intestinal epithelial cells (IECs). The epithelial cellular adhesion molecule (Ep-CAM) and trefoil factor 3 (TFF3) peptide keeps the gut wall intact and healthy. Variations in Ep-CAM levels are directly linked to changes in the gut microbiome. Leptin, plasminogen activator inhibitor 1 (PAI1), and alpha-1 acid glycoprotein 1 (AGP1) are associated with obesity and may be used as biomarkers. Although contactin 1 (CNTN1) is also associated with obesity and adiposity, it regulates the bacterial metabolism of tryptophan (Trp) and thus appetite. A decrease in CNTN1 may serve as an early warning of CVD. Short-chain fatty acids (SCFAs) produced by gut microbiota inhibit pro-inflammatory cytokines and damage vascular integrity. Trimethylamine N-oxide (TMAO), produced by gut microbiota, activates inflammatory Nod-like receptors (NLRs) such as Nod-like receptor protein 3 (NLRP3), which increase platelet formation. Mutations in the elastin gene (ELN) cause supra valvular aortic stenosis (SVAS), defined as the thickening of the arterial wall. Many of the genes expressed by human cells are regulated by gut microbiota. The identification of new molecular markers is crucial for the prevention of CVD and the development of new therapeutic strategies. This review summarizes the causes of CVD and identifies possible CVD markers.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
5
|
Yang K, He H, Dong W. Gut Microbiota and Neonatal Acute Kidney Injury. Am J Perinatol 2024; 41:1887-1894. [PMID: 38301724 DOI: 10.1055/a-2259-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To characterize the relationship between gut microbiota and neonatal acute kidney injury biomarkers based on the gut-kidney axis. STUDY DESIGN The Pubmed database was primarily searched to include relevant literature on gut microbiota and neonatal acute kidney injury biomarkers, which was subsequently organized and analyzed and a manuscript was written. RESULTS Gut microbiota was associated with neonatal acute kidney injury biomarkers. These biomarkers included TIMP-2, IGFBP-7, VEGF, calbindin, GST, B2MG, ghrelin, and clusterin. CONCLUSION The gut microbiota is strongly associated with neonatal acute kidney injury biomarkers, and controlling the gut microbiota may be a potential target for ameliorating neonatal acute kidney injury. KEY POINTS · There is a bidirectional association between gut microbiota and AKI.. · Gut microbiota is closely associated with biomarkers of nAKI.. · Manipulation of gut microbiota may improve nAKI..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Hongxia He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
6
|
O'Malley MA. The concept of balance in microbiome research. Bioessays 2024; 46:e2400050. [PMID: 38924108 DOI: 10.1002/bies.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Liang Y, Zhao C, Zhao L, Sheng D, Chen B, Zhao G, Wang Q, Zhang L. Taxonomic and functional shifts of gut microbiome in immunoglobulin A vasculitis children and their mothers. Front Pediatr 2024; 12:1356529. [PMID: 38410769 PMCID: PMC10895042 DOI: 10.3389/fped.2024.1356529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives To examine the gut microbiota characteristics in children with immunoglobulin A vasculitis and their interrelationships with the host, while evaluate the vertical inheritance of microbiota in the development and progression of IgA vasculitis. Methods This study investigated the gut microbiome of 127 IgA vasculitis mother-child pairs and 62 matched healthy mother-child pairs, and compared the gut microbial composition of different groups. The pathway enrichment analysis evaluated potential gut microbiome-mediated pathways involved in the pathophysiology of IgA vasculitis. The Spearman correlation analysis illustrated the relationships between clinical variables and bacterial biomarkers. Results This study identified distinct intestinal microbiome in IgA vasculitis children compared to healthy children, and further pointed out the association in gut microbiota between IgA vasculitis children's and their mother's. The relative abundance of Megamonas and Lactobacillus in IgAV children was positively correlated with that in their mothers. The pathway enrichment analysis found microbial biosynthesis of vitamins and essential amino acids was upregulated in children with IgA vasculitis. Correlation analysis showed bacterial biomarkers were correlated with indicators of blood coagulation. Conclusion Children with IgA vasculitis have unique bacterial biomarkers and may affect coagulation function, and their gut microbiome was closely associated with that of their mothers. The observed association in gut microbiota between IgA vasculitis children and their mothers suggested a potential intergenerational influence of the maternal microbiota on the development or progression of IgA vasculitis in children.
Collapse
Affiliation(s)
- Yijia Liang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Chen
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Dicks LMT. How important are fatty acids in human health and can they be used in treating diseases? Gut Microbes 2024; 16:2420765. [PMID: 39462280 PMCID: PMC11520540 DOI: 10.1080/19490976.2024.2420765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Most of the short-chain fatty acids (SCFAs) are produced by Bifidobacterium, Lactobacillus, Lachnospiraceae, Blautia, Coprococcus, Roseburia, Facealibacterium and Oscillospira. Butyrate (C4H7O2-) supplies 70% of energy to intestinal epithelial cells (IECs), supports tight-junction protein formation, induces the production of inflammatory cytokines, and inhibits histone deacetylase (HDAC). Butyrate is also associated with the recovery of brain trauma, improvement of dementia, the alleviation of autoimmune encephalitis, and several intestinal disorders. Low levels of SCFAs are associated with hypertension, cardiovascular disease (CVD), strokes, obesity, and diabetes mellitus. Cis-palmitoleic acid (C16H30O2), a mono-unsaturated fatty acid (MUFA), increases insulin sensitivity and reduces the risk of developing CVD. Lipokine palmitoleic acid reduces the expression of pro-inflammatory cytokines IL-1β (pro-IL1β), tumor necrosis factor α (TNF-α), and isoleucine 6 (IL-6). Polyunsaturated fatty acids (PUFAs), such as omega-3 and omega-6, are supplied through the diet. The conversion of PUFAs by cyclooxygenases (COX) and lipoxygenases (LOX) leads to the production of anti-inflammatory prostaglandins and leukotrienes. Oxidation of linoleic acid (LA, C18H32O2), an omega-6 essential fatty acid, leads to the formation of 13-hydroperoxy octadecadienoic acid (13-HPODE, C18H32O4), which induces pro-inflammatory cytokines. Omega-3 PUFAs, such as eicosapentaenoic acid (EPA, C20H30O2) and docosahexaenoic acid (DHA, C22H32O2), lower triglyceride levels, lower the risk of developing some sort of cancers, Alzheimer's disease and dementia. In this review, the importance of SCFAs, MUFAs, PUFAs, and saturated fatty acids (SFAs) on human health is discussed. The use of fatty acids in the treatment of diseases is investigated.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Suta S, Ophakas S, Manosan T, Honwichit O, Charoensiddhi S, Surawit A, Pongkunakorn T, Pumeiam S, Mongkolsucharitkul P, Pinsawas B, Sutheeworapong S, Puangsombat P, Khoomrung S, Mayurasakorn K. Influence of Prolonged Whole Egg Supplementation on Insulin-like Growth Factor 1 and Short-Chain Fatty Acids Product: Implications for Human Health and Gut Microbiota. Nutrients 2023; 15:4804. [PMID: 38004198 PMCID: PMC10674712 DOI: 10.3390/nu15224804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota exert a profound influence on human health and metabolism, with microbial metabolites playing a pivotal role in shaping host physiology. This study investigated the impact of prolonged egg supplementation on insulin-like growth factor 1 (IGF-1) and circulating short-chain fatty acids (SCFAs). In a subset of a cluster-randomized trial, participants aged 8-14 years were randomly assigned into three groups: (1) Whole Egg (WE)-consuming 10 additional eggs per week [n = 24], (2) Protein Substitute (PS)-consuming yolk-free egg substitute equivalent to 10 eggs per week [n = 25], and (3) Control Group (C) [n = 26]. At week 35, IGF-1 levels in WE significantly increased (66.6 ± 27.7 ng/mL, p < 0.05) compared to C, with positive SCFA correlations, except acetate. Acetate was stable in WE, increasing in PS and C. Significant propionate differences occurred between WE and PS (14.8 ± 5.6 μmol/L, p = 0.010). WE exhibited notable changes in the relative abundance of the Bifidobacterium and Prevotella genera. Strong positive SCFA correlations were observed with MAT-CR-H4-C10 and Libanicoccus, while Roseburia, Terrisporobacter, Clostridia_UCG-014, and Coprococcus showed negative correlations. In conclusion, whole egg supplementation improves growth factors that may be related to bone formation and growth; it may also promote benefits to gut microbiota but may not affect SCFAs.
Collapse
Affiliation(s)
- Sophida Suta
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Suphawan Ophakas
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Thamonwan Manosan
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Orranich Honwichit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.H.); (S.C.)
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.H.); (S.C.)
| | - Apinya Surawit
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Tanyaporn Pongkunakorn
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Sureeporn Pumeiam
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Pichanun Mongkolsucharitkul
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Bonggochpass Pinsawas
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Research Unit, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Patcha Puangsombat
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.P.); (S.K.)
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.P.); (S.K.)
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.O.); (T.M.); (A.S.); (T.P.); (S.P.); (P.M.); (B.P.)
| |
Collapse
|
11
|
Taha SFM, Bhassu S, Omar H, Raju CS, Rajamanikam A, Govind SKP, Mohamad SB. Gut microbiota of healthy Asians and their discriminative features revealed by metagenomics approach. 3 Biotech 2023; 13:275. [PMID: 37457869 PMCID: PMC10338424 DOI: 10.1007/s13205-023-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
Collapse
Affiliation(s)
- Siti Fatimah Mohd Taha
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Museum of Zoology (Block J14), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chandramati Samudi Raju
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arutchelvan Rajamanikam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suresh Kumar P. Govind
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Salaria N, Neeraj, Furhan J, Kumar R. Gut Microbiome: Perspectives and Challenges in Human Health. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:65-87. [DOI: 10.1007/978-981-99-3126-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Balasaria S, Mukhopadhyay B. Chemical synthesis of the pentasaccharide repeating unit of the O-antigen from Escherichia coli strain SDLZB008 in the form of its 2-aminoethyl glycoside. Carbohydr Res 2023; 523:108734. [PMID: 36571947 DOI: 10.1016/j.carres.2022.108734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Chemical synthesis of the pentasaccharide repeating unit of the O-antigen from E. coli strain SDLZB008 is accomplished through a linear strategy using rationally protected monosaccharide derivatives ensuring desired stereochemical outcome up on glycosylations. 2-Aminoethyl glycoside is incorporated at the reducing end of the target pentasaccharide. The terminal free amine may be used for further conjugation with suitable aglycon without hampering the reducing end stereochemistry. The rare D-Fucp3NAc moiety is incorporated through the corresponding 3-azido derivative derived from a known 3-azido quinovose derivative.
Collapse
Affiliation(s)
- Sakshi Balasaria
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
14
|
Li W, Li C, Ren C, Zhou S, Cheng H, Chen Y, Han X, Zhong Y, Zhou L, Xie D, Liu H, Xie J. Bidirectional effects of oral anticoagulants on gut microbiota in patients with atrial fibrillation. Front Cell Infect Microbiol 2023; 13:1038472. [PMID: 37033478 PMCID: PMC10080059 DOI: 10.3389/fcimb.2023.1038472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background The imbalance of gut microbiota (GM) is associated with a higher risk of thrombosis in patients with atrial fibrillation (AF). Oral anticoagulants (OACs) have been found to significantly reduce the risk of thromboembolism and increase the risk of bleeding. However, the OAC-induced alterations in gut microbiota in patients with AF remain elusive. Methods In this study, the microbial composition in 42 AF patients who received long-term OAC treatment (AF-OAC group), 47 AF patients who did not (AF group), and 40 volunteers with the risk of AF (control group) were analyzed by 16S rRNA gene sequencing of fecal bacterial DNA. The metagenomic functional prediction of major bacterial taxa was performed using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software package. Results The gut microbiota differed between the AF-OAC and AF groups. The abundance of Bifidobacterium and Lactobacillus decreased in the two disease groups at the genus level, but OACs treatment mitigated the decreasing tendency and increased beneficial bacterial genera, such as Megamonas. In addition, OACs reduced the abundance of pro-inflammatory taxa on the genus Ruminococcus but increased certain potential pathogenic taxa, such as genera Streptococcus, Escherichia-Shigella, and Klebsiella. The Subgroup Linear discriminant analysis effect size (LEfSe) analyses revealed that Bacteroidetes, Brucella, and Ochrobactrum were more abundant in the anticoagulated bleeding AF patients, Akkermansia and Faecalibacterium were more abundant in the non-anticoagulated-bleeding-AF patients. The neutrophil-to-lymphocyte ratio (NLR) was lower in the AF-OAC group compared with the AF group (P < 0.05). Ruminococcus was positively correlated with the NLR and negatively correlated with the CHA2DS2-VASc score (P < 0.05), and the OACs-enriched species (Megamonas and Actinobacteria) was positively correlated with the prothrombin time (PT) (P < 0.05). Ruminococcus and Roseburia were negatively associated with bleeding events (P < 0.05). Conclusions Our study suggested that OACs might benefit AF patients by reducing the inflammatory response and modulating the composition and abundance of gut microbiota. In particular, OACs increased the abundance of some gut microbiota involved in bleeding and gastrointestinal dysfunction indicating that the exogenous supplementation with Faecalibacterium and Akkermansia might be a prophylactic strategy for AF-OAC patients to lower the risk of bleeding after anticoagulation.
Collapse
Affiliation(s)
- Wan Li
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Changxia Li
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Cheng Ren
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Shiju Zhou
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Huan Cheng
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yuanrong Chen
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaowei Han
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yiming Zhong
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Licheng Zhou
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- *Correspondence: Jiahe Xie, ; Haiyue Liu, ; Dongming Xie, ; Licheng Zhou,
| | - Dongming Xie
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- *Correspondence: Jiahe Xie, ; Haiyue Liu, ; Dongming Xie, ; Licheng Zhou,
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Jiahe Xie, ; Haiyue Liu, ; Dongming Xie, ; Licheng Zhou,
| | - Jiahe Xie
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Branch, Center of National Geriatric Disease Clinical Medical Research Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
- *Correspondence: Jiahe Xie, ; Haiyue Liu, ; Dongming Xie, ; Licheng Zhou,
| |
Collapse
|
15
|
Liang X, Wang R, Luo H, Liao Y, Chen X, Xiao X, Li L. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front Microbiol 2022; 13:1059227. [PMID: 36569048 PMCID: PMC9768424 DOI: 10.3389/fmicb.2022.1059227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota undergoes dynamic changes during pregnancy. The gut microbial and metabolic networks observed in pregnant women have not been systematically analyzed. The primary purpose of this study was to explore the alterations in the gut microbiota and metabolism during late pregnancy and investigate the associations between the gut microbiota and metabolism. A total of thirty healthy pregnant women were followed from 30 to 32 weeks of gestation to full term. Fecal samples were collected for microbiome analysis and untargeted metabolomic analysis. The characteristics of the gut microbiota were evaluated by 16S ribosomal RNA gene sequencing of the V3-V4 regions. The plasma samples were used for untargeted metabolomic analysis with liquid chromatography-tandem mass spectrometry. The interplay between the gut microbiota and metabolism was analyzed further by bioinformatics approaches. We found that the relative abundances of Sellimonas and Megamonas were higher at full term, whereas that of Proteobacteria was lower. The correlation network of the gut microbiota tended to exhibit weaker connections from 32 weeks of gestation to the antepartum timepoint. Changes in the gut microbiota during late pregnancy were correlated with the absorbance and metabolism of microbiota-associated metabolites, such as fatty acids and free amino acids, thereby generating a unique metabolic system for the growth of the fetus. Decreasing the concentration of specific metabolites in plasma and increasing the levels of palmitic acid and 20-hydroxyarachidonic acid may enhance the transformation of a proinflammatory immune state as pregnancy progresses.
Collapse
Affiliation(s)
- Xinyuan Liang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rongning Wang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yihong Liao
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaowen Chen
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Xiaomin Xiao,
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Liping Li,
| |
Collapse
|
16
|
Dicks LMT. Gut Bacteria and Neurotransmitters. Microorganisms 2022; 10:1838. [PMID: 36144440 PMCID: PMC9504309 DOI: 10.3390/microorganisms10091838] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gut bacteria play an important role in the digestion of food, immune activation, and regulation of entero-endocrine signaling pathways, but also communicate with the central nervous system (CNS) through the production of specific metabolic compounds, e.g., bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT) and histamine. Afferent vagus nerve (VN) fibers that transport signals from the gastro-intestinal tract (GIT) and gut microbiota to the brain are also linked to receptors in the esophagus, liver, and pancreas. In response to these stimuli, the brain sends signals back to entero-epithelial cells via efferent VN fibers. Fibers of the VN are not in direct contact with the gut wall or intestinal microbiota. Instead, signals reach the gut microbiota via 100 to 500 million neurons from the enteric nervous system (ENS) in the submucosa and myenteric plexus of the gut wall. The modulation, development, and renewal of ENS neurons are controlled by gut microbiota, especially those with the ability to produce and metabolize hormones. Signals generated by the hypothalamus reach the pituitary and adrenal glands and communicate with entero-epithelial cells via the hypothalamic pituitary adrenal axis (HPA). SCFAs produced by gut bacteria adhere to free fatty acid receptors (FFARs) on the surface of intestinal epithelial cells (IECs) and interact with neurons or enter the circulatory system. Gut bacteria alter the synthesis and degradation of neurotransmitters. This review focuses on the effect that gut bacteria have on the production of neurotransmitters and vice versa.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
17
|
Characteristics of gastric cancer gut microbiome according to tumor stage and age segmentation. Appl Microbiol Biotechnol 2022; 106:6671-6687. [PMID: 36083304 DOI: 10.1007/s00253-022-12156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
With the development of 16S rRNA technology, gut microbiome evaluation has been performed in many diseases, including gastrointestinal tumors. Among these cancers, gastric cancer (GC) exhibits high morbidity and mortality and has been extensively studied in its pathogenesis and diagnosis techniques. The current researches have proved that the gut microbiome may have the potential to distinguish GC patients from healthy patients. However, the change of the gut microbiome according to tumor node metastasis classification (TNM) has not been clarified. Besides, the characteristics of gut microbiome in GC patients and their ages of onset are also ambiguous. To address the above shortcomings, we investigated 226 fecal samples and divided them according to their tumor stage and onset age. The findings revealed that surgery and tumor stage can change the characteristic of GC patients' gut microbiota. In specific, the effect of surgery on early gastric cancer (EGC) was greater than that on advanced gastric cancer (AGC), and the comparison of postoperative microflora with healthy people indicated that EGC has more differential bacteria than AGC. Besides, we found that Collinsella, Blautia, Anaerostipes, Dorea, and Lachnospiraceae_ND3007_group expressed differently between EGC and AGC. More importantly, it is the first time revealed that the composition of gut microbiota in GC is different between different onset ages. KEY POINTS: •Gut microbiota of gastric cancer (GC) patients are either highly associated with TNM stage and surgery or not. It shows surgery has more significant changes in early gastric cancer (EGC) than advanced gastric cancer (AGC). •There existed specific gut microbiota between EGC and AGC which may have potential to distinguish the early or advanced GC. •Onset age of GC may influence the gut microbiota: the composition of gut microbiota of early-onset gastric cancer (EOGC) and late-onset gastric cancer (LOGC) is significantly different.
Collapse
|
18
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
19
|
Wang W, Li Y, Han G, Li A, Kong X. Lactobacillus fermentum CECT5716 Alleviates the Inflammatory Response in Asthma by Regulating TLR2/TLR4 Expression. Front Nutr 2022; 9:931427. [PMID: 35911120 PMCID: PMC9331901 DOI: 10.3389/fnut.2022.931427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Asthma is a chronic disease, which is harmful to the health of the body and the quality of life. Supplementation of Lactobacillus can affect the immune environment of the lungs through the gut-lung axis. This study aimed to explore the potential regulatory targets of Lactobacillus to relieve inflammation in asthma and determine a new approach for improving asthma. Methods A mouse ovalbumin (OVA)-induced model was constructed. OVA mice were supplemented with Lactobacillus fermentum CECT5716 by gavage. The gut microbiota composition of normal and OVA mice was analyzed using 16S ribosomal DNA identification. BALF, serum, lung tissues, and duodenal tissues were collected. Wright’s staining was performed to determine the cell content of the alveolar lavage fluid. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the improvement in the lungs of OVA mice supplemented with Lactobacillus. Immunofluorescence was performed to measure the severity of the intestinal barrier leakage. Enzyme-linked immunosorbent assay was carried out to determine the expression levels of inflammatory cell factors, while quantitative reverse transcription-polymerase chain reaction and western blotting were performed to detect the levels of toll-like receptor 2 (TLR2)/TLR4 expression and cell adhesion factors. Results Compared with Control mice, OVA mice exhibited malignant conditions, such as intestinal leakage and lung edema. After supplementation with Lactobacillus, the inflammatory cell content in the bronchoalveolar lavage fluid decreased, and the inflammatory response was alleviated. The level of TLR2/TLR4 expression was reduced. The inflammatory cell infiltration in the airway mucosa of OVA mice was improved, alveolar swelling was reduced and the basement membrane appeared thinner. Conclusion The Lactobacillus inhibited the TLR2/TLR4 expression in OVA mice. Supplementation with Lactobacillus can alleviate the inflammatory response in OVA mice, inhibit pulmonary fibrosis, and treat asthma.
Collapse
Affiliation(s)
- Weifang Wang
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Yunfeng Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guojing Han
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of the PLA General Hospital, Beijing, China
| | - Aimin Li
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Aimin Li,
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
- Xiaomei Kong,
| |
Collapse
|
20
|
Pu J, Hang S, Liu M, Chen Z, Xiong J, Li Y, Wu H, Zhao X, Liu S, Gu Q, Li P. A Class IIb Bacteriocin Plantaricin NC8 Modulates Gut Microbiota of Different Enterotypes in vitro. Front Nutr 2022; 9:877948. [PMID: 35845772 PMCID: PMC9280423 DOI: 10.3389/fnut.2022.877948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is engaged in multiple interactions affecting host health. Bacteriocins showed the ability of impeding the growth of intestinal pathogenic bacteria and modulating gut microbiota in animals. Few studies have also discovered their regulation on human intestinal flora using an in vitro simulated system. However, little is known about their effect on gut microbiota of different enterotypes of human. This work evaluated the modification of the gut microbiota of two enterotypes (ET B and ET P) by the class IIb bacteriocin plantaricin NC8 (PLNC8) by using an in vitro fermentation model of the intestine. Gas chromatography results revealed that PLNC8 had no influence on the gut microbiota’s production of short-chain fatty acids in the subjects’ samples. PLNC8 lowered the Shannon index of ET B’ gut microbiota and the Simpson index of ET P’ gut microbiota, according to 16S rDNA sequencing. In ET B, PLNC8 enhanced the abundance of Bacteroides, Bifidobacterium, Megamonas, Escherichia-Shigella, Parabacteroides, and Lactobacillus while decreasing the abundance of Streptococcus. Prevotella_9, Bifidobacterium, Escherichia-Shigella, Mitsuokella, and Collinsella were found more abundant in ET P. The current study adds to our understanding of the impact of PLNC8 on the human gut microbiota and lays the groundwork for future research into PLNC8’s effects on human intestinal disease.
Collapse
|
21
|
Abstract
Abstract
The prospects for application of metagenomic technologies in environmental studies are discussed. The advantages in investigating the taxonomic composition of aquatic and terrestrial ecosystems, as well as examples of trophic and phoric relationships found in ecosystems using the metagenomic approach, are described. The capabilities of metagenomics to study prokaryotic communities in complicated environments such as soils or animal intestines are shown. The role of relic DNA in the metagenome and the possibilities to study ancient organisms are highlighted. Particular attention is paid to the criticism of metagenomic technologies related to the low reproducibility of the sequencing data. Common methodological mistakes in bioinformatics processing of metagenomic data leading to misleading results are considered.
Collapse
|
22
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
23
|
Santarossa S, Sitarik AR, Johnson CC, Li J, Lynch SV, Ownby DR, Ramirez A, Yong GLM, Cassidy-Bushrow AE. Associations of physical activity with gut microbiota in pre-adolescent children. Phys Act Nutr 2021; 25:24-37. [PMID: 35152621 PMCID: PMC8843867 DOI: 10.20463/pan.2021.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. METHODS The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. RESULTS The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. CONCLUSION Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | - Susan V. Lynch
- Department of Medicine, University of California, California, USA
| | - Dennis R. Ownby
- Department of Pediatrics, Georgia Regents University, Georgia, USA
| | - Alex Ramirez
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
- Wayne State University School of Medicine Detroit, Michigan, USA
| | | | | |
Collapse
|
24
|
Wang J, Xu Y, Qin C, Hu J, Yin J, Guo X. Structural Determination and Genetic Identification of the O-Antigen from an Escherichia coli Strain, LL004, Representing a Novel Serogroup. Int J Mol Sci 2021; 22:ijms222312746. [PMID: 34884549 PMCID: PMC8657804 DOI: 10.3390/ijms222312746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
| | - Yujuan Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
- Correspondence: (J.H.); (X.G.)
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
- Correspondence: (J.H.); (X.G.)
| |
Collapse
|
25
|
Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl Microbiol Biotechnol 2021; 105:4415-4425. [PMID: 34037843 DOI: 10.1007/s00253-021-11358-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.
Collapse
|
26
|
Maldonado-Arriaga B, Sandoval-Jiménez S, Rodríguez-Silverio J, Lizeth Alcaráz-Estrada S, Cortés-Espinosa T, Pérez-Cabeza de Vaca R, Licona-Cassani C, Gámez-Valdez JS, Shaw J, Mondragón-Terán P, Hernández-Cortez C, Suárez-Cuenca JA, Castro-Escarpulli G. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis. Microbiologyopen 2021; 10:e1181. [PMID: 33970546 PMCID: PMC8087925 DOI: 10.1002/mbo3.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical‐endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characterized both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active pancolitis. The relative abundance of Fecalibacterium and Roseburia showed a higher correlation with fecal calprotectin, while Bilophila and Fusobacterium showed AUCs (area under the curve) of 0.917 and 0.988 for active vs. remission pancolitis. The results of our study highlight the relation of gut dysbiosis with clinically relevant phases of pancolitis in patients with UC. Particularly, Fecalibacterium, Roseburia, Bilophila, and Fusobacterium were identified as genera highly related to the different clinical phases of pancolitis.
Collapse
Affiliation(s)
- Brenda Maldonado-Arriaga
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México.,Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sandoval-Jiménez
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Tomás Cortés-Espinosa
- Clínica de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Rebeca Pérez-Cabeza de Vaca
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cuauhtémoc Licona-Cassani
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - July Stephany Gámez-Valdez
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Jonathan Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paul Mondragón-Terán
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
27
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, Reeves PR, Knirel YA, Wang L, Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655-683. [PMID: 31778182 PMCID: PMC7685785 DOI: 10.1093/femsre/fuz028] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Axel Furevi
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| | - Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Quan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Peter R Reeves
- School of Molecular and Microbial Bioscience, University of Sydney, 2 Butilin Ave, Darlington NSW 2008, Sydney, Australia
| | - Yuriy A Knirel
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, Russia
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjing 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Svante Arrhenius väg 16C, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Zhao Z, Fei K, Bai H, Wang Z, Duan J, Wang J. Metagenome association study of the gut microbiome revealed biomarkers linked to chemotherapy outcomes in locally advanced and advanced lung cancer. Thorac Cancer 2020; 12:66-78. [PMID: 33111503 PMCID: PMC7779204 DOI: 10.1111/1759-7714.13711] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background The gut microbiome is important in the development and immunotherapy efficacy of lung cancer. However, the relationship between the intestinal flora and chemotherapy outcomes remains unclear and was investigated in this study. Methods We analyzed baseline stool samples from patients with locally advanced and advanced lung cancer before chemotherapy treatment, through metagenomics of the gut microbiota. The composition, diversity, function, and metabolic pathway analysis were compared among patients with different clinical outcomes. Results From 64 patients, 33 responded to treatment (responders) and 31 did not (nonresponders). Streptococcus mutans and Enterococcus casseliflavus were enriched in responders (P < 0.05), while 11 bacteria including Leuconostoc lactis and Eubacterium siraeum were enriched in nonresponders (P < 0.05) by variance analysis. Responders were associated with significantly higher Acidobacteria and Granulicella, while Streptococcus oligofermentans, Megasphaera micronuciformis, and Eubacterium siraeum were more abundant in nonresponders by Lefse analysis. Streptococcus mutans and Enterococcus casseliflavus were further identified as bacterial markers relevant to responders using unsupervised clustering, and Leuconostoc lactis and Eubacterium siraeum were related to nonresponders. The L‐glutamate degradation VIII pathway was enriched in responders (P = 0.014), and the C4 photosynthetic carbon assimilation cycle, reductive TCA cycle I, and hexitol fermentation to lactate, formate, ethanol, and acetate were enriched in nonresponders (P < 0.05). Additionally, significant associations of bacterial species with clinical phenotypes were observed by Spearman correlation analysis. Conclusions The specific gut microbiome of patients with lung cancer might be connected to the clinical outcomes of chemotherapy. Key points
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kailun Fei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Yuan Y, Wang X, Xu X, Liu Y, Li C, Yang M, Yang Y, Ma Z. Evaluation of a Dual-Acting Antibacterial Agent, TNP-2092, on Gut Microbiota and Potential Application in the Treatment of Gastrointestinal and Liver Disorders. ACS Infect Dis 2020; 6:820-831. [PMID: 31849218 DOI: 10.1021/acsinfecdis.9b00374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNP-2092 is a unique multitargeting drug conjugate with extremely low propensity for development of resistance. The in vitro activity of TNP-2092 against a panel of urease-producing bacteria was similar to that of rifaximin, a locally acting antibiotic approved for the treatment of hepatic encephalopathy, irritable bowel syndrome with diarrhea, and traveler's diarrhea. When given orally, TNP-2092 exhibited low absorption and the majority of compound was recovered in feces as parent. The impact of oral TNP-2092 on gut microbiota was investigated in rats. TNP-2092 was administered to rats by oral gavage for 7 days. Feces samples were collected and analyzed by 16S rRNA sequencing. Although the total amount of bacterial load appeared relatively unchanged before, during, and after treatment, significant changes in the relative abundance of certain gut bacteria at family and genus levels were observed. Some of the changes are known to be associated with improvement of symptoms associated with liver cirrhosis and hepatic encephalopathy. The observed effects of TNP-2092 on gut microbiota in rats were similar to those of rifaximin. In vivo, TNP-2092 demonstrated potent efficacy in a mouse Clostridium difficile infection model, superior to metronidazole and vancomycin, with no relapse observed after treatment. TNP-2092 is currently in clinical development for the treatment of symptoms associated with gastrointestinal and liver disorders.
Collapse
Affiliation(s)
- Ying Yuan
- TenNor Therapeutics Limited, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Xiaomei Wang
- TenNor Therapeutics Limited, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Xiangyi Xu
- TenNor Therapeutics Limited, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Yu Liu
- TenNor Therapeutics Limited, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Cancan Li
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao, China (Shanghai) Pilot Free Trade Zone, Shanghai 200131, China
| | - Meng Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao, China (Shanghai) Pilot Free Trade Zone, Shanghai 200131, China
| | - Yiqing Yang
- BGI Genomics, BGI Park, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Zhenkun Ma
- TenNor Therapeutics Limited, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
31
|
Ducray HAG, Globa L, Pustovyy O, Roberts MD, Rudisill M, Vodyanoy V, Sorokulova I. Prevention of excessive exercise-induced adverse effects in rats with Bacillus subtilis BSB3. J Appl Microbiol 2019; 128:1163-1178. [PMID: 31814258 PMCID: PMC7079029 DOI: 10.1111/jam.14544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Aims To characterize efficacy of the Bacillus subtilis BSB3 (BSB3) strain in the prevention of excessive exercise‐induced side effects and in maintaining stability of the gut microbiota. Methods and Results Rats were pretreated by oral gavage with B. subtilis BSB3 (BSB3) or with phosphate‐buffered saline (PBS) twice a day for 2 days, and were either exposed forced treadmill running or remained sedentary. Histological analysis of intestine, immunofluorescence staining of tight junction (TJ) proteins, serum lipopolysaccharide and intestinal fatty acid‐binding protein assay, culture‐based analysis and pyrosequencing for the gut microbiota were performed for each rat. Forced running resulted in a substantial decrease in intestinal villi height and total mucosa thickness, the depletion of Paneth cells, an inhibition of TJ proteins expression. Short‐term treatment of rats with BSB3 before running prevented these adverse effects. Culture‐based analysis of the gut microbiota revealed significant elevation of pathogenic microorganisms only in treadmill‐exercised rats pretreated with PBS. High‐throughput 16S rRNA gene sequencing also revealed an increase in pathobionts in this group. Preventive treatment of animals with BSB3 resulted in predominance of beneficial bacteria. Conclusions BSB3 prevents excessive exercise‐associated complications by beneficial modulation of the gut microbiota. Significance and Impact of the Study Our study shows a new application of beneficial bacteria for prevention the adverse effects of excessive exercise.
Collapse
Affiliation(s)
- H A G Ducray
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - L Globa
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - O Pustovyy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - M D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - M Rudisill
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - V Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - I Sorokulova
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| |
Collapse
|
32
|
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16:605-616. [PMID: 31296969 DOI: 10.1038/s41575-019-0173-3] [Citation(s) in RCA: 992] [Impact Index Per Article: 165.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
Abstract
Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).
Collapse
Affiliation(s)
- Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Gregor Reid
- Lawson Research Institute, and Western University, London, Ontario, Canada
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
33
|
Issa Isaac N, Philippe D, Nicholas A, Raoult D, Eric C. Metaproteomics of the human gut microbiota: Challenges and contributions to other OMICS. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:18-30. [DOI: 10.1016/j.clinms.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
|
34
|
Garcia-Castillo V, Komatsu R, Clua P, Indo Y, Takagi M, Salva S, Islam MA, Alvarez S, Takahashi H, Garcia-Cancino A, Kitazawa H, Villena J. Evaluation of the Immunomodulatory Activities of the Probiotic Strain Lactobacillus fermentum UCO-979C. Front Immunol 2019; 10:1376. [PMID: 31263467 PMCID: PMC6585165 DOI: 10.3389/fimmu.2019.01376] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus fermentum UCO-979C, a strain isolated from a human stomach, was previously characterized by its potential probiotic properties. The UCO-979C strain displayed the ability to beneficially regulate the innate immune response triggered by Helicobacter pylori infection in human gastric epithelial cells. In this work, we conducted further in vitro studies in intestinal epithelial cells (IECs) and in vivo experiments in mice in order to characterize the potential immunomodulatory effects of L. fermentum UCO-979C on the intestinal mucosa. Results demonstrated that the UCO-979C strain is capable to differentially modulate the immune response of IECs triggered by Toll-like receptor 4 (TLR4) activation through the modulation of TLR negative regulators' expression. In addition, we demonstrated for the first time that L. fermentum UCO-979C is able to exert its immunomodulatory effect in the intestinal mucosa in vivo. The feeding of mice with L. fermentum UCO-979C significantly increased the production of intestinal IFN-γ, stimulated intestinal and peritoneal macrophages and increased the number of Peyer's patches CD4+ T cells. In addition, L. fermentum UCO-979C augmented intestinal IL-6, reduced the number of immature B220+CD24high B cells from Peyer's patches, enhanced the number of mature B B220+CD24low cells, and significantly increased intestinal IgA content. The results of this work revealed that L. fermentum UCO-979C has several characteristics making it an excellent candidate for the development of immunobiotic functional foods aimed to differentially regulate immune responses against gastric and intestinal pathogens.
Collapse
Affiliation(s)
- Valeria Garcia-Castillo
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ryoya Komatsu
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Patricia Clua
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Yuhki Indo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michihiro Takagi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep 2019; 19:22. [PMID: 30859338 PMCID: PMC7376540 DOI: 10.1007/s11882-019-0851-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The infant gut microbiota has become a focus of multiple epidemiologic and cohort studies. This microbiome is derived from the mother (via the vaginal canal, maternal skin contact, breastfeeding, and possibly in utero microbial transfer) and is likely influenced by multiple external factors. It is now believed by some experts that colonization and formation of the newborn and alterations of gut microbiota in children are dependent on earlier alterations of the microbiota of mothers during or perhaps even before pregnancy. This review will focus on specific factors (pet keeping, breastfeeding, antibiotic use, and mode of delivery) that influence the infant gut microbiome and atopy. RECENT FINDINGS This is a review of recent literature describing how pet keeping, breastfeeding, antibiotic use, and mode of delivery influences and changes the infant gut microbiome and atopy. General trends in gut microbiota differences have emerged in different birth cohorts when each external factor is analyzed, but consistency between studies is difficult to replicate. The aforementioned factors do not seem to confer an overwhelming risk for development of atopy alone. This review provides a comprehensive review of early life environmental factors and their influence on the infant gut microbiome and atopy.
Collapse
Affiliation(s)
- Haejin Kim
- Division of Allergy and Clinical Immunology, Henry Ford Health System, WSU School of Medicine, One Ford Place 4B, Detroit, MI, 48202, USA.
| | - Alexandra R Sitarik
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Kimberley Woodcroft
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Edward Zoratti
- Division of Allergy and Clinical Immunology, Henry Ford Health System, WSU School of Medicine, One Ford Place 4B, Detroit, MI, 48202, USA
| |
Collapse
|
36
|
Zhang C, Xie J, Li X, Luo J, Huang X, Liu L, Peng X. Alliin alters gut microbiota and gene expression of colonic epithelial tissues. J Food Biochem 2019; 43:e12795. [PMID: 31353605 DOI: 10.1111/jfbc.12795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Alliin is a natural organosulfur-containing phytochemical in garlic. It is possible that alliin can regulate the gut microbiota for its strong antimicrobial activity against many pathogens. Here, we assessed whether alliin impacts the distal small intestinal bacteria, hence the cecal microbiota, thus altering the gene expression of colonic epithelial tissues (CETs). Eighty mg/kg alliin was orally administered to rats for 14 days, and the 16S rDNA from small intestinal and cecal microbiota as well as mRNA from CETs were sequenced and analyzed. The results showed that alliin consumption affected microbiota composition in both the small intestine and cecum, although there was only one specific genus, Allobaculum that was significantly altered in the rat cecum. The altered composition of microbiota indirectly impacted 174 genes in the CETs. Specifically, five genes, including RT1-Ba, RT1-Bb, Cd80, Madcam1, and Aicda, indicated this consumption related to the intestinal immune network for IgA production. PRACTICAL APPLICATIONS: We firstly reported alliin consumption in vivo potentially affected the intestinal immunity of healthy rats by slightly alteration of microbiota composition in small intestine and cecum. The alteration subsequently amplified, resulting in the change of the colonic epithelial expression of several genes related to the intestinal immune network for IgA production. Hence, we suggested the alliin consumption may potentially affect the immune system of healthy individuals by alteration of gut microbiota and epithelial gene expression.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jinli Xie
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanwei Li
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
McClements DJ. Feeding the World Inside Us: Our Gut Microbiomes, Diet, and Health. FUTURE FOODS 2019. [DOI: 10.1007/978-3-030-12995-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Abstract
After a steady increase over recent years, last year we experienced our first drop in Impact Factor (IF): from 3.301 to 2.923. Although last year I concluded that I was pretty awful at predicting the future (Venema, 2017; and I still haven’t found a probiotic to improve that …), this result was not entirely unexpected. As a young journal (we have yet to celebrate our 10th anniversary), the IF will inevitably fluctuate a little. I keep track of the IF development over the course of the year and we are well on our way to achieving an IF of above 2 again (with still another 6 months to go until the end of June, when the new impact factors will be provided by Clarivate Analytics), which isn’t bad at all for a young journal.
Collapse
|