1
|
Ramos-Lopez O. Epigenomic mechanisms of dietary prescriptions for obesity therapy. Epigenomics 2025; 17:423-434. [PMID: 40025880 PMCID: PMC11980491 DOI: 10.1080/17501911.2025.2473309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Dietary modification is a cornerstone and a primary goal for weight loss, whose effects may be related to epigenetic phenomena. In this literature review, a comprehensive search without time restriction was performed in PubMed/Medline, Cochrane, SciELO, and Scopus databases to identify epigenetic signatures related to obesity outcomes upon dietary advice. In this context, experimental studies and clinical trials have identified certain DNA methylation marks, miRNA expression profiles and histone modifications putatively associated with adiposity outcomes after different nutritional interventions. These include traditional dietary patterns, diets with different macronutrient compositions, and supplementation with fatty acids, amino acids and derivatives, methyl donors, vitamins and minerals, probiotics and prebiotics, and bioactive food compounds. Some of these epigenetic signatures have been mapped to genes involved in food intake control, adipogenesis, lipolysis, fatty acid oxidation, body fat deposition, and gut microbiota modulation. However, additional studies are still required to address dosage and follow-up variability, validation of epigenetic marks, genome-wide approaches, and appropriate statistical settings. Although more investigation is required, these insights may contribute to the characterization of epigenetic biomarkers of body weight regulation toward the prescription of tailored dietary strategies targeting the epigenome for a more precise obesity management and control.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| |
Collapse
|
2
|
Norouzi M, Mesbah-Namin SA, Sharifi Z, Deyhim MR. L-carnitine contributes to enhancement of viability and quality of platelet concentrates through changing the apoptotic and anti-apoptotic associated microRNAs. Transfus Clin Biol 2024; 31:87-94. [PMID: 38266909 DOI: 10.1016/j.tracli.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Micro RNAs are known as the main regulator of messenger RNA translation in platelets and have a vital role in process of apoptosis during platelet storage. Our pervious study revealed that the expression of miR-145 and miR-326 changed significantly in platelets under maintenance conditions. This study aimed to evaluate the effect of L-carnitine (LC) as an additive to augment platelet quality by changing the microRNA expression. METHODS We used ten platelet concentrate (PC) bags and divided each into two equal parts, LC- treated, and LC free PC. The expression of miR-145 and miR-326 were determined using real-time PCR. Moreover, we measured platelet count, platelet aggregation, platelet viability, and lactate dehydrogenase activity in all samples. RESULTS The miR-326 expression significantly increased during platelet storage with mean fold changes of 3.2 for the control and 2.5 for LC- treated PC. The mean fold changes in miR-145 expression was less in the control PC (0.52) compared to the LC- treated PC (0.79). Increased levels of platelet count, platelet aggregation, and platelet viability were found in the LC-treated compared to the untreated PC. CONCLUSION LC has a protective effect on platelet apoptosis, reduces the expression of apoptotic microRNA, and prevents the reduction of anti-apoptotic microRNA.
Collapse
Affiliation(s)
- Mozhgan Norouzi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
3
|
da Silva LE, de Oliveira MP, da Silva MR, Abel JDS, Tartari G, de Aguiar da Costa M, Ludvig Gonçalves C, Rezin GT. L-carnitine and Acetyl-L Carnitine: A Possibility for Treating Alterations Induced by Obesity in the Central Nervous System. Neurochem Res 2023; 48:3316-3326. [PMID: 37495838 DOI: 10.1007/s11064-023-04000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Excessive consumption of nutrients, as well as obesity, leads to an inflammatory process, especially in adipose tissue. This inflammation reaches the systemic level and, subsequently, the central nervous system (CNS), which can lead to oxidative stress and mitochondrial dysfunction, resulting in brain damage. Thus, adequate treatment for obesity is necessary, including lifestyle changes (diet adequation and physical activity) and pharmacotherapy. However, these drugs can adversely affect the individual's health. In this sense, searching for new therapeutic alternatives for reestablishing metabolic homeostasis is necessary. L-carnitine (LC) and acetyl-L-carnitine (LAC) have neuroprotective effects against oxidative stress and mitochondrial dysfunction in several conditions, including obesity. Therefore, this study aimed to conduct a narrative review of the literature on the effect of LC and LAC on brain damage caused by obesity, in particular, on mitochondrial dysfunction and oxidative stress. Overall, these findings highlight that LC and LAC may be a promising treatment for recovering REDOX status and mitochondrial dysfunction in the CNS in obesity. Future work should focus on better elucidating the molecular mechanisms behind this treatment.
Collapse
Affiliation(s)
- Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil.
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Jéssica da Silva Abel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Gisele Tartari
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Neurology, Graduate Program in Health Sciences, University of Extreme South Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Neurology, Graduate Program in Health Sciences, University of Extreme South Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| |
Collapse
|
4
|
Nazari M, Jalili M, As'habi A. Conjugated linoleic acid and L-carnitine combination effects on obesity-related miRNAs in diet-induced obese rats. Obes Res Clin Pract 2023; 17:378-382. [PMID: 37634961 DOI: 10.1016/j.orcp.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVES Obesity is a major global health issue, resulting in significant costs and increased mortality rates. Finding effective treatments for obesity is therefore essential. This study investigated the combined effects of L-Carnitine (LC) and Conjugated Linoleic Acid (CLA) on weight loss and adipose tissue microRNA levels. SUBJECTS /METHODS Forty male Wistar rats weighing 150-200 g and about 8 weeks old were fed either a normal fat diet (NFD) or a high-fat diet (HFD) for 8 weeks. Afterwards, the HFD group was randomly divided into four subgroups: control, LC (200 mg kg-1), CLA (500 mg kg-1), and both (n = 8 in each group). The study lasted for an additional 4 weeks. The animals' weights were recorded regularly, and after 12 weeks, miRNAs were extracted from epididymal adipose tissue and analysed using real-time PCR. The miRNA expression levels of miR-27a and miR-143 were compared between groups using Kolmogorov-Smirnov and one-way ANOVA tests in SPSS software. RESULTS At the end of the first 8 weeks, the HFD group weighed significantly more than the NFD group. LC significantly decreased weight gain (4.2%) compared to the control group, whereas CLA alone (3.5%) or in combination with LC (3.1%) did not significantly slow weight gain. Real-time PCR results showed that the HFD group had higher miR-143 levels and lower miR-27a levels compared to the NFD group. LC and CLA increased miR-27a expression after 4 weeks, but their combination decreased miR-27a expression. CLA alone reduced miR-143 expression, whereas LC had almost no effect. Their combination also reduced miR-143 expression. CONCLUSION CLA and LC, which are considered weight loss supplements, can potentially regulate metabolism and cellular pathways. However, their combination did not show a synergistic effect on weight loss, possibly due to the reduction in miR-27a expression. Further studies are needed to evaluate the effects of combined fat burners on obesity treatment.
Collapse
Affiliation(s)
- Maryam Nazari
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
| | - Mahsa Jalili
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark.
| | - Atefeh As'habi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Liu J, Wei L, Chen T, Wang H, Luo J, Chen X, Jiang Q, Xi Q, Sun J, Zhang L, Zhang Y. MiR-143 Targets SYK to Regulate NEFA Uptake and Contribute to Thermogenesis in Male Mice. Endocrinology 2023; 164:bqad114. [PMID: 37486737 DOI: 10.1210/endocr/bqad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) and white adipose tissue (WAT) thermogenesis has emerged as an attractive tool for antiobesity. Although miR-143 has been reported to be associated with BAT thermogenesis, its role remains unclear. Here, we found that miR-143 had highest expression in adipose tissue, especially in BAT. During short-term cold exposure or CL316,243 was injected, miR-143 was markedly downregulated in BAT and subcutaneous WAT (scWAT). Moreover, knockout (KO) of miR-143 increases the body temperature of mice upon cold exposure, which may be due to the increased thermogenesis of BAT and scWAT. More importantly, supplementation of miR-143 in BAT of KO mice can inhibit the increase in body temperature in KO mice. Mechanistically, spleen tyrosine kinase was revealed for the first time as a new target of miR-143, and deletion of miR-143 facilitates fatty acid uptake in BAT. In addition, we found that brown adipocytes can promote fat mobilization of white adipocytes, and miR-143 may participate in this process. Meanwhile, we demonstrate that inactivation of adenylate cyclase 9 (AC9) in BAT inhibits thermogenesis through AC9-PKA-AMPK-CREB-UCP1 signaling pathway. Overall, our results reveal a novel function of miR-143 on thermogenesis, and a new functional link of the BAT and WAT.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Limin Wei
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experi-mental Animal Research Center), Sanya, Hainan 572000, China
- Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan Key Laboratory for Tropical Animal Breeding and Disease Research, Haikou, Hainan 571100, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guang-dong 510642, China
| |
Collapse
|
6
|
Liu J, Wang H, Zeng D, Xiong J, Luo J, Chen X, Chen T, Xi Q, Sun J, Ren X, Zhang Y. The novel importance of miR-143 in obesity regulation. Int J Obes (Lond) 2023; 47:100-108. [PMID: 36528726 DOI: 10.1038/s41366-022-01245-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Obesity and substantially increased risk of metabolic diseases have become a global epidemic. microRNAs have attracted a great deal of attention as a potential therapeutic target for obesity. MiR-143 has been known to specifically promote adipocyte differentiation by downregulating extracellular signal-regulated kinase 5. Our latest study found that miR-143 knockout is against diet-induced obesity by promoting brown adipose tissue thermogenesis and inhibiting white adipose tissue adipogenesis. Moreover, LPS- or IL-6-induced inhibition of miR-143 expression in brown adipocytes promotes thermogenesis by targeting adenylate cyclase 9. In this review, we will summarize the expression and functions of miR-143 in different tissues, the influence of obesity on miR-143 in various tissues, the important role of adipose-derived miR-143 in the development of obesity, the role of miR-143 in immune cells and thermoregulation and discuss the potential significance and application prospects of miR-143 in obesity management.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liu J, Liu J, Zeng D, Wang H, Wang Y, Xiong J, Chen X, Luo J, Chen T, Xi Q, Jiang Q, Zhang Y. miR-143-null Is against Diet-Induced Obesity by Promoting BAT Thermogenesis and Inhibiting WAT Adipogenesis. Int J Mol Sci 2022; 23:13058. [PMID: 36361843 PMCID: PMC9658130 DOI: 10.3390/ijms232113058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive energy intake is the main cause of obesity, and stimulation of brown adipose tissue (BAT) thermogenesis has emerged as an attractive tool for anti-obesity. Although miR-143 has been reported to promote white adipocyte differentiation, its role in BAT remains unclear. In our study, we found that during HFD-induced obesity, the expression of miR-143 in BAT was significantly reduced, and the expression of miR-143 in WAT first increased and then decreased. Knockout (KO) of miR-143 with CRISPR/Cas9 did not affect the energy metabolism of normal diet fed mice and brown adipocyte differentiation but inhibited the differentiation of white adipocytes. Importantly, during high fat diet-induced obesity, miR-143KO significantly reduced body weight, and improved energy expenditure, insulin sensitivity, and glucose tolerance. Further exploration showed that miR-143KO reduced the weight of adipose tissue, promoted mitochondrial number and functions, induced thermogenesis and lipolysis of BAT, increased lipolysis, and inhibited lipogenesis of white adipose tissue (WAT). Our study considerably improves our collective understanding of the function of miR-143 in adipose tissue and its potential significance in anti-obesity and provides a new avenue for the management of obesity through the inhibition of miR-143 in BAT and WAT.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiatao Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewei Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Nazary-Vannani A, Ghaedi E, Mousavi SM, Teymouri A, Rahmani J, Varkaneh HK. The effect of L-carnitine supplementation on serum leptin concentrations: a systematic review and meta-analysis of randomized controlled trials. Endocrine 2018; 60:386-394. [PMID: 29453657 DOI: 10.1007/s12020-018-1559-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/02/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE The actual effects of L-carnitine administration on leptin serum level is inconsistent. In order to assess the efficacy of L-carnitine supplementation on serum leptin we conducted a meta-analysis of randomized controlled trials (RCTs). METHODS Seven studies with 325 cases and 330 controls were included. The pooled weighted mean difference (WMD) was calculated by random-effects model. The heterogeneity across studies was evaluated by using Cochrane's Q and I2 tests. In addition, we carried out the metaninf command to test the effect of each individual study on the overall result. RESULTS L-carnitine supplementation seemed to have no significant effect on serum leptin concentrations (WMD: -0.565 ng/mL; 95% CI: -2.417 to 1.287, p = 0.550). However, between-study heterogeneity was higher across all studies (I2 = 84.3%, p < 0.0001). Subgroup analysis to find the sources of heterogeneity showed that L-carnitine dosage (g) ( < 2 g: I2 = 00.0%, p = 0.408), and study population (diabetes: I2 = 46.7%, p = 0.153, and non-diabetes: I2 = 15.1%, p = 0.317) were the potential sources of heterogeneity. Besides, a more significant reduction in serum leptin concentration was observed with a daily dose of ≥ 2 mg L-carnitine (WMD: -2.742 ng/mL; 95% CI: -3.039 to -2.444, p < 0.001), in diabetic patients (WMD: -2.946 ng/mL; 95% CI: -3.254 to -2.638, p < 0.001), and with intervention duration <12 weeks (WMD: -2.772 ng/mL; 95% CI: -3.073 to -2.471, p < 0.001). CONCLUSION L-carnitine consumption does not reduce serum leptin significantly. However, a significant effect on leptin was observed in diabetic patients and patients who received doses more than 3 mg per day in the course of <12 weeks.
Collapse
Affiliation(s)
- Ali Nazary-Vannani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ghaedi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Teymouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Kord Varkaneh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|