1
|
Wu KY, Dave A, Nirwal GK, Giunta M, Nguyen VDH, Tran SD. Exosome Innovations in Ophthalmology and Sjögren's Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40360847 DOI: 10.1007/5584_2025_865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Exosomes, a subset of extracellular vesicles, have emerged as potential therapeutic agents in ophthalmology due to their ability to modulate immune responses, facilitate cellular communication, and promote tissue repair. This chapter explores the potential applications of exosome-based therapies in corneal and anterior segment disorders, retinal diseases, glaucoma, and Sjögren's syndrome. In corneal disorders, mesenchymal stem cell (MSC)-derived secretomes have shown promise in accelerating wound healing, reducing fibrosis, and modulating inflammation, with hydrogel encapsulation strategies potentially enhancing their efficacy. In retinal diseases, exosomes may provide neuroprotective effects in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa by modulating oxidative stress and inflammation. In glaucoma, secretome-based therapies could support retinal ganglion cell survival and optic nerve regeneration, though their impact on intraocular pressure via the trabecular meshwork remains uncertain. Additionally, exosomal biomarkers in aqueous humor are being investigated as potential diagnostic tools. In Sjögren's syndrome, exosomal biomarkers may facilitate earlier detection, while stem cell-derived exosomes hold promise in modulating immune responses and restoring glandular function. Despite encouraging preclinical and early clinical findings, standardization, scalability, and long-term safety must be addressed before clinical translation. Future research will focus on optimizing exosome-based therapies and exploring their feasibility for ophthalmic applications.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada.
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Wu D, Lin Y, Wu H, Cai J. Trauma-induced corneal epithelial defects may lead to persistent epithelial defects exacerbated by prolonged use of bandage lenses. Eur J Ophthalmol 2025:11206721251333590. [PMID: 40232255 DOI: 10.1177/11206721251333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
ObjectiveTo investigate the causes of corneal epithelial defects (CEDs) due to mechanical trauma and analyze the risk factors for progression to persistent epithelial defects (PEDs).MethodA retrospective analyze 241 patients (241 eyes) with CEDs caused by mechanical ocular trauma. All patients received initial treatment as outpatients at our hospital. Data collected included patients' basic information, injury causes, use of adjunctive treatments, improvement in symptoms and adverse reactions before and after treatment. Logistic regression analysis was used to explore the relationship between the causes of injury, the use of adjunctive treatments, and the occurrence of persistent corneal epithelial defects.ResultsThe study involved 241 patients: 164 males (68.1%) and 77 females (31.9%), averaging 38.06 ± 17.88 years old. The most common age groups were 31-40 years (24.1%), 41-50 years (19.9%), and 51-60 years (18.2%). The top five causes of injury were finger pokes (20.4%), impacts from plastic objects (14.6%), branch strikes (13.3%), paper cuts (8.8%), and metal scratches (8.3%). 164 patients used recombinant human growth factor (rhEGF) eye drops with an average healing time of 3.2 ± 1.3 days, while 77 did not use these drops, averaging 7.4 ± 2.2 days. Continuous use of bandage lenses was a risk factor for persistent epithelial defects (P < 0.001).ConclusionTreatment of CEDs caused by mechanical trauma should focus on managing ocular surface inflammation. The use of rhEGF eye drops can be an effective supplement treatment for CEDs. However, caution is needed regarding the use of bandage lenses.
Collapse
Affiliation(s)
- Donghai Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Jinhong Cai
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Yan C, Jin L, Zhang Q, Liu X, Yu T, Zhao F, Mu Y, Xu J, Zhang L. Management of delayed corneal epithelial healing after refractive surgery: five case reports. Front Med (Lausanne) 2025; 12:1517403. [PMID: 40103788 PMCID: PMC11913852 DOI: 10.3389/fmed.2025.1517403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Background Transepithelial photorefractive keratectomy using Smart Pulse Technology (SPT-TransPRK) is currently the leading method for superficial refractive surgery, offering advantages such as a non-contact procedure, shorter operation times, and excellent patient cooperation. Laser ablation of the corneal epithelium, Bowman's membrane, and the stroma can effectively correct refractive errors. Thus, the complete healing of the corneal epithelium post-surgery is essential for ensuring good vision. Refractive surgeons should enhance their understanding of corneal wound healing mechanisms and focus on the repair of the corneal epithelium following refractive surgery to ensure the quality of visual health of patients. Case presentation A total of five patients experienced varying degrees of delayed corneal epithelial healing following refractive surgery. In Case 1, unhealthy corneal epithelial debris was removed, and ophthalmic ointment was applied to cover the eyes instead of using bandage contact lenses (BCLs) to reconstruct the corneal epithelial barrier. This approach was also successfully implemented in Case 2. Furthermore, amniotic membrane transplantation (AMT) can quickly establish a corneal barrier and promote corneal epithelial regeneration, especially in cases of extensive corneal epithelial detachment. The remaining three patients were suspected of having corneal viral infections based on their medical history and the observation of corneal pathology using a slit lamp microscope. To prevent further infection and promote regeneration, topical steroid drops were discontinued early, and topical antiviral and corneal epithelial regeneration medications were administered alongside systemic antiviral therapy. Steroid drops were resumed after corneal epithelial healing to effectively prevent post-refractive haze. Conclusion Delays in corneal epithelial healing after refractive surgery should be taken seriously. BCLs, steroids, and both topical and systemic antiviral therapies should be properly utilized when there is a delay in corneal epithelial healing.
Collapse
Affiliation(s)
- Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
| | - Xiaoyu Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
| | - Taorui Yu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
| | - Jun Xu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, National Clinical Research Center for Eye Diseases, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Almeida J, Costa TR, Vivas M, Monteiro C, Vaz FT, Silva D, Vendrell C, Prieto I. Long-term Results of Topical Insulin Treatment for Persistent Corneal Epithelial Defects. J Ophthalmic Vis Res 2024; 19:397-404. [PMID: 39917454 PMCID: PMC11795001 DOI: 10.18502/jovr.v19i4.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2025] Open
Abstract
Purpose To evaluate the effects of topical insulin in patients with persistent corneal epithelial defects that are refractory to the standard treatment. Methods A retrospective, hospital-based, clinical study was performed on 17 eyes of 16 patients with different types of refractory persistent epithelial defects who were treated with topical insulin. The treatment was continued until the defect either was resolved or persisted after three months. Patients' demographic information, etiology, comorbidities, and clinical data were reviewed. The rate of epithelial healing was considered as the primary outcome measure. Results Neurotrophic keratitis was the most common cause of persistent epithelial defects (58.8%), and within this category, herpetic eye disease was the main comorbidity (44.4%). The mean follow-up time was 17.91 months. Eleven out of fifteen eyes (77.3%) had complete improvement and only one patient did not respond to the treatment. The mean time of reepithelization for the eyes with full recovery was 31.27 days (ranging from 6 to 61 days). The best-corrected visual acuity improved significantly after treatment (P < 0.005), and there were no reports of complications or side effects during the study period. Conclusion Our results suggest that topical insulin, due to its good safety profile, availability, and affordability, could be a good therapeutic alternative for persistent epithelial defects.
Collapse
Affiliation(s)
- Júlio Almeida
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Tomás R. Costa
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Maria Vivas
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Catarina Monteiro
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Fernando T. Vaz
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Diana Silva
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Cristina Vendrell
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| | - Isabel Prieto
- Ophthalmology Department, Prof. Doutor Fernando Fonseca Hospital, EPE, Amadora, Portugal
| |
Collapse
|
5
|
Krolo I, Behaegel J, Termote K, de Bruyn B, De Schepper M, Oellerich S, Ní Dhubhghaill S. The role of topical insulin in ocular surface restoration: A review. Surv Ophthalmol 2024; 69:805-817. [PMID: 38609022 DOI: 10.1016/j.survophthal.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Corneal epithelial defects are one of the most common ocular disorders. Restoring corneal integrity is crucial to reduce pain and regain function, but in cases of neurotrophic or desensitized corneas, healing can be significantly delayed. Treating neurotrophic corneas is challenging for ophthalmologists, and surgical intervention is often indicated to manage refractory cases that are unresponsive to medical therapy. Over the last decade, as more expensive therapeutics reach the market, topical insulin has returned to the forefront as an affordable option to improve corneal wound healing. There is still a paucity of data on the use and the efficacy of topical insulin, with no consensus regarding its indications, preparation, or posology. Here we review the literature on topical insulin for corneal and ocular surface pathologies, with a focus on the current evidence, its mechanisms of action, and its safety profile. Additionally, we share our experience in the field and provide a potential framework for future research.
Collapse
Affiliation(s)
- Iva Krolo
- Department of Ophthalmology, Universitair Ziekenhuis Brussel, Jette, Belgium; Department of Medicine and Pharmacology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Oftalmología Médica y Quirúrgica (OMIQ) Research, Barcelona, Spain.
| | - Joséphine Behaegel
- Department of Ophthalmology, Universitair Ziekenhuis Brussel, Jette, Belgium; Department of Medicine and Pharmacology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karolien Termote
- Department of Ophthalmology, Universitair Ziekenhuis Brussel, Jette, Belgium; Department of Medicine and Pharmacology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Ophthalmology, Imelda Hospital, Bonheiden, Belgium
| | - Barbara de Bruyn
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Department of Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Manon De Schepper
- Department of Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Silke Oellerich
- Department of Ophthalmology, Universitair Ziekenhuis Brussel, Jette, Belgium; Department of Medicine and Pharmacology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Universitair Ziekenhuis Brussel, Jette, Belgium; Department of Medicine and Pharmacology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Department of Medicine, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Lee S, Han J, Yang J, Lyu J, Park H, Bang J, Kim Y, Chang H, Park T. Exosomes from Human iPSC-Derived Retinal Organoids Enhance Corneal Epithelial Wound Healing. Int J Mol Sci 2024; 25:8925. [PMID: 39201611 PMCID: PMC11354741 DOI: 10.3390/ijms25168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the therapeutic effects of exosomes derived from human-induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) on corneal epithelial wound healing. Exosomes were isolated from the culture medium of the hiPSC-derived ROs (Exo-ROs) using ultracentrifugation, and then they were characterized by a nanoparticle tracking analysis and transmission electron microscopy. In a murine model of corneal epithelial wounds, these exosomes were topically applied to evaluate their healing efficacy. The results demonstrated that the exosome-treated eyes showed significantly enhanced wound closures compared with the controls at 24 h post-injury. The 5-ethyl-2'-deoxyuridine assay and quantitative reverse transcription polymerase chain reaction revealed a substantial increase in cell proliferation and a decrease in inflammatory marker contents in the exosome-treated group. The RNA sequencing and exosomal microRNA analysis revealed that the Exo-RO treatment targeted various pathways related to inflammation and cell proliferation, including the PI3K-Akt, TNF, MAPK, and IL-17 signaling pathways. Moreover, the upregulation of genes related to retinoic acid and eicosanoid metabolism may have enhanced corneal epithelial healing in the eyes treated with the Exo-ROs. These findings suggest that hiPSC-derived RO exosomes could be novel therapeutic agents for promoting corneal epithelial wound healing.
Collapse
Affiliation(s)
- Sihyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jungwoo Han
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jinyoung Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Jungmook Lyu
- Department of Medical Science, Myung-Gok Eye Research Institute, Konyang University, Daejeon 32992, Republic of Korea;
| | - Hyosong Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jihong Bang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| | - Yeji Kim
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Hunsoo Chang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Taekwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| |
Collapse
|
7
|
Reynolds M, Faron N, Hoekel J, Tychsen L. Refractive surgery to correct visual impairments in 267 children with autism spectrum and related neuro-developmental disorders: improvements in vision and behavior. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2024; 13:88-95. [PMID: 39206083 PMCID: PMC11347953 DOI: 10.51329/mehdiophthal1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Background Children with autism spectrum disorder (ASD) may have impaired vision owing to high refractive errors and aversion to spectacles or contact lenses. Visual blurring is caused by near-sighted myopia, far-sighted hyperopia, or astigmatism in one or both eyes. Refractive surgery can restore sharp vision and eliminate the need for spectacles and contact lenses. Restoration of sharp vision may improve ASD behavior. We aimed to determine the refractive outcomes in this cohort using ophthalmic measures and behavioral and school performance alterations after refractive surgery by employing parent-proxy reports. Methods This interventional, retrospective case series included data from 267 children with refractive errors and neurodevelopmental disorders (NDDs) diagnosed as ASD alone or NDD with ASD-like behaviors over a 15-year period. One of three refractive surgery methods was employed, with the choice of method uniquely tailored to the child's eye anatomy. Laser photorefractive keratectomy (PRK) was performed in 131 children, implantation of a phakic intraocular lens (pIOL) in 115 children, and removal of the crystalline lens and implantation of an intraocular lens (refractive lens exchange, RLE) in 21 children. All procedures were performed under brief general anesthesia, with the child returning home on the same day. Results The median age at surgery was 10.9 years and the median follow-up period was 3.1 years. Pre-operative refractive errors ranged from a mean (standard deviation) +7.5 (0.09) D to -14.3 (4.8) D. Surgery corrected 87% of the children to normal focal length (± 1 D). Visual acuity improved an average of 0.6 logarithm of the minimum angle of resolution, the equivalent of 6 lines on a standard eye chart. Change in visual acuity was significant (all P < 0.01) between baseline and the most recent follow-up examination in each of subgroups. Change in spherical equivalent refractive error at 3, 12, 24, 36, 60, and > 60 months post-operatively were significant (all P < 0.01) between baseline and each follow-up visit in each of subgroups. Social interactions and ASD behaviors improved in 72% (192) of the treated children (P < 0.01). The incidence of sight-threatening complications was low. Conclusions Refractive surgery improves both visual function and behavior in most children with ASD and major myopia, hyperopia, or astigmatism. The PRK, pIOL, and RLE procedures appear to be effective and reasonably safe methods for improving refractive error, visual acuity, and behavior in many ametropic children with ASD and ASD-like NDDs.
Collapse
Affiliation(s)
- Margaret Reynolds
- Washington University in St. Louis John F Hardesty MD Department of Ophthalmology and Visual Sciences, Missouri, USA
| | - Nicholas Faron
- Washington University in St. Louis John F Hardesty MD Department of Ophthalmology and Visual Sciences, Missouri, USA
| | - James Hoekel
- Washington University in St. Louis John F Hardesty MD Department of Ophthalmology and Visual Sciences, Missouri, USA
| | - Lawrence Tychsen
- Washington University in St. Louis John F Hardesty MD Department of Ophthalmology and Visual Sciences, Missouri, USA
- Washington University in St. Louis Department of Pediatrics, Missouri, USA
- Washington University in St. Louis Department of Neuroscience, Missouri, USA
| |
Collapse
|
8
|
Moin KA, Pandiri S, Manion GN, Brown AH, Moshirfar M, Hoopes PC. The Utilization of Topical Insulin for Ocular Surface Diseases: A Narrative Review. Cureus 2024; 16:e62065. [PMID: 38989397 PMCID: PMC11235153 DOI: 10.7759/cureus.62065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Various etiologies, including diabetic keratopathy (DK), dry eye disease (DED), and neurotrophic keratopathy (NK), can disrupt corneal homeostasis, exacerbating corneal epithelial defects. Topical insulin has emerged as a promising therapy for promoting corneal wound healing and addressing underlying pathologies. This review systematically evaluates the efficacy of topical insulin across different corneal disorders. A literature review was conducted across the PubMed, Google Scholar, and Scopus research databases. The search resulted in a total of 19 articles, consisting of clinical trials, retrospective studies, and case reports. In DK, topical insulin accelerates corneal wound healing post-vitreoretinal surgery with lower concentrations showing higher outcomes when compared to conventional therapy, possibly due to improved epithelial stem cell migration. In comparison, the dry-eye disease results are inconclusive regarding patient-reported outcomes and corneal staining. For NK, topical insulin accelerates corneal wound healing and restores corneal nerve sensation. Other persistent epithelial defect (PED) etiologies that have been treated with topical insulin are infection, immune-mediated, mechanical and chemical trauma, and chronic ocular surface alterations. Although individual mechanisms for the benefits of topical insulin for each of these etiologies have not been studied, the literature demonstrates that topical insulin is efficacious for PEDs regardless of etiology. Future clinical trials need to be conducted to further evaluate optimal dosing, duration, and use of topical insulin for the restoration of the corneal surface.
Collapse
Affiliation(s)
- Kayvon A Moin
- Hoopes Vision Research Center, Hoopes Vision, Draper, USA
| | - Srujay Pandiri
- Ophthalmology, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Garrett N Manion
- Ophthalmology, Creighton University School of Medicine, Omaha, USA
| | - Alex H Brown
- Ophthalmology, University of Arizona College of Medicine - Phoenix, Phoenix, USA
| | - Majid Moshirfar
- Eye Banking and Corneal Transplantation, Utah Lions Eye Bank, Murray, USA
- Corneal and Refractive Surgery, Hoopes Vision Research Center, Draper, USA
| | | |
Collapse
|
9
|
Villabona-Martinez V, Dutra BAL, Sampaio LP, Santhiago MR, Wilson SE. Corneal stromal localization of TGF beta isoforms in spontaneous persistent epithelial defects after PRK in rabbits. Exp Eye Res 2024; 239:109794. [PMID: 38237715 DOI: 10.1016/j.exer.2024.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The purpose of this study was to evaluate transforming growth factor beta (TGFβ) isoform localization in rabbit corneas with spontaneous persistent epithelial defects (PEDs) after photorefractive keratectomy (PRK). Four cryofixed corneas from a previously reported series of PEDs in rabbits that had PRK were evaluated with triplex immunohistochemistry (IHC) for TGFβ3, myofibroblast marker alpha-smooth muscle actin (α-SMA) and mesenchymal marker vimentin. One cornea had sufficient remaining tissue for triplex IHC for TGFβ1, TGFβ2, or TGFβ3 (each with α-SMA and vimentin) using isoform-specific antibodies. All three TGFβ isoforms were detected in the subepithelial stroma at and surrounding the PED. Some of each TGFβ isoform co-localized with α-SMA of myofibroblasts, which could be TGFβ isoform autocrine production by myofibroblasts or TGFβ-1, -2, and -3 binding to these myofibroblasts.
Collapse
Affiliation(s)
| | - Barbara A L Dutra
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | - Lycia P Sampaio
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
10
|
Wilson SE, Goshe JM. Prevention and Treatment of Persistent Epithelial Defects After Common Refractive Surgery Procedures. J Refract Surg 2024; 40:e117-e124. [PMID: 38346121 DOI: 10.3928/1081597x-20240102-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
PURPOSE To discuss the prevention and treatment of persistent epithelial defects after the most common refractive surgeries-photorefractive keratectomy, laser in situ keratomileusis, or small incision lenticule extraction. METHODS PubMed was used to search the medical literature. RESULTS Persistent epithelial defects are infrequent after photorefractive keratectomy, laser in situ keratomileusis, or small incision lenticule extraction. In the authors' opinion, any persistent epithelial defect present at 1 week or beyond after surgery should be treated aggressively with a properly fit bandage contact lens, lubrication with non-preserved artificial tears, and treatment of any eyelid abnormalities, including nocturnal lagophthalmos. Consideration should be given for presumptive treatment for herpes simplex virus or varicella zoster virus infection. If the persistent epithelial defect does not close within 2 weeks, then other measures should be considered, such as autologous serum drops, topical losartan, amniotic membranes, and topical human recombinant nerve growth factor to limit corneal scarring fibrosis and microbial infection. CONCLUSIONS Persistent epithelial defects are among the most feared complications of refractive surgery. Timely and aggressive treatment should be instituted to close the epithelium prior to the development of scarring fibrosis and/or microbial corneal infection. [J Refract Surg. 2024;40(2):e117-e124.].
Collapse
|
11
|
Esmail A, Ibrahim M, Nage S. Efficacy of topical insulin for recurrent epithelial corneal erosions. Ir J Med Sci 2023; 192:3117-3123. [PMID: 37140764 DOI: 10.1007/s11845-023-03373-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Topical insulin can promote and accelerate corneal regeneration, even in eyes with serious comorbidities, and offers several benefits over other treatment options. AIMS The aim of this study is to evaluate the effect of topical insulin in treatment of recurrent epithelial corneal erosion. METHODS Patients with recurrent epithelial erosions were included in a prospective non-randomized hospital-based study, divided into two groups, one of them received persistent epithelial defects (PEDs) conventional treatment and the other received the same treatment with insulin eye drops 4 times/day. All patients were examined carefully by slit lamp. Patients during the 1st, 2nd, 3rd, and 4th weeks as well as after 2 months. Demographics, etiology, therapy, comorbidities, and the healing time of PED were performed. RESULTS Area shows significant improvement after 2 weeks (p = 0.006), 2 months (p = 0.046), and 3 months (p = 0.002) in group II (cornetears gel and topical insulin) as compared to group I (cornetears gel). The recurrence was statistically significant decreased with cornetears gel and topical insulin (group II) by 0.0%, as compared to cornetears gel (group I) by 3 patients (21.4%). CONCLUSION Topical insulin can promote corneal reepithelization in recurrent epithelial erosion and decreases recurrence in these cases. Other advantages include excellent tolerance, availability, and cost-effectiveness.
Collapse
Affiliation(s)
- Ahmed Esmail
- Ophthalmology Department, Faculty of Medicine, Menoufia University, Menoufia, Shebin El Kom, Egypt.
| | - Mohamed Ibrahim
- Ophthalmology Department, Faculty of Medicine, Kafrelshiekh University Hospital, Kafrelshiekh, Egypt
| | - Sara Nage
- Ophthalmology Department, Faculty of Medicine, Menoufia University, Menoufia, Shebin El Kom, Egypt
| |
Collapse
|
12
|
Singh VK, Kethiri AR, Pingali T, Sahoo A, Salman M, Koduri MA, Prasad D, Bokara KK, Basu S, Singh V. Development and validation of a reliable rabbit model of limbal stem cell deficiency by mechanical debridement using an ophthalmic burr. Exp Eye Res 2023; 236:109667. [PMID: 37758156 DOI: 10.1016/j.exer.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
A simple and reproducible method is necessary to generate reliable animal models of limbal stem cell deficiency (LSCD) for assessing the safety and efficacy of new therapeutic modalities. This study aimed to develop and validate a rabbit model of LSCD through mechanical injury. The corneal and limbal epithelium of New Zealand White rabbits (n = 18) were mechanically debrided using an ophthalmic burr (Algerbrush II) with a 1.0-mm rotating head after 360° conjunctival peritomy. The debrided eyes were serially evaluated for changes in corneal opacity, neo-vascularization, epithelial defect and corneal thickness using clinical photography, slit lamp imaging, fluorescein staining, and anterior segment optical coherence tomography scanning (AS-OCT). Following this, an assessment of histopathology and phenotypic marker expression of the excised corneas was conducted. The experimental eyes were grouped as mild (n = 4), moderate (n = 10), and severe (n = 4) based on the grade of LSCD. The moderate group exhibited abnormal epithelium, cellular infiltration in the stroma, and vascularization in the central, peripheral, and limbal regions of the cornea. The severe group demonstrated central epithelial edema, peripheral epithelial thinning with sparse goblet cell population, extensive cellular infiltration in the stroma, and dense vascularization in the limbal region of the cornea. A significant decrease in the expression of K12 and p63 (p < 0.0001) was observed, indicating the loss of corneal epithelium and limbal epithelial stem cells in the LSCD cornea. This study demonstrates that the Alger brush-induced mechanical debridement model provides a reliable model of LSCD with comprehensive clinic-pathological features and that is well suited for evaluating novel therapeutic and regenerative approaches.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Tejaswini Pingali
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Abhishek Sahoo
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mohd Salman
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Madhuri Amulya Koduri
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Deeksha Prasad
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | | | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India; Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Tsai CH, Liu E, Phan A, Lu KL, Mei H. NBL1 Reduces Corneal Fibrosis and Scar Formation after Wounding. Biomolecules 2023; 13:1570. [PMID: 38002252 PMCID: PMC10669476 DOI: 10.3390/biom13111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/26/2023] Open
Abstract
Corneal scarring is a leading cause of blindness. Currently, there is no treatment to prevent and/or reduce corneal scar formation under pathological conditions. Our previous data showed that the NBL1 protein, also termed the DAN Family BMP (Bone morphogenetic protein) Antagonist, was highly expressed in corneal stromal cells upon wounding. Here, we examined the function of NBL1 in corneal wound healing. Mouse corneas were mechanically wounded, followed by a 2-week treatment using NBL1. Wounded corneas treated with vehicle or an Fc tag served as controls. Compared with the controls, NBL1 treatment facilitated wound re-epithelialization, partially restored the stromal thickness, and significantly reduced corneal scar formation. NBL1 treatment did not decrease immune cell infiltration, indicating that the anti-scarring effect was not dependent on immune suppression. We further examined the anti-fibrotic effect of NBL1 on human corneas. Pairs of human corneas were induced to form myofibroblasts (a key player in fibrosis and scarring) upon wounding and incubation in a medium containing TGF-β1. The OS corneas were treated with Fc as a control, and the OD corneas were treated with NBL1. Compared with the control, human corneas treated with NBL1 had significantly fewer myofibroblasts, which was consistent with these mouse data. A further study revealed that NBL1 treatment inhibited BMP canonical (phospho-Smad1/5) and no-canonical (phospho-p38) pathways in human corneas. Data show that NBL1 reduced corneal fibrosis and scar formation in mice and cultured human corneas. The underlying molecular mechanism is not certain because both anti-fibrotic Smad1/5 and pro-fibrotic p38 pathways were inhibited upon NBL1 treatment. Whether the p38 pathway dominates the Smad1/5 pathway during corneal fibrosis, leading to the anti-fibrotic effect of NBL1, needs further investigation.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Liu
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Phan
- Department of Psychology and Neuroscience, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Krystal Lynn Lu
- Department of Psychology and Neuroscience, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hua Mei
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Zhou AK, Jou E, Lu V, Zhang J, Chabra S, Abishek J, Wong E, Zeng X, Guo B. Using Pre-Clinical Studies to Explore the Potential Clinical Uses of Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem cells. Tissue Eng Regen Med 2023; 20:793-809. [PMID: 37651091 PMCID: PMC10519927 DOI: 10.1007/s13770-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.
Collapse
Affiliation(s)
- Andrew Kailin Zhou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- Watford General Hospital, London, UK
| | - Eric Jou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Victor Lu
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - James Zhang
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | | | | | - Xianwei Zeng
- Beijing Rehabilitation Hospital Affiliated to National Research Centre for Rehabilitation Technical Aids, Ministry of Civil Affairs of China, Beijing, China.
- Weifang People's Hospital, Weifang City, Shandong Province, China.
| | - Baoqiang Guo
- Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
15
|
Jadczyk-Sorek K, Garczorz W, Bubała-Stachowicz B, Francuz T, Mrukwa-Kominek E. Matrix Metalloproteinases and the Pathogenesis of Recurrent Corneal Erosions and Epithelial Basement Membrane Dystrophy. BIOLOGY 2023; 12:1263. [PMID: 37759662 PMCID: PMC10525265 DOI: 10.3390/biology12091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of proteolytic enzymes which are members of the zinc endopeptidase family. They have the ability to degrade extracellular matrix elements, allowing for the release of binding molecules and cell migration. Although metalloproteinases regulate numerous physiological processes within the cornea, overexpression of metalloproteinase genes and an imbalance between the levels of metalloproteinases and their inhibitors can contribute to the inhibition of repair processes, the development of inflammation and excessive cellular proliferation. The involvement of MMPs in the pathogenesis of dystrophic corneal diseases needs clarification. Our analyses focus on the involvement of individual metalloproteinases in the pathogenesis of recurrent corneal erosions and highlight their impact on the development of corneal epithelial basement membrane dystrophy (EBMD). We hypothesize that abnormalities observed in patients with EBMD may result from the accumulation and activation of metalloproteinases in the basal layers of the corneal epithelium, leading to basement membrane degradation. A barrier formed from degradation materials inhibits the normal migration of epithelial cells to the superficial layers, which contributes to the development of the aforementioned lesions. This hypothesis seems to be lent support by the elevated concentrations of metalloproteinases in the corneal epithelium of these patients found in our previous studies on the relationships between MMPs and recurrent corneal erosions.
Collapse
Affiliation(s)
- Katarzyna Jadczyk-Sorek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Beata Bubała-Stachowicz
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-027 Katowice, Poland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514 Katowice, Poland
| |
Collapse
|
16
|
Sampaio LP, Villabona-Martinez V, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan Decreases Myofibroblast Generation But Not Corneal Opacity After Surface Blast-Simulating Irregular PTK in Rabbits. Transl Vis Sci Technol 2023; 12:20. [PMID: 37750746 PMCID: PMC10541722 DOI: 10.1167/tvst.12.9.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose To evaluate the efficacy of topical losartan after blast injury-simulating irregular phototherapeutic keratectomy (PTK) in rabbits. Methods Twelve NZW rabbits underwent 100 pulse 6.5 mm diameter PTK over a metal screen to generate severe surface irregularity and inhibit epithelial basement membrane regeneration. Corneas were treated with 0.8 mg/mL losartan in balanced salt solution (BSS) or BSS 50 µL six times per day for six weeks after PTK. All corneas had slit lamp photography, with and without 1% fluorescein at two, four, and six weeks after PTK, and were analyzed using immunohistochemistry for the myofibroblast marker α-smooth muscle actin (α-SMA), keratocyte marker keratocan, mesenchymal cell marker vimentin, transforming growth factor (TGF)-β1, and collagen type IV. Results Topical 0.8 mg/mL losartan six times a day significantly decreased anterior stromal α-SMA intensity units compared to BSS at six weeks after anterior stromal irregularity-inducing screened PTK (P = 0.009). Central corneal opacity, however, was not significantly different between the two groups. Keratocan, vimentin, TGF-β1, or collagen type IV levels in the anterior stroma were not significantly different between the two groups. Conclusions Topical losartan effectively decreased myofibroblast generation after surface blast simulation irregular PTK. However, these results suggest initial masking-smoothing PTK, along with adjuvant topical losartan therapy, may be needed to decrease corneal stromal opacity after traumatic injuries that produce severe surface irregularity. Translational Relevance Topical losartan decreased scar-producing stromal myofibroblasts after irregular PTK over a metal screen but early smoothing of irregularity would also likely be needed to significantly decrease corneal opacity.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
17
|
Sampaio LP, Martinez VV, Shiju TM, Hilgert GSL, Santhiago MR, Wilson SE. Cell Biology of Spontaneous Persistent Epithelial Defects After Photorefractive Keratectomy in Rabbits. Transl Vis Sci Technol 2023; 12:15. [PMID: 37184499 PMCID: PMC10187792 DOI: 10.1167/tvst.12.5.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose To evaluate wound healing in rabbit corneas that developed a spontaneous persistent epithelial defect (PED) after photorefractive keratectomy (PRK). Methods Forty-eight 10- to 15-week-old female New Zealand White rabbits weighing 2.5 to 3.0 kg underwent either -3 diopter (D) or -9 D PRK to generate a series of corneas to study wound healing after injury. During that series, seven corneas developed a PED detected with 1% fluorescein staining at a slit lamp that either did not have epithelial closure by 1 week after surgery or subsequently had the closed epithelium break down to form a PED 2 to 3 weeks after surgery. The corneas had slit-lamp photography, with and without 1% fluorescein, and were removed from the normal PRK series. Each PED cornea was evaluated using immunohistochemistry for the myofibroblast marker α-smooth muscle actin (α-SMA), keratocyte marker keratocan, and mesenchymal cell marker vimentin, as well as basement membrane components perlecan and collagen type IV. Results All seven corneas that had PRK with a PED, even the two evaluated at only 1 week after PRK, had α-SMA-positive myofibroblasts populating the anterior stroma within the PED, along with comingled α-SMA-negative cells that were likely corneal fibroblasts and possibly bone marrow-derived fibrocytes. Both perlecan and collagen type IV accumulated in the anterior stroma of the epithelial defects without an epithelial basement membrane, likely produced by corneal fibroblasts to modulate transforming growth factor-β entering the stroma from the tears and peripheral epithelium. Conclusions Corneas with a PED that occurred following PRK (a procedure that produces a transient neurotropic state in the cornea) had myofibroblasts populating the superficial stroma within the epithelial defect as early as 1 week after the surgery. Translational Relevance Pharmacologic treatments that trigger myofibroblast apoptosis, including topical losartan, could facilitate decreased scarring fibrosis in corneas with a PED.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Wilson SE. Topical Losartan: Practical Guidance for Clinical Trials in the Prevention and Treatment of Corneal Scarring Fibrosis and Other Eye Diseases and Disorders. J Ocul Pharmacol Ther 2023; 39:191-206. [PMID: 36877777 PMCID: PMC10079252 DOI: 10.1089/jop.2022.0174] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 03/08/2023] Open
Abstract
Losartan is an angiotensin II receptor blocker (ARB) that impedes transforming growth factor (TGF) beta signaling by inhibiting activation of signal transduction molecule extracellular signal-regulated kinase (ERK). Studies supported the efficacy of topical losartan in decreasing scarring fibrosis after rabbit Descemetorhexis, alkali burn, and photorefractive keratectomy injuries, and in case reports of humans with scarring fibrosis after surgical complications. Clinical studies are needed to explore the efficacy and safety of topical losartan in the prevention and treatment of corneal scarring fibrosis, and other eye diseases and disorders where TGF beta has a role in pathophysiology. These include scarring fibrosis associated with corneal trauma, chemical burns, infections, surgical complications, and persistent epithelial defects, as well as conjunctival fibrotic diseases, such as ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Research is also needed to explore the efficacy and safety of topical losartan for hypothesized treatment of transforming growth factor beta-induced (TGFBI)-related corneal dystrophies (Reis-Bu¨cklers corneal dystrophy, lattice corneal dystrophy type 1, and granular corneal dystrophies type 1 and type 2) where deposited mutant protein expression is modulated by TGF beta. Investigations could also explore the efficacy and safety of topical losartan treatments to reduce conjunctival bleb scarring and shunt encapsulation following glaucoma surgical procedures. Losartan and sustained release drug delivery devices could be efficacious in treating intraocular fibrotic diseases. Dosing suggestions and precautions that should be considered in trials of losartan are detailed. Losartan, as an adjuvant to current treatments, has the potential to augment pharmacological therapeutics for many ocular diseases and disorders where TGF beta plays a central role in pathophysiology.
Collapse
Affiliation(s)
- Steven E. Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Dutta T, Sangwan J, Mondal M, Vohra M, Nidhi V, Gour A, Kapur N, Gupta N, Bhowmick T, Chandru A, Mathur U, Sangwan VS, Acharya M, Tiwari A. Prolonged Inflammation and Infectious Changes in the Corneal Epithelium Are Associated with Persistent Epithelial Defect (PED). Pathogens 2023; 12:pathogens12020261. [PMID: 36839533 PMCID: PMC9960897 DOI: 10.3390/pathogens12020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose: Failure of rapid re-epithelialization within 10-14 days after corneal injury, even with standard supportive treatment, is referred to as persistent corneal epithelial (CE) defect (PED). Though an array of genes regulates reepithelization, their mechanisms are poorly understood. We sought to understand the network of genes driving the re-epithelialization in PED. Method: After obtaining informed consent, patients underwent an ophthalmic examination. Epithelial scrapes and tears samples of six PED patients and six individuals (control) undergoing photorefractive keratectomy (PRK) were collected. RNA isolation and quantification were performed using either the epithelial scrape taken from PED patients or from HCLE cells treated with control tears or tears of PED patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of a few important genes in CE homeostasis, inflammation, and cell-cell communication, viz., Kruppel-like factor 4 (KLF4), GPX4, IL6, TNFα, STING, IL8, desmoglein, and E-cadherin, among others. Their expressions were normalized with their respective housekeeping genes and fold changes were recorded. KLF4 localization and MMPs activity was carried out via immunofluorescence and zymography, respectively. Results: KLF4, a transcription factor important for CE homeostasis, was upregulated in tears-treated HCLE cells and downregulated in PED patients compared to the healthy PRK group. Cell-cell communication genes were also upregulated in tears-treated cells, whereas they were downregulated in the PED tissue group. Genes involved in proinflammation (IL6, 282-fold; TNFα, 43-fold; IL8, 4.2-fold) were highly upregulated in both conditions. MMP9 activity increased upon tears treatment. Conclusions: This study suggests that tears create an acute proinflammatory milieu driving the PED disease pathology, whereas the PED patients scrapes are an indicator of the chronic stage of the disease. Interferons, pro-inflammatory genes, and their pathways are involved in PED, which can be a potential target for inducing epithelialization of the cornea.
Collapse
Affiliation(s)
- Tanmoy Dutta
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
- Institute of Medicine, Sahlgrenska Academy, Gothenburg University, 41345 Gothenburg, Sweden
| | - Jyoti Sangwan
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Moumita Mondal
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Mehak Vohra
- Pandorum Technologies Pvt. Ltd., Bangalore 560065, India
| | - Vatsala Nidhi
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Abha Gour
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Neha Kapur
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Nidhi Gupta
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Tuhin Bhowmick
- Pandorum Technologies Pvt. Ltd., Bangalore 560065, India
| | - Arun Chandru
- Pandorum Technologies Pvt. Ltd., Bangalore 560065, India
| | - Umang Mathur
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | | | - Manisha Acharya
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
| | - Anil Tiwari
- Dr Shroff’s Charity Eye Hospital, Cornea and Stem Cells Department, Delhi 110002, India
- Correspondence: or
| |
Collapse
|
20
|
Pal-Ghosh S, Karpinski BA, Datta Majumdar H, Ghosh T, Thomasian J, Brooks SR, Sawaya AP, Morasso MI, Scholand KK, de Paiva CS, Galletti JG, Stepp MA. Molecular mechanisms regulating wound repair: Evidence for paracrine signaling from corneal epithelial cells to fibroblasts and immune cells following transient epithelial cell treatment with Mitomycin C. Exp Eye Res 2023; 227:109353. [PMID: 36539051 PMCID: PMC10560517 DOI: 10.1016/j.exer.2022.109353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this paper, we use RNAseq to identify senescence and phagocytosis as key factors to understanding how mitomyin C (MMC) stimulates regenerative wound repair. We use conditioned media (CM) from untreated (CMC) and MMC treated (CMM) human and mouse corneal epithelial cells to show that corneal epithelial cells indirectly exposed to MMC secrete elevated levels of immunomodulatory proteins including IL-1α and TGFβ1 compared to cells exposed to CMC. These factors increase epithelial and macrophage phagocytosis and promote ECM turnover. IL-1α supplementation can increase phagocytosis in control epithelial cells and attenuate TGFβ1 induced αSMA expression by corneal fibroblasts. Yet, we show that epithelial cell CM contains factors besides IL-1α that regulate phagocytosis and αSMA expression by fibroblasts. Exposure to CMM also impacts the activation of bone marrow derived dendritic cells and their ability to present antigen. These in vitro studies show how a brief exposure to MMC induces corneal epithelial cells to release proteins and other factors that function in a paracrine way to enhance debris removal and enlist resident epithelial and immune cells as well as stromal fibroblasts to support regenerative and not fibrotic wound healing.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Beverly A Karpinski
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Trisha Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Julie Thomasian
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biosciences, Rice University, TX, 77030, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.
| |
Collapse
|
21
|
Wu Q, Yang C, Chen W, Chen K, Chen H, Liu F, Liu D, Lin H, Xie X, Chen W. Wireless-Powered Electrical Bandage Contact Lens for Facilitating Corneal Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202506. [PMID: 36073832 PMCID: PMC9631068 DOI: 10.1002/advs.202202506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Corneal injury can lead to severe vision impairment or even blindness. Although numerous methods are developed to accelerate corneal wound healing, most of them are passive treatments that rarely participate in controlling endogenous cell behaviors or are incompatible with nontransparent bandage. In this work, a wireless-powered electrical bandage contact lens (EBCL) is developed to generate a localized external electric field to accelerate corneal wound healing and vision recovery. The wireless electrical stimulation circuit employed a flower-shaped layout design that can be compactly integrated on bandage contact lens without blocking the vision. The role of the external electric field in promoting corneal wound healing is examined in vitro, where the responses of directional migration and corneal cells alignment to the electric field are observed. The RNA sequencing (RNA-seq) analysis indicates that the electrical stimulation can participate in controlling cell division, proliferation, and migration. Furthermore, the wireless EBCL is demonstrated to accelerate the completed recovery of corneal wounds on rabbits' eyes by electrical stimulation, while the control group exhibits delayed recovery and obvious corneal defects. As a new generation of intelligent device, the wireless and patient-friendly EBCL can provide a promising therapeutic strategy for ocular diseases.
Collapse
Affiliation(s)
- Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Wan Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Kexin Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Hui‐jiuan Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Dong Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xi Xie
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| |
Collapse
|
22
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
23
|
Sampaio LP, Hilgert GSL, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan and Corticosteroid Additively Inhibit Corneal Stromal Myofibroblast Generation and Scarring Fibrosis After Alkali Burn Injury. Transl Vis Sci Technol 2022; 11:9. [PMID: 35819289 PMCID: PMC9287619 DOI: 10.1167/tvst.11.7.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/19/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose To evaluate the efficacy of losartan and prednisolone acetate in inhibiting corneal scarring fibrosis after alkali burn injury in rabbits. Methods Sixteen New Zealand White rabbits were included. Alkali injuries were produced using 1N sodium hydroxide on a 5-mm diameter Whatman #1 filter paper for 1 minute. Four corneas in each group were treated six times per day for 1 month with 50 µL of (1) 0.8 mg/mL losartan in balanced salt solution (BSS), (2) 1% prednisolone acetate, (3) combined 0.8 mg/mL losartan and 1% prednisolone acetate, or (4) BSS. Area of opacity and total opacity were analyzed in standardized slit-lamp photos with ImageJ. Corneas in both groups were cryofixed in Optimal cutting temperature (OCT) compound at 1 month after surgery, and immunohistochemistry was performed for alpha-smooth muscle actin (α-SMA) and keratocan or transforming growth factor β1 and collagen type IV with ImageJ quantitation. Results Combined topical losartan and prednisolone acetate significantly decreased slit-lamp opacity area and intensity, as well as decreased stromal myofibroblast α-SMA area and intensity of staining per section and confined myofibroblasts to only the posterior stroma with repopulation of the anterior and mid-stroma with keratocan-positive keratocytes after 1 month of treatment. Corneal fibroblasts produced collagen type IV not associated with basement membranes, and this production was decreased by topical losartan. Conclusions Combined topical losartan and prednisolone acetate decreased myofibroblast-associated fibrosis after corneal alkali burns that produced full-thickness injury, including corneal endothelial damage. Increased dosages and duration of treatment may further decrease scarring fibrosis. Translational Relevance Topical losartan and prednisolone acetate decrease myofibroblast-mediated scarring fibrosis after corneal injury.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Extracellular Vesicles in Corneal Fibrosis/Scarring. Int J Mol Sci 2022; 23:ijms23115921. [PMID: 35682600 PMCID: PMC9180085 DOI: 10.3390/ijms23115921] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Communication between cells and the microenvironment is a complex, yet crucial, element in the development and progression of varied physiological and pathological processes. Accumulating evidence in different disease models highlights roles of extracellular vesicles (EVs), either in modulating cell signaling paracrine mechanism(s) or harnessing their therapeutic moiety. Of interest, the human cornea functions as a refractive and transparent barrier that protects the intraocular elements from the external environment. Corneal trauma at the ocular surface may lead to diminished corneal clarity and detrimental effects on visual acuity. The aberrant activation of corneal stromal cells, which leads to myofibroblast differentiation and a disorganized extracellular matrix is a central biological process that may result in corneal fibrosis/scarring. In recent years, understanding the pathological and therapeutic EV mechanism(s) of action in the context of corneal biology has been a topic of increasing interest. In this review, we describe the clinical relevance of corneal fibrosis/scarring and how corneal stromal cells contribute to wound repair and their generation of the stromal haze. Furthermore, we will delve into EV characterization, their subtypes, and the pathological and therapeutic roles they play in corneal scarring/fibrosis.
Collapse
|
25
|
Wilson SE. Defective perlecan-associated basement membrane regeneration and altered modulation of transforming growth factor beta in corneal fibrosis. Cell Mol Life Sci 2022; 79:144. [PMID: 35188596 PMCID: PMC8972081 DOI: 10.1007/s00018-022-04184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
In the cornea, the epithelial basement membrane (EBM) and corneal endothelial Descemet's basement membrane (DBM) critically regulate the localization, availability and, therefore, the functions of transforming growth factor (TGF)β1, TGFβ2, and platelet-derived growth factors (PDGF) that modulate myofibroblast development. Defective regeneration of the EBM, and notably diminished perlecan incorporation, occurs via several mechanisms and results in excessive and prolonged penetration of pro-fibrotic growth factors into the stroma. These growth factors drive mature myofibroblast development from both corneal fibroblasts and bone marrow-derived fibrocytes, and then the persistence of these myofibroblasts and the disordered collagens and other matrix materials they produce to generate stromal scarring fibrosis. Corneal stromal fibrosis often resolves completely if the inciting factor is removed and the BM regenerates. Similar defects in BM regeneration are likely associated with the development of fibrosis in other organs where perlecan has a critical role in the modulation of signaling by TGFβ1 and TGFβ2. Other BM components, such as collagen type IV and collagen type XIII, are also critical regulators of TGF beta (and other growth factors) in the cornea and other organs. After injury, BM components are dynamically secreted and assembled through the cooperation of neighboring cells-for example, the epithelial cells and keratocytes for the corneal EBM and corneal endothelial cells and keratocytes for the corneal DBM. One of the most critical functions of these reassembled BMs in all organs is to modulate the pro-fibrotic effects of TGFβs, PDGFs and other growth factors between tissues that comprise the organ.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
26
|
Wilson SE. Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs. Cells 2022; 11:309. [PMID: 35053425 PMCID: PMC8774201 DOI: 10.3390/cells11020309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Every organ develops fibrosis that compromises functions in response to infections, injuries, or diseases. The cornea is a relatively simple, avascular organ that offers an exceptional model to better understand the pathophysiology of the fibrosis response. Injury and defective regeneration of the epithelial basement membrane (EBM) or the endothelial Descemet's basement membrane (DBM) triggers the development of myofibroblasts from resident corneal fibroblasts and bone marrow-derived blood borne fibrocytes due to the increased entry of TGF beta-1/-2 into the stroma from the epithelium and tears or residual corneal endothelium and aqueous humor. The myofibroblasts, and disordered extracellular matrix these cells produce, persist until the source of injury is removed, the EBM and/or DBM are regenerated, or replaced surgically, resulting in decreased stromal TGF beta requisite for myofibroblast survival. A similar BM injury-related pathophysiology can underly the development of fibrosis in other organs such as skin and lung. The normal liver does not contain traditional BMs but develops sinusoidal endothelial BMs in many fibrotic diseases and models. However, normal hepatic stellate cells produce collagen type IV and perlecan that can modulate TGF beta localization and cognate receptor binding in the space of Dissé. BM-related fibrosis is deserving of more investigation in all organs.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
27
|
Jeng BH, Hamrah P, Kirshner ZZ, Mendez BC, Wessel HC, Brown LR, Steed DL. Exploratory Phase II Multicenter, Open-Label, Clinical Trial of ST266, a Novel Secretome for Treatment of Persistent Corneal Epithelial Defects. Transl Vis Sci Technol 2022; 11:8. [PMID: 34994777 PMCID: PMC8742509 DOI: 10.1167/tvst.11.1.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective An exploratory phase II, multicenter, open-label, clinical trial (NCT03687632) was conducted to evaluate the safety and effectiveness in treating persistent corneal epithelial defects (PEDs) with ST266, a proprietary novel multi-cytokine platform biologic solution secreted by cultured Amnion-derived Multipotent Progenitor (AMP) cells. Methods Subjects with a PED were treated with ST266 eye drops 4 times daily for 28 days, then followed for 1 week. Safety was assessed by monitoring of adverse events (AEs) and serious adverse events (SAEs). Efficacy was assessed by measuring the area of the PED by slit lamp biomicroscopy. Tolerability of ST266, percentage of eyes with complete healing, reduction in area of the epithelial defect, and maintenance of a reduction in the area of the epithelial defect 7 days after treatment were recorded. Results Thirteen patients were enrolled into the trial at one of eight sites. The first patient withdrew after 5 days. The remaining 12 patients with PEDs with median duration of 39 days (range = 12 to 393 days) completed treatment. Ten of the 12 eyes had been refractory to treatment with various conventional therapies prior to enrollment. After 28 days of treatment, there was a significant decrease in mean PED area compared with baseline (66.4% ± 35.3%, P = 0.001). At follow-up, 1 week after completion of treatment, on day 35, the PED area was further reduced by 78.8% ± 37.5% (P = 0.01) compared with baseline. During 28 days of treatment, 5 eyes (41.7%) had complete wound closure. There were no AEs of concern thought to be related to the drug, and no SAEs were noted. Conclusions In this trial, we found ST266 eye drops might promote corneal epithelization, thereby reducing the PED area, including in refractory cases in a wide range of etiologies. ST266 was well-tolerated by most patients.
Collapse
Affiliation(s)
- Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ziv Z Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | | | - Howard C Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Wan LQ, Zhang YY, Wang HF, Chen C, Li H, Zhang Y, Xue JF, Zhou QJ, Xie LX. Efficacy of rhNGF-loaded amniotic membrane transplantation for rabbit corneal epithelial and nerve regeneration. Int J Ophthalmol 2021; 14:1653-1659. [PMID: 34804853 DOI: 10.18240/ijo.2021.11.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
AIM To evaluate the efficacy of recombinant human nerve growth factor-loaded amniotic membrane (rhNGF-AM) on corneal epithelial and nerve regeneration in rabbit model. METHODS Freshly prepared human amniotic membrane (AM) were immersed into PBS buffer containing 100 or 500 µg/mL rhNGF for 15, 30, and 60min at 4°C. The in vitro release kinetics of rhNGF was measured with ELISA. For in vivo evaluation, the AM were immersed with 500 µg/mL rhNGF for 30min. Fifty-seven rabbits were selected to establish corneal epithelial defect model. In addition to the 19 rabbits in control group, 38 rabbits received AM transplantation with or without rhNGF after the removal of central epithelium. Corneal epithelial defect area, sub-epithelial nerve fiber density, corneal sensitivity, rhNGF contents in resident AM and corneas were measured after the surgery. RESULTS rhNGF was sustained release from the AM within 14d in vitro, with the positive correlation with initial immersion concentration. The immersion of AM in 500 µg/mL rhNGF for 30min achieved the most stable release within 14d. After transplantation in rabbit cornea, a high concentration of rhNGF in resident rhNGF-AM and cornea was maintained within 8d. Corneal epithelial healing, nerve fiber regeneration and the recovery of corneal sensitivity were significantly accelerated after the rhNGF-AM transplantation when compared to simple AM transplantation (all P<0.05). CONCLUSION Simple immersion of AM achieves the sustained release of rhNGF, and promotes corneal epithelial wound healing and nerve regeneration, as well as the recovery of corneal sensitivity in rabbit.
Collapse
Affiliation(s)
- Lu-Qin Wan
- Medical College of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yang-Yang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Hui-Feng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Hua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Yuan Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Jun-Fa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Qing-Jun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Li-Xin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| |
Collapse
|
29
|
Integration and remodelling of a collagen anterior lamellar keratoplasty graft in an animal model - A preliminary report. Exp Eye Res 2021; 209:108661. [PMID: 34102207 DOI: 10.1016/j.exer.2021.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
There is an international shortage of donor corneas for transplantation to treat the 1.5-2.0 million new cases of blindness secondary to corneal disease. Research has therefore been directed towards the development of artificial corneas using alternative materials such as collagen. The biocompatibility of an acellular collagen-based scaffold for anterior lamellar keratoplasty was investigated in vivo in a rabbit model. This scaffold has previously shown promise as a corneal substitute in vitro. Slit-lamp and Optical Coherence Tomography examinations were carried out at 2 weeks, 1, 2, 3, and 6 months post-operatively. Graft-host integration was investigated using immunohistochemistry of the cornea at 6 months. Results showed that the graft was biocompatible, supported corneal re-epithelialisation, and showed no signs of rejection. Migration of stromal cells into areas of the graft was observed, however this was accompanied by extensive graft digestion. Whilst the scaffold was biocompatible, further modifications to the material or supplementation with matrix metalloproteinase inhibitors are required to bring us closer to a stable and fully integrated corneal substitute.
Collapse
|
30
|
Wilson SE. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33825855 PMCID: PMC8039470 DOI: 10.1167/iovs.62.4.8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Interleukin (IL)-1α/IL-1β and transforming growth factor (TGF)β1/TGFβ2 have both been promoted as “master regulators” of the corneal wound healing response due to the large number of processes each regulates after injury or infection. The purpose of this review is to highlight the interactions between these systems in regulating corneal wound healing. Methods We conducted a systematic review of the literature. Results Both regulator pairs bind to receptors expressed on keratocytes, corneal fibroblasts, and myofibroblasts, as well as bone marrow-derived cells that include fibrocytes. IL-1α and IL-1β modulate healing functions, such as keratocyte apoptosis, chemokine production by corneal fibroblasts, hepatocyte growth factor (HGF), and keratinocyte growth factor (KGF) production by keratocytes and corneal fibroblasts, expression of metalloproteinases and collagenases by corneal fibroblasts, and myofibroblast apoptosis. TGFβ1 and TGFβ2 stimulate the development of myofibroblasts from keratocyte and fibrocyte progenitor cells, and adequate stromal levels are requisite for the persistence of myofibroblasts. Conversely, TGFβ3, although it functions via the same TGF beta I and II receptors, may, at least in some circumstances, play a more antifibrotic role—although it also upregulates the expression of many profibrotic genes. Conclusions The overall effects of these two growth factor-cytokine-receptor systems in controlling the corneal wound healing response must be coordinated during the wound healing response to injury or infection. The activities of both systems must be downregulated in coordinated fashion to terminate the response to injury and eliminate fibrosis. Translational Relevance A better standing of the IL-1 and TGFβ systems will likely lead to better approaches to control the excessive healing response to infections and injuries leading to scarring corneal fibrosis.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
31
|
Andreev AN, Svetozarskiy SN. [Anterior stromal micropuncture for the treatment of persistent corneal epithelial graft defects after penetrating keratoplasty]. Vestn Oftalmol 2021; 137:78-82. [PMID: 33610154 DOI: 10.17116/oftalma202113701178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Persistent corneal graft erosion or persistent epithelial corneal defect is a frequent complication of penetrating keratoplasty. Its development can be contributed by the dry eye syndrome, rare blinking, lagophthalmos, symblepharon, viral infection, autoimmune aggression, and the use of epithelial-toxic eye drops. The article presents three clinical observations of patients who developed persistent corneal graft erosion after penetrating keratoplasty. Due to the ineffectiveness of local conservative therapy for more than 3 weeks, anterior stromal corneal micropuncture was performed. After the procedure, there was a gradual epithelial proliferation, complete healing of the corneal surface was observed 10-16 days after the manipulation, the follow-up period was at least 1 year. The mechanism of action of stromal micropuncture is associated with the creation of a porous surface with better adhesion properties, as well as with the activation of the production of extracellular matrix glycoproteins such as fibronectin, type IV collagen and laminin, which are necessary for stable adhesion of the epithelium. The use of stromal micropuncture of the donor flap in the treatment of post-keratoplasty persistent corneal epithelial defect was proposed for the first time.
Collapse
Affiliation(s)
- A N Andreev
- Volga District Medical Centre, Nizhny Novgorod, Russia
| | | |
Collapse
|
32
|
Wang AYL. Human Induced Pluripotent Stem Cell-Derived Exosomes as a New Therapeutic Strategy for Various Diseases. Int J Mol Sci 2021; 22:1769. [PMID: 33578948 PMCID: PMC7916646 DOI: 10.3390/ijms22041769] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of studies have demonstrated that induced pluripotent stem cells (iPSCs) and iPSC-derived cells display therapeutic effects, mainly via the paracrine mechanism in addition to their transdifferentiation ability. Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth. This review aims to summarize the therapeutic effects of iPSC-derived exosomes on various disease models and their properties, such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, 5 Fu-hsing Street, Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|
33
|
Ruiz-Lozano RE, Hernandez-Camarena JC, Loya-Garcia D, Merayo-Lloves J, Rodriguez-Garcia A. The molecular basis of neurotrophic keratopathy: Diagnostic and therapeutic implications. A review. Ocul Surf 2021; 19:224-240. [DOI: 10.1016/j.jtos.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
|
34
|
Santhiago MR, Randleman JB. The biology of corneal cross-linking derived from ultraviolet light and riboflavin. Exp Eye Res 2021; 202:108355. [PMID: 33171194 DOI: 10.1016/j.exer.2020.108355] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/01/2022]
Abstract
Over the past 20 years, corneal crosslinking (CXL) has been used by surgeons to halt progression in eyes with keratoconus. We reviewed the literature regarding the mechanism of action of CXL, the role of each of its components the strong biologic reaction, and their effects on cell interaction, proteins involved, wound healing, and cytotoxic reaction. CXL surgery involves a photochemical response in which ultraviolet light at a given wavelength and riboflavin participate. The combination of irradiation with UVA light and riboflavin leads to an intense process of apoptosis of keratocytes in the anterior stroma. Differences in light irradiation, as well as the importance of riboflavin and its vehicle, were also detailed. The surgery creates additional chemical bonds between the amino terminals of the collagen side chains and the proteoglycans of the extracellular matrix. A photosensitization reaction catalyzed by riboflavin classically involves the production of singlet oxygen. Microstructure studies show changes in the size of the fibril and potentially in the interfibrillar space, that the most significant changes related to the stiffening effect of CXL occur in the anterior third of the cornea and that short irradiation times, especially below 5 min, may not have the same biological effect. Changes in the riboflavin vehicle, with the incorporation of Hydroxypropyl methylcellulose as a carrier, can lead to faster diffusion and a more intense photochemical reaction. These are findings that can impact the optimal adjustment of irradiation time according to the riboflavin (and its carrier) used. Many studies have suggested that CXL is safe and effective in the standard and accelerated protocols that have been used by surgeons. After the initial depletion of anterior keratocytes, keratocyte density seems to return to average 6-12 months after surgery when corneas are examined with the confocal microscope.
Collapse
Affiliation(s)
- Marcony R Santhiago
- University of São Paulo, São Paulo, SP, Brazil; University of Southern California, Los Angeles, CA, USA.
| | - J Bradley Randleman
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, USA; Cole Eye Institute, Cleveland Clinic, USA
| |
Collapse
|
35
|
de Oliveira RC, Tye G, Sampaio LP, Shiju TM, DeDreu J, Menko AS, Santhiago MR, Wilson SE. TGFβ1 and TGFβ2 proteins in corneas with and without stromal fibrosis: Delayed regeneration of apical epithelial growth factor barrier and the epithelial basement membrane in corneas with stromal fibrosis. Exp Eye Res 2021; 202:108325. [PMID: 33263285 PMCID: PMC7856119 DOI: 10.1016/j.exer.2020.108325] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate the expression and localization of transforming growth factor (TGF) β1 and TGFβ2 in rabbit corneas that healed with and without stromal fibrosis, and to further study defective perlecan incorporation in the epithelial basement membrane (EBM) in corneas with scarring fibrosis. A total of 120 female rabbits had no surgery, -4.5D PRK, or -9D PRK. Immunohistochemistry (IHC) was performed at time points from unwounded to eight weeks after surgery, with four corneas at each time point in each group. Multiplex IHC was performed for TGFβ1 or TGFβ2, with Image-J quantitation, and keratocan, vimentin, alpha-smooth muscle actin (SMA), perlecan, laminin-alpha 5, nidogen-1 or CD11b. Corneas at the four-week peak for myofibroblast and fibrosis development were evaluated using Imaris 3D analysis. Delayed regeneration of both an apical epithelial growth factor barrier and EBM barrier function, including defective EBM perlecan incorporation, was greater in high injury -9D PRK corneas compared to -4.5D PRK corneas without fibrosis. Defective apical epithelial growth factor barrier and EBM allowed epithelial and tear TGFβ1 and tear TGFβ2 to enter the corneal stroma to drive myofibroblast generation in the anterior stroma from vimentin-positive corneal fibroblasts, and likely fibrocytes. Vimentin-positive cells and unidentified vimentin-negative, CD11b-negative cells also produce TGFβ1 and/or TGFβ2 in the stroma in some corneas. TGFβ1 and TGFβ2 were at higher levels in the anterior stroma in the weeks preceding myofibroblast development in the -9D group. All -9D corneas (beginning two to three weeks after surgery), and four -4.5D PRK corneas developed significant SMA + myofibroblasts and stromal fibrosis. Both the apical epithelial growth factor barrier and/or EBM barrier functions tended to regenerate weeks earlier in -4.5D PRK corneas without fibrosis, compared to -4.5D or -9D PRK corneas with fibrosis. SMA-positive myofibroblasts were markedly reduced in most corneas by eight weeks after surgery. The apical epithelial growth factor barrier and EBM barrier limit TGFβ1 and TGFβ2 entry into the corneal stroma to modulate corneal fibroblast and myofibroblast development associated with scarring stromal fibrosis. Delayed regeneration of these barriers in corneas with more severe injuries promotes myofibroblast development, prolongs myofibroblast viability and triggers stromal scarring fibrosis.
Collapse
Affiliation(s)
| | - George Tye
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | | | - JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marcony R Santhiago
- Department of Ophthalmology, University of São Paulo, Sao Paulo, Brazil and, University of Southern California Roski Eye Institute, Los Angeles, CA, USA
| | - Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
36
|
Wilson SE, Sampaio LP, Shiju TM, Carlos de Oliveira R. Fibroblastic and bone marrow-derived cellularity in the corneal stroma. Exp Eye Res 2020; 202:108303. [PMID: 33068626 DOI: 10.1016/j.exer.2020.108303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
The unwounded, normal corneal stroma is a relatively simple, avascular tissue populated with quiescent keratocytes, along with corneal nerves and a few resident dendritic and monocyte/macrophage cells. In the past, the resting keratocytes were thought of as a homogenous cellular population, but recent work has shown local variations in vimentin and nestin expression, and responsiveness to transforming growth factor (TGF)-β1. Studies have also supported there being "stromal stem cells" in localized areas. After corneal wounding, depending on the site and severity of injury, profound changes in stromal cellularity occur. Anterior or posterior injuries to the epithelium or endothelium, respectively, trigger apoptosis of adjacent keratocytes. Many contiguous keratocytes transition to keratocan-negative corneal fibroblasts that are proliferative and produce limited amounts of disorganized extracellular matrix components. Simultaneously, large numbers of bone marrow-derived cells, including monocytes, neutrophils, fibrocytes and lymphocytes, invade the stroma from the limbal blood vessels. Ongoing adequate levels of TGFβ1, TGFβ2 and platelet-derived growth factor (PDGF) from epithelium, tears, endothelium and aqueous humor that penetrate defective or absent epithelial barrier function (EBF) and epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) drive corneal fibroblasts and fibrocytes to differentiate into alpha-smooth muscle actin (SMA)-positive myofibroblasts. If the EBF, EBM and/or DBM are repaired or replaced in a timely manner, typically measured in weeks, then corneal fibroblast and fibrocyte progeny, deprived of requisite levels of TGFβ1 and TGFβ2, undergo apoptosis or revert to their precursor cell-types. If the EBF, EBM and/or DBM are not repaired or replaced, stromal levels of TGFβ1 and TGFβ2 remain elevated, and mature myofibroblasts are generated from corneal fibroblasts and fibrocyte precursors that produce prodigious amounts of disordered extracellular matrix materials associated with scarring fibrosis. This fibrotic stromal matrix persists, at least until the EBF, EBM and/or DBM are regenerated or replaced, and keratocytes remove and reorganize the affected stromal matrix.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500, Euclid Ave, Cleveland, OH, United States.
| | - Lycia Pedral Sampaio
- Cole Eye Institute, I-32, Cleveland Clinic, 9500, Euclid Ave, Cleveland, OH, United States
| | - Thomas Michael Shiju
- Cole Eye Institute, I-32, Cleveland Clinic, 9500, Euclid Ave, Cleveland, OH, United States
| | | |
Collapse
|
37
|
Wang S, Hou Y, Li X, Song Z, Sun B, Li X, Zhang H. Comparison of exosomes derived from induced pluripotent stem cells and mesenchymal stem cells as therapeutic nanoparticles for treatment of corneal epithelial defects. Aging (Albany NY) 2020; 12:19546-19562. [PMID: 33049719 PMCID: PMC7732275 DOI: 10.18632/aging.103904] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cells and mesenchymal stem cells are pluripotent stem cells that represent promising therapies for treating various tissue injuries and wound healing. Exosomes are nanosized extracellular vesicles that have been identified as important mediators of therapeutic functions, which are performed via cell communication. In this study, we compared the efficacy of induced pluripotent stem cells-derived exosomes (iPSCs-Exos) and mesenchymal stem cells-derived exosomes (MSCs-Exos) in treating corneal epithelial defects. The characteristics of the two types of exosomes were not significantly different. Compared to MSCs-Exos, iPSCs-Exos had a better in vitro effect on the proliferation, migration, cell cycle promotion and apoptosis inhibition of human corneal epithelial cells. iPSCs/MSCs-Exos promoted cell regeneration by upregulating cyclin A and CDK2 to drive HCECs to enter the S phase from the G0/G1 phase. In vivo results from a corneal epithelial defect model showed that both iPSCs-Exos and MSCs-Exos accelerated corneal epithelium defect healing while the effects of iPSCs-Exos were much stronger than those of MSCs-Exos. This study demonstrated that iPSCs-Exos had a better therapeutic effect on corneal epithelial defect healing. Thus, a novel potential nanotherapeutic strategy for treating corneal epithelial defects and even more ocular surface disease could be undertaken by using iPSCs-Exos dissolved in eye drops.
Collapse
Affiliation(s)
- Shudan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China,National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang 050200, China
| | - Xuran Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhen Song
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Baoqi Sun
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261042, China
| | - Xinyue Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
38
|
Saikia P, Crabb JS, Dibbin LL, Juszczak MJ, Willard B, Jang GF, Shiju TM, Crabb JW, Wilson SE. Quantitative proteomic comparison of myofibroblasts derived from bone marrow and cornea. Sci Rep 2020; 10:16717. [PMID: 33028893 PMCID: PMC7541534 DOI: 10.1038/s41598-020-73686-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts are fibroblastic cells that function in wound healing, tissue repair and fibrosis, and arise from bone marrow (BM)-derived fibrocytes and a variety of local progenitor cells. In the cornea, myofibroblasts are derived primarily from stromal keratocytes and from BM-derived fibrocytes after epithelial-stromal and endothelial-stromal injuries. Quantitative proteomic comparison of mature alpha-smooth muscle actin (α-SMA)+ myofibroblasts (verified by immunocytochemistry for vimentin, α-SMA, desmin, and vinculin) generated from rabbit corneal fibroblasts treated with transforming growth factor (TGF) beta-1 or generated directly from cultured BM treated with TGF beta-1 was pursued for insights into possible functional differences. Paired cornea-derived and BM-derived α-SMA+ myofibroblast primary cultures were generated from four New Zealand white rabbits and confirmed to be myofibroblasts by immunocytochemistry. Paired cornea- and BM-derived myofibroblast specimens from each rabbit were analyzed by LC MS/MS iTRAQ technology using an Orbitrap Fusion Lumos Tribrid mass spectrometer, the Mascot search engine, the weighted average quantification method and the UniProt rabbit and human databases. From 2329 proteins quantified with ≥ 2 unique peptides from ≥ 3 rabbits, a total of 673 differentially expressed (DE) proteins were identified. Bioinformatic analysis of DE proteins with Ingenuity Pathway Analysis implicate progenitor-dependent functional differences in myofibroblasts that could impact tissue development. Our results suggest BM-derived myofibroblasts may be more prone to the formation of excessive cellular and extracellular material that are characteristic of fibrosis.
Collapse
Affiliation(s)
- Paramananda Saikia
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Jack S Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Luciana L Dibbin
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Madison J Juszczak
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | | | - Geeng-Fu Jang
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
- Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Thomas Michael Shiju
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - John W Crabb
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Lerner Research Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
39
|
Wilson SE. Corneal myofibroblasts and fibrosis. Exp Eye Res 2020; 201:108272. [PMID: 33010289 DOI: 10.1016/j.exer.2020.108272] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
Myofibroblasts are alpha-smooth muscle actin (SMA)+ cells that have a critical role in the corneal stromal response to infections, injuries, and surgeries, and which produce corneal scarring fibrosis when they develop in excess. These contractile and opaque cells-produce large amounts of disordered extracellular matrix (ECM)-and develop from keratocyte-derived corneal fibroblasts or bone marrow-derived fibrocytes, and possibly other cell types, in response to TGFβ1, TGFβ2 and PDGF from the epithelium, tears, endothelium, and other stromal cells. Recent proteomic analyses have revealed that the myofibroblasts that develop from different progenitors aren't interchangeable, but have major differences in protein expression and functions. Absence or defective regeneration of the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) results in development and persistence of myofibroblasts in the corneal stroma. The functions of myofibroblasts in the cornea include production of volume-additive ECM, tissue contraction, production of various growth factors, cytokines and chemokines that regulate stromal cells, including other myofibroblasts, production of collagenases and metalloproteinases involved in tissue remodeling, and the expression of toll-like receptors that likely have critical roles in the clearance of bacteria and viruses causing corneal infections.
Collapse
|
40
|
Diaz-Valle D, Burgos-Blasco B, Gegundez-Fernandez JA, Garcia-Caride S, Puebla-Garcia V, Peña-Urbina P, Benitez-Del-Castillo JM. Topical insulin for refractory persistent corneal epithelial defects. Eur J Ophthalmol 2020; 31:2280-2286. [PMID: 32951459 DOI: 10.1177/1120672120958307] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate insulin eye drops for persistent epithelial defects (PEDs) that are refractory to usual treatment in clinical practice and to analyze how it may improve epithelization. METHODS A prospective non-randomized hospital-based study was performed. Patients with PEDs that were refractory to conventional treatment were treated with insulin eye drops four times a day. Patients' demographics, PED etiology, concomitant treatments, and comorbidities were reviewed. The rate of PED closure and epithelial healing time were considered the primary outcome measures. RESULTS 21 patients were treated with insulin drops (12 females and 9 males; mean age 72.2 years). Mean PED area before treatment was 17.6 ± 16.5 mm2 (median 13.2; range 3.9-70.6). PED comorbidities included seven eyes with infectious keratitis (33%), five eyes with calcium keratopathy (24%), ocular surgery on three eyes (14%), three eyes with lagophthalmos (14%), two eyes with bullous keratopathy (10%), and one patient with herpetic eye disease (5%). The eyes of 17 patients (81%) with refractory PEDs had reepithelized and four patients (19%) had still presented an epithelial defect by the end of the study follow-up period, although it had decreased in size. In patients where PED closure was achieved, mean time until reepithelization was 34.8 ± 29.9 days (median 23; range 7-114). In the remaining patients, a mean area reduction of 91.5% was achieved for the PEDs. CONCLUSION Topical insulin can promote and accelerate corneal reepithelization of refractory PEDs. It also offers many other advantages, including excellent tolerance, availability, and cost-effectiveness.
Collapse
Affiliation(s)
- David Diaz-Valle
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Barbara Burgos-Blasco
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Jose A Gegundez-Fernandez
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | - Sara Garcia-Caride
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | | | - Pilar Peña-Urbina
- Opthalmology Department and Health Research Institute (IdISSC), Hospital Clinico San Carlos, Madrid, Spain
| | | |
Collapse
|
41
|
Medeiros CS, Santhiago MR. Corneal nerves anatomy, function, injury and regeneration. Exp Eye Res 2020; 200:108243. [PMID: 32926895 DOI: 10.1016/j.exer.2020.108243] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
The cornea is a highly innervated tissue, exhibiting a complex nerve architecture, distribution, and structural organization. Significant contributions over the years have allowed us to come to the current understanding about the corneal nerves. Mechanical or chemical trauma, infections, surgical wounds, ocular or systemic comorbidities, can induce corneal neuroplastic changes. Consequently, a cascade of events involving the corneal wound healing, trophic functions, neural circuits, and the lacrimal products may interfere in the corneal homeostasis. Nerve physiology drew the attention of investigators due to the popularization of modern laser refractive surgery and the perception of the destructive potential of the excimer laser to the corneal nerve population. Nerve fiber loss can lead to symptoms that may impact the patient's quality of life, and impair the best-corrected vision, leading to patient and physician dissatisfaction. Therefore, there is a need to better understand preoperative signs of corneal nerve dysfunction, the postoperative mechanisms of nerve degeneration and recovery, aiming to achieve the most efficient way of treating nerve disorders related to diseases and refractive surgery.
Collapse
Affiliation(s)
| | - Marcony R Santhiago
- University of São Paulo, São Paulo, SP, Brazil; University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Carlos de Oliveira R, Wilson SE. Biological effects of mitomycin C on late corneal haze stromal fibrosis following PRK. Exp Eye Res 2020; 200:108218. [PMID: 32905844 DOI: 10.1016/j.exer.2020.108218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
This review details the current understanding of the mechanism of action and corneal effects of mitomycin C (MMC) for prophylactic prevention of stromal fibrosis after photorefractive keratectomy (PRK), and includes discussion of available information on dosage and exposure time recommended for MMC during PRK. MMC is an alkylating agent, with DNA-crosslinking activity, that inhibits DNA replication and cellular proliferation. It acts as a pro-drug and requires reduction in the tissue to be converted to an active agent capable of DNA alkylation. Although MMC augments the early keratocyte apoptosis wave in the anterior corneal stroma, its most important effect responsible for inhibition of fibrosis in surface ablation procedures such as PRK is via the inhibition of mitosis of myofibroblast precursor cells during the first few weeks after PRK. MMC use is especially useful when treating eyes with higher levels of myopia (≥approximately 6 D), which have shown higher risk of developing fibrosis (also clinically termed late haze). Studies have supported the use of MMC at a concentration of 0.02%, rather than lower doses (such as 0.01% or 0.002%), for optimal reduction of fibrosis after PRK. Exposure times for 0.02% MMC longer than 40 s may be beneficial for moderate to high myopia (≥6D), but shorter exposures times appear to be equally effective for lower levels of myopia. Although MMC treatment may also be beneficial in preventing fibrosis after PRK treatments for hyperopia and astigmatism, more studies are needed. Thus, despite the clinical use of MMC after PRK for nearly twenty years-with limited evidence of harmful effects in the cornea-many decades of experience will be needed to exclude late long-term effects that could be noted after MMC treatment.
Collapse
Affiliation(s)
| | - Steven E Wilson
- The Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
43
|
Abstract
The corneal wound healing response is typically initiated by injuries to the epithelium and/or endothelium that may also involve the stroma. However, it can also be triggered by immune or infectious processes that enter the stroma via the limbal blood vessels. For mild injuries or infections, such as epithelial abrasions or mild controlled microbial infections, limited keratocyte apoptosis occurs and the epithelium or endothelium regenerates, the epithelial basement membrane (EBM) and/or Descemet's basement membrane (DBM) is repaired, and keratocyte- or fibrocyte-derived myofibroblast precursors either undergo apoptosis or revert to the parent cell types. For more severe injuries with extensive damage to EBM and/or DBM, delayed regeneration of the basement membranes leads to ongoing penetration of the pro-fibrotic cytokines transforming growth factor (TGF) β1, TGFβ2 and platelet-derived growth factor (PDGF) that drive the development of mature alpha-smooth muscle actin (SMA)+ myofibroblasts that secrete large amounts of disordered extracellular matrix (ECM) components to produce scarring stromal fibrosis. Fibrosis is dynamic with ongoing mitosis and development of SMA + myofibroblasts and continued autocrine-or paracrine interleukin (IL)-1-mediated apoptosis of myofibroblasts and their precursors. Eventual repair of the EBM and/or DBM can lead to at least partial resolution of scarring fibrosis.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, United States.
| |
Collapse
|
44
|
Wilson SE. Coordinated Modulation of Corneal Scarring by the Epithelial Basement Membrane and Descemet's Basement Membrane. J Refract Surg 2020; 35:506-516. [PMID: 31393989 DOI: 10.3928/1081597x-20190625-02] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE To provide an overview of the importance of the coordinated role of the epithelial basement membrane (EBM) and Descemet's basement membrane (DBM) in modulating scarring (fibrosis) in the cornea after injuries, infections, surgeries, and diseases of the cornea. METHODS Literature review. RESULTS Despite their molecular and ultrastructural differences, the EBM and DBM act in a coordinated fashion to modulate the entry of transforming growth factor beta (TGF-β) and other growth factors from the epithelium/tear film and aqueous humor, respectively, into the corneal stroma where persistent levels of these modulators trigger the development and persistence of myofibroblasts that produced disordered, opaque extracellular matrix not usually present in the corneal stroma. The development of these myofibroblasts and the extracellular matrix they produce is often detrimental to visual function of the cornea after penetrating keratoplasty, LASIK buttonhole flaps, persistent epithelial defects, microbial keratitis, Descemet stripping automated endothelial keratoplasty, or Descemet membrane endothelial keratoplasty, while being beneficial in other situations such as the scarred edge of LASIK flaps and donor-recipient interface in penetrating keratoplasty. Efforts to modulate the repair or replacement of the EBM and DBM, and thereby the development or disappearance of myofibroblasts, should be a major emphasis of treatments provided by refractive and corneal surgeries, infections, trauma, or diseases of the cornea. CONCLUSIONS The EBM and DBM are critical modulators of the localization of profibrotic growth factors, such as TGF-β, that modulate the development and persistence of myofibroblasts that produce corneal scars (stromal fibrosis). Therapeutic efforts to regenerate or repair EBM and/or DBM, and interfere with the development of myofibroblasts or facilitate their disappearance are often the key to clinical outcomes. [J Refract Surg. 2019;35(8):506-516.].
Collapse
|
45
|
|
46
|
Menko AS, Walker JL, Stepp MA. Fibrosis: Shared Lessons From the Lens and Cornea. Anat Rec (Hoboken) 2019; 303:1689-1702. [PMID: 30768772 PMCID: PMC6697240 DOI: 10.1002/ar.24088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Regenerative repair in response to wounding involves cell proliferation and migration. This is followed by the reestablishment of cell structure and organization and a dynamic process of remodeling and restoration of the injured cells' extracellular matrix microenvironment and the integration of the newly synthesized matrix into the surrounding tissue. Fibrosis in the lungs, liver, and heart can lead to loss of life and in the eye to loss of vision. Learning to control fibrosis and restore normal tissue function after injury repair remains a goal of research in this area. Here we use knowledge gained using the lens and the cornea to provide insight into how fibrosis develops and clues to how it can be controlled. The lens and cornea are less complex than other tissues that develop life‐threatening fibrosis, but they are well characterized and research using them as model systems to study fibrosis is leading toward an improved understanding of fibrosis. Here we summarize the current state of the literature and how it is leading to promising new treatments. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Janice L Walker
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University, Washington, District of Columbia
| |
Collapse
|
47
|
Medeiros CS, Marino GK, Lassance L, Thangavadivel S, Santhiago MR, Wilson SE. The Impact of Photorefractive Keratectomy and Mitomycin C on Corneal Nerves and Their Regeneration. J Refract Surg 2019; 34:790-798. [PMID: 30540361 DOI: 10.3928/1081597x-20181112-01] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/12/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine how photorefractive keratectomy (PRK) and mitomycin C (MMC) affect corneal nerves and their regeneration over time after surgery. METHODS Twenty-eight New Zealand rabbits had corneal epithelial scraping with (n = 3) and without (n = 3) MMC 0.02% or -9.00 diopter PRK with (n = 6) and without (n = 16) MMC 0.02%. Corneas were removed after death and corneal nerve morphology was evaluated using acetylcholinesterase immunohistochemistry and beta-III tubulin staining after 1 day for all groups, after 1 month for PRK with and without MMC, and 2, 3, and 6 months after PRK without MMC. Image-Pro software (Media Cybernetics, Rockville, MD) was used to quantitate the area of nerve loss after the procedures and, consequently, regeneration of the nerves over time. Opposite eyes were used as controls. RESULTS Epithelial scraping with MMC treatment did not show a statistically significant difference in nerve loss compared to epithelial scraping without MMC (P = .40). PRK with MMC was significantly different from PRK without MMC at 1 day after surgery (P = .0009) but not different at 1 month after surgery (P = .90). In the PRK without MMC group, nerves regenerated at 2 months (P < .0001) but did not return to the normal preoperative level of innervation until 3 months after surgery (P = .05). However, the morphology of the regenerating nerves was abnormal-with more tortuosity and aberrant innervation compared to the preoperative controls-even at 6 months after surgery. CONCLUSIONS PRK negatively impacts the corneal nerves, but they are partially regenerated by 3 months after surgery in rabbits. Nerve loss after PRK extended peripherally to the excimer laser ablated zone, indicating that there was retrograde degeneration of nerves after PRK. MMC had a small additive toxic effect on the corneal nerves when combined with PRK that was only significant prior to 1 month after surgery. [J Refract Surg. 2018;34(12):790-798.].
Collapse
|
48
|
Vaidyanathan U, Hopping GC, Liu HY, Somani AN, Ronquillo YC, Hoopes PC, Moshirfar M. Persistent Corneal Epithelial Defects: A Review Article. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2019; 8:163-176. [PMID: 31598519 PMCID: PMC6778469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent corneal epithelial defects (PEDs or PCEDs) result from the failure of rapid re-epithelialization and closure within 10-14 days after a corneal injury, even with standard supportive treatment. Disruptions in the protective epithelial and stromal layers of the cornea can render the eye susceptible to infection, stromal ulceration, perforation, scarring, and significant vision loss. Although several therapies exist and an increasing number of novel approaches are emerging, treatment of PEDs can still be quite challenging. It is important to treat the underlying causative condition, which may include an infection, limbal stem cell deficiency, or diabetes, in order to facilitate wound healing. Standard treatments, such as bandage contact lenses (BCLs) and artificial tears (ATs), aim to provide barrier protection to the epithelial layer. Recently-developed medical treatments can target the re-epithelialization process by facilitating access to growth factors and anti-inflammatory agents, and novel surgical techniques can provide re-innervation to the cornea. PEDs should be treated within 7-10 days to avoid secondary complications. These interventions, along with a step-wise approach to management, can be useful in patients with PEDs that are refractory to standard medical treatment. In this review, we discuss the epidemiology, etiology, diagnosis, current and novel management, and prognosis of persistent epithelial defects.
Collapse
Affiliation(s)
- Uma Vaidyanathan
- McGovern Medical School, Health Science Center, University of Texas, Houston, TX, USA
| | - Grant C. Hopping
- McGovern Medical School, Health Science Center, University of Texas, Houston, TX, USA
| | - Harry Y. Liu
- McGovern Medical School, Health Science Center, University of Texas, Houston, TX, USA
| | - Anisha N. Somani
- McGovern Medical School, Health Science Center, University of Texas, Houston, TX, USA
| | | | - Phillip C. Hoopes
- Hoopes Durrie Rivera Research Center, Hoopes Vision, Draper, UT, USA
| | - Majid Moshirfar
- Hoopes Durrie Rivera Research Center, Hoopes Vision, Draper, UT, USA, John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah Salt Lake City, UT, USA, Utah Lions Eye Bank, Murray, UT, USA
| |
Collapse
|