1
|
Margolis ET, Gabard‐Durnam LJ. Prenatal influences on postnatal neuroplasticity: Integrating DOHaD and sensitive/critical period frameworks to understand biological embedding in early development. INFANCY 2025; 30:e12588. [PMID: 38449347 PMCID: PMC11647198 DOI: 10.1111/infa.12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Early environments can have significant and lasting effects on brain, body, and behavior across the lifecourse. Here, we address current research efforts to understand how experiences impact neurodevelopment with a new perspective integrating two well-known conceptual frameworks - the Developmental Origins of Health and Disease (DOHaD) and sensitive/critical period frameworks. Specifically, we consider how prenatal experiences characterized in the DOHaD model impact two key neurobiological mechanisms of sensitive/critical periods for adapting to and learning from the postnatal environment. We draw from both animal and human research to summarize the current state of knowledge on how particular prenatal substance exposures (psychoactive substances and heavy metals) and nutritional profiles (protein-energy malnutrition and iron deficiency) each differentially impact brain circuits' excitation/GABAergic inhibition balance and myelination. Finally, we highlight new research directions that emerge from this integrated framework, including testing how prenatal environments alter sensitive/critical period timing and learning and identifying potential promotional/buffering prenatal exposures to impact postnatal sensitive/critical periods. We hope this integrative framework considering prenatal influences on postnatal neuroplasticity will stimulate new research to understand how early environments have lasting consequences on our brains, behavior, and health.
Collapse
Affiliation(s)
- Emma T. Margolis
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
| | | |
Collapse
|
2
|
Zhou ZR, Guo Y. Growth Status of Full-Term Infants with Different Sizes for Gestational Age During the First Year of Life. Pediatric Health Med Ther 2024; 15:265-272. [PMID: 39135906 PMCID: PMC11318594 DOI: 10.2147/phmt.s468778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Objective This study aimed to assess the growth of full-term infants with different sizes at birth and examine catch-up and catch-down growth in their first year. Methods This retrospective population-based cohort study was based on the Guangdong Provincial Women and Children Health Information System. 194797 full-term singleton live births were extracted. Measurements for weight and length were taken at birth, 6 months, and 12 months. The size-for-gestational age was categorized as small (SGA, <10th centile), appropriate (AGA, 10th-90th centiles), or large (LGA, >90th centile) based on the international newborn size for gestational age and sex INTERGROWTH-21st standards. Catch-up and catch- down growth were defined as a change in standard deviation in z-score greater than 0.67 in the growth curves. Results Of the 194797 full-term singletons, the average gestational age was 39.28 ± 1.03 weeks, and the average weight of the newborns was 3205 ± 383 grams. 15632 infants were identified as SGA (8.0%) and 12756 were LGA (6.5%). At 1 year of age, catch-up growth in weight was observed in 63.0% of SGA infants, 29.5% of AGA infants, and 5.4% of LGA infants. Conversely, catch-down growth occurred in 3.3% of SGA infants, 17.8% of AGA infants, and 54.7% of LGA infants. The proportions of catch-up growth in length for SGA, AGA, and LGA infants within the first year were 31.4%, 22.5%, and 17.1%, respectively. Catch-up or catch-down growth predominantly occurred before 6 months of age. However, from 6 to 12 months, there was no significant variation in WAZ among children with different birth sizes. Conclusion In their first year of life, full-term singleton live births tend towards regression to the mean in their postnatal weight and length. The average delay in the growth of LGA is compensated by an increase in it of the SGA. Early monitoring and intervention are crucial for optimizing growth in infants with different birth sizes.
Collapse
Affiliation(s)
- Zhuo-Ren Zhou
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou, 511400, People’s Republic of China
| | - Yong Guo
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou, 511400, People’s Republic of China
| |
Collapse
|
3
|
Tain YL, Hsu CN. Amino Acids during Pregnancy and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:1263. [PMID: 38732510 PMCID: PMC11085482 DOI: 10.3390/nu16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Lefeuvre M, Lu C, Botero CA, Rutkowska J. Variable ambient temperature promotes song learning and production in zebra finches. Behav Ecol 2023; 34:408-417. [PMID: 37192924 PMCID: PMC10183203 DOI: 10.1093/beheco/arad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Current climate change is leading to increasingly unpredictable environmental conditions and is imposing new challenges to wildlife. For example, ambient conditions fluctuating during critical developmental periods could potentially impair the development of cognitive systems and may therefore have a long-term influence on an individual's life. We studied the impact of temperature variability on zebra finch cognition, focusing on song learning and song quality (N = 76 males). We used a 2 × 2 factorial experiment with two temperature conditions (stable and variable). Half of the juveniles were cross-fostered at hatching to create a mismatch between pre- and posthatching conditions, the latter matching this species' critical period for song learning. We found that temperature variability did not affect repertoire size, syllable consistency, or the proportion of syllables copied from a tutor. However, birds that experienced variable temperatures in their posthatching environment were more likely to sing during recordings. In addition, birds that experienced variable prenatal conditions had higher learning accuracy than birds in stable prenatal environments. These findings are the first documented evidence that variable ambient temperatures can influence song learning in zebra finches. Moreover, they indicate that temperature variability can act as a form of environmental enrichment with net positive effects on cognition.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - ChuChu Lu
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - Carlos A Botero
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
5
|
Sosa-Larios TC, Ortega-Márquez AL, Rodríguez-Aguilera JR, Vázquez-Martínez ER, Domínguez-López A, Morimoto S. A low-protein maternal diet during gestation affects the expression of key pancreatic β-cell genes and the methylation status of the regulatory region of the MafA gene in the offspring of Wistar rats. Front Vet Sci 2023; 10:1138564. [PMID: 36992977 PMCID: PMC10040775 DOI: 10.3389/fvets.2023.1138564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Maternal nutrition during gestation has important effects on gene expression-mediated metabolic programming in offspring. To evaluate the effect of a protein-restricted maternal diet during gestation, pancreatic islets from male progeny of Wistar rats were studied at postnatal days (PND) 36 (juveniles) and 90 (young adults). The expression of key genes involved in β-cell function and the DNA methylation pattern of the regulatory regions of two such genes, Pdx1 (pancreatic and duodenal homeobox 1) and MafA (musculoaponeurotic fibrosarcoma oncogene family, protein A), were investigated. Gene expression analysis in the pancreatic islets of restricted offspring showed significant differences compared with the control group at PND 36 (P < 0.05). The insulin 1 and 2 (Ins1 and Ins2), Glut2 (glucose transporter 2), Pdx1, MafA, and Atf2 (activating transcription factor 2), genes were upregulated, while glucokinase (Gck) and NeuroD1 (neuronal differentiation 1) were downregulated. Additionally, we studied whether the gene expression differences in Pdx1 and MafA between control and restricted offspring were associated with differential DNA methylation status in their regulatory regions. A decrease in the DNA methylation levels was found in the 5' flanking region between nucleotides −8118 to −7750 of the MafA regulatory region in restricted offspring compared with control pancreatic islets. In conclusion, low protein availability during gestation causes the upregulation of MafA gene expression in pancreatic β-cells in the male juvenile offspring at least in part through DNA hypomethylation. This process may contribute to developmental dysregulation of β-cell function and influence the long-term health of the offspring.
Collapse
Affiliation(s)
- Tonantzin C. Sosa-Larios
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Ana L. Ortega-Márquez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Jesús R. Rodríguez-Aguilera
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar R. Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aaron Domínguez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sumiko Morimoto
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- *Correspondence: Sumiko Morimoto
| |
Collapse
|
6
|
Huang YH, Tain YL, Hsu CN. Maternal Supplementation of Probiotics, Prebiotics or Postbiotics to Prevent Offspring Metabolic Syndrome: The Gap between Preclinical Results and Clinical Translation. Int J Mol Sci 2022; 23:10173. [PMID: 36077575 PMCID: PMC9456151 DOI: 10.3390/ijms231710173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate in early life. This concept is now being termed the developmental origins of health and disease (DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through early intervention (i.e., reprogramming). In this review, we summarize the existing literature that supports how environmental cues induced MetS of developmental origins and the interplay between gut microbiota and other fundamental underlying mechanisms. We also present an overview of experimental animal models addressing implementation of gut microbiota-targeted reprogramming interventions to avert the programming of MetS. Even with growing evidence from animal studies supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of developmental origins, their effects on pregnant women are still unknown and these results require further clinical translation.
Collapse
Affiliation(s)
- Ying-Hua Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Chronic Effects of Maternal Low-Protein and Low-Quality Protein Diets on Body Composition, Glucose-Homeostasis and Metabolic Factors, Followed by Reversible Changes upon Rehabilitation in Adult Rat Offspring. Nutrients 2021; 13:nu13114129. [PMID: 34836384 PMCID: PMC8624605 DOI: 10.3390/nu13114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Several studies suggest that the maternal protein content and source can affect the offspring's health. However, the chronic impact of maternal quality and quantity protein restriction, and reversible changes upon rehabilitation, if any, in the offspring, remains elusive. This study examined the effects of maternal low-quality protein (LQP) and low-protein (LP) intake from preconception to post-weaning, followed by rehabilitation from weaning, on body composition, glucose-homeostasis, and metabolic factors in rat offspring. Wistar rats were exposed to normal protein (NP; 20% casein), LQP (20% wheat gluten) or LP (8% casein) isocaloric diets for 7 weeks before pregnancy until lactation. After weaning, the offspring were exposed to five diets: NP, LQP, LQPR (LQP rehabilitated with NP), LP, and LPR (LP rehabilitated with NP) for 16 weeks. Body composition, glucose-homeostasis, lipids, and plasma hormones were investigated. The LQP and LP offspring had lower bodyweight, fat and lean mass, insulin and HOMA-IR than the NP. The LQP offspring had higher cholesterol, T3 and T4, and lower triacylglycerides and glucose, while these were unaltered in LP compared to NP. The majority of the above outcomes were reversed upon rehabilitation. These results suggest that the chronic exposure of rats to maternal LQP and LP diets induced differential adverse effects by influencing body composition and metabolism, which were reversed upon rehabilitation.
Collapse
|
8
|
Berryhill GE, Gloviczki JM, Trott JF, Kraft J, Lock AL, Hovey RC. In Utero Exposure to trans-10, cis-12 Conjugated Linoleic Acid Modifies Postnatal Development of the Mammary Gland and its Hormone Responsiveness. J Mammary Gland Biol Neoplasia 2021; 26:263-276. [PMID: 34617201 PMCID: PMC8566432 DOI: 10.1007/s10911-021-09499-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
We previously showed that dietary trans-10, cis-12 conjugated linoleic acid (10,12 CLA) stimulates estrogen-independent mammary growth in young ovariectomized mice. Here we investigated the effects of in utero or postnatal exposure to cis-9, trans-11 (9,11 CLA) and 10,12 CLA on postnatal development of the mammary gland and its responsiveness to ovarian steroids. In the first experiment we fed dams different CLA prior to and during gestation, then cross fostered female pups onto control fed dams prior to assessing the histomorphology of their mammary glands. Pregnant dams in the second experiment were similarly exposed to CLA, after which their female pups were ovariectomized then treated with 17β-estradiol (E), progesterone (P) or E + P for 5 days. In a third experiment, mature female mice were fed different CLA for 28 days prior to ovariectomy, then treated with E, P or E + P. Our data indicate that 10,12 CLA modifies the responsiveness of the mammary glands to E or E + P when exposure occurs either in utero, or postnatally. These findings underline the sensitivity of the mammary glands to dietary fatty acids and reinforce the potential for maternal nutrition to impact postnatal development of the mammary glands and their risk for developing cancer.
Collapse
Affiliation(s)
- Grace E Berryhill
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Julia M Gloviczki
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405-0148, USA
| | - Adam L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824-1225, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis , 2145 Meyer Hall, Davis, CA, 95616-8521, USA.
| |
Collapse
|
9
|
Romanowicz J, Guerrelli D, Dhari Z, Mulvany C, Reilly M, Swift L, Vasandani N, Ramadan M, Leatherbury L, Ishibashi N, Posnack NG. Chronic perinatal hypoxia delays cardiac maturation in a mouse model for cyanotic congenital heart disease. Am J Physiol Heart Circ Physiol 2021; 320:H1873-H1886. [PMID: 33739154 DOI: 10.1152/ajpheart.00870.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development. Pregnant mice were housed in hypoxia beginning at embryonic day 16. Pups stayed in hypoxia until postnatal day (P)8 when cardiac development is nearly complete. Global gene expression was quantified at P8 and at P30, after recovering in normoxia. Phenotypic testing included electrocardiogram, echocardiogram, and ex vivo electrophysiology study. Hypoxic P8 animals were 47% smaller than controls with preserved heart size. Gene expression was grossly altered by hypoxia at P8 (1,427 genes affected), but normalized after recovery (P30). Electrocardiograms revealed bradycardia and slowed conduction velocity in hypoxic animals at P8, with noticeable resolution after recovery (P30). Notable differences that persisted after recovery (P30) included a 65% prolongation in ventricular effective refractory period, sinus node dysfunction, 23% reduction in ejection fraction, and 16% reduction in fractional shortening in animals exposed to hypoxia. We investigated the impact of chronic hypoxia on the developing heart. Perinatal hypoxia was associated with changes in gene expression and cardiac function. Persistent changes to the electrophysiological substrate and contractile function warrant further investigation and may contribute to adverse outcomes observed in the cyanotic CHD population.NEW & NOTEWORTHY We utilized a new mouse model of chronic perinatal hypoxia to simulate the hypoxic myocardial conditions present in cyanotic congenital heart disease. Hypoxia caused numerous abnormalities in cardiomyocyte gene expression, the electrophysiologic substrate of the heart, and contractile function. Taken together, alterations observed in the neonatal period suggest delayed cardiac development immediately following hypoxia.
Collapse
Affiliation(s)
- Jennifer Romanowicz
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia
| | - Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Zaenab Dhari
- Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia
| | - Colm Mulvany
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Luther Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Nimisha Vasandani
- Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia
| | - Manelle Ramadan
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia
| | - Linda Leatherbury
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia
| | - Nobuyuki Ishibashi
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Center for Neuroscience Research, Children's National Research Institute, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
10
|
Beckers KF, Gomes VCL, Crissman KJR, Adams DM, Liu CC, Del Piero F, Butler SD, Sones JL. Cardiometabolic Phenotypic Differences in Male Offspring Born to Obese Preeclamptic-Like BPH/5 Mice. Front Pediatr 2021; 9:636143. [PMID: 34631607 PMCID: PMC8493471 DOI: 10.3389/fped.2021.636143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/13/2021] [Indexed: 01/21/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy occurring in approximately 10% of women worldwide. While it is life threatening to both the mother and baby, the only effective treatment is delivery of the placenta and fetus, which is often preterm. Maternal obesity is a risk factor for PE, and the effects of both on offspring are long standing with increased incidence of cardiometabolic disease in adulthood. Obese BPH/5 mice spontaneously exhibit excessive gestational weight gain and late-gestational hypertension, similar to women with PE, along with fetal growth restriction and accelerated compensatory growth in female offspring. We hypothesized that BPH/5 male offspring will demonstrate cardiovascular and metabolic phenotypes similar to BPH/5 females. As previously described, BPH/5 females born to ad libitum-fed dams are overweight with hyperphagia and increased subcutaneous, peri-renal, and peri-gonadal white adipose tissue (WAT) and cardiomegaly compared to age-matched adult female controls. In this study, BPH/5 adult male mice have similar body weights and food intake compared to age-matched control mice but have increased inflammatory subcutaneous and peri-renal WAT and signs of cardiovascular disease: left ventricular hypertrophy and hypertension. Therefore, adult male BPH/5 do not completely phenocopy the cardiometabolic profile of female BPH/5 mice. Future investigations are necessary to understand the differences observed in BPH/5 male and female mice as they age. In conclusion, the impact of fetal programming due to PE has a transgenerational effect on both male and female offspring in the BPH/5 mouse model. The maternal obesogenic environment may play a role in PE pregnancy outcomes, including offspring health as they age.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Viviane C L Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Kassandra J Raven Crissman
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Daniella M Adams
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Fabio Del Piero
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Scott D Butler
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Wu Y, Yin G, Wang P, Huang Z, Lin S. Effects of different diet-induced postnatal catch-up growth on glycolipid metabolism in intrauterine growth retardation male rats. Exp Ther Med 2020; 20:134. [PMID: 33082866 PMCID: PMC7560533 DOI: 10.3892/etm.2020.9263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
A number of studies have reported the occurrence of long-term metabolic disorders in mammals following intrauterine growth retardation (IUGR). However, the effects of dietary patterns during IUGR have not been fully elucidated. The present study aimed to evaluate the effects of different dietary patterns during critical growth windows on metabolic outcomes in the offspring of rats with IUGR. Male offspring rats from mothers fed either a normal or low-protein diet were randomly assigned to one of the following groups: Normal diet throughout pregnancy, lactation and after weaning (CON); normal diet throughout pregnancy and high-fat diet throughout lactation and after weaning (N + H + H); low-protein diet throughout pregnancy and high-fat diet throughout lactation and after weaning (IUGR + H + H); low-protein diet throughout pregnancy and lactation and high-fat diet after weaning (IUGR + L + H); and low-protein diet throughout pregnancy and normal diet throughout lactation and after weaning. During lactation, the male offspring in the N + H + H group exhibited the fastest growth rate, whereas the slowest rate was in the IUGR + L + H group. Following weaning, all IUGR groups demonstrated significant catch-up growth. Abnormal insulin tolerance were observed in the N + H + H, IUGR + H + H and IUGR + L + H groups and insulin sensitivity was decreased in IUGR + L + H group. The triglycerides/high-density lipoprotein ratio in the IUGR + L + H group was significantly higher compared with in the other groups. The abdominal circumference, Lee's index and adipocyte diameter of IUGR groups were significantly increased compared with the CON group. High levels of leptin and interleukin-6 in adipose tissues, and low adiponectin were observed in the IUGR + L + H group. Different dietary patterns during specific growth windows showed numerous impacts on glycolipid metabolism in IUGR offspring. The present study elucidated the mechanisms and potential options for IUGR treatment and prevention.
Collapse
Affiliation(s)
- Yixi Wu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Guoshu Yin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Ping Wang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Zhihua Huang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Shaoda Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr Shaoda Lin, Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515000, P.R. China
| |
Collapse
|
12
|
Tharmalingam S, Khurana S, Murray A, Lamothe J, Tai TC. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci Rep 2020; 10:18755. [PMID: 33127986 PMCID: PMC7603342 DOI: 10.1038/s41598-020-75652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Prenatal glucocorticoid exposure is associated with the development of hypertension in adults. We have previously demonstrated that antenatal dexamethosone (DEX) administration in Wistar-Kyoto dams results in offspring with increased blood pressure coupled with elevated plasma epinephrine levels. In order to elucidate the molecular mechanisms responsible for prenatal DEX-mediated programming of hypertension, a whole-transcriptome analysis was performed on DEX programmed WKY male adrenal glands using the Rat Gene 2.0 microarray. Differential gene expression (DEG) analysis of DEX-exposed offspring compared with saline-treated controls revealed 142 significant DEGs (109 upregulated and 33 downregulated genes). DEG pathway enrichment analysis demonstrated that genes involved in circadian rhythm signaling were most robustly dysregulated. RT-qPCR analysis confirmed the increased expression of circadian genes Bmal1 and Npas2, while Per2, Per3, Cry2 and Bhlhe41 were significantly downregulated. In contrast, gene expression profiling of Spontaneously Hypertensive (SHR) rats, a genetic model of hypertension, demonstrated decreased expression of Bmal1 and Npas2, while Per1, Per2, Per3, Cry1, Cry2, Bhlhe41 and Csnk1D were all upregulated compared to naïve WKY controls. Taken together, this study establishes that glucocorticoid programmed adrenals have impaired circadian signaling and that changes in adrenal circadian rhythm may be an underlying molecular mechanism responsible for the development of hypertension.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Sandhya Khurana
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Alyssa Murray
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Jeremy Lamothe
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - T C Tai
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
13
|
Early-Life Programming and Reprogramming of Adult Kidney Disease and Hypertension: The Interplay between Maternal Nutrition and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21103572. [PMID: 32443635 PMCID: PMC7278949 DOI: 10.3390/ijms21103572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney disease and hypertension both have attained the status of a global pandemic. Altered renal programming resulting in kidney disease and hypertension can begin in utero. Maternal suboptimal nutrition and oxidative stress have important implications in renal programming, while specific antioxidant nutrient supplementations may serve as reprogramming strategies to prevent kidney disease and hypertension of developmental origins. This review aims to summarize current knowledge on the interplay of maternal nutrition and oxidative stress in response to early-life insults and its impact on developmental programming of kidney disease and hypertension, covering two aspects. Firstly, we present the evidence from animal models supporting the implication of oxidative stress on adult kidney disease and hypertension programmed by suboptimal maternal nutrition. In the second part, we document data on specific antioxidant nutrients as reprogramming strategies to protect adult offspring against kidney disease and hypertension from developmental origins. Research into the prevention of kidney disease and hypertension that begin early in life will have profound implications for future health.
Collapse
|
14
|
Barra R, Morgan C, Sáez-Briones P, Reyes-Parada M, Burgos H, Morales B, Hernández A. Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutr Rev 2020; 77:65-80. [PMID: 30445479 DOI: 10.1093/nutrit/nuy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.
Collapse
Affiliation(s)
- Rafael Barra
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Carlos Morgan
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Sáez-Briones
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Miguel Reyes-Parada
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud Universidad Autónoma de Chile, Talca, Chile
| | - Héctor Burgos
- Núcleo Disciplinar Psicología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Center of Innovation on Information Technologies for Social Applications (CITIAPS), University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernández
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Desclée de Maredsous C, Carlin G, Oosting A, Delteil C, Azzout-Marniche D, Chaumontet C, Blachier F, Barbillon P, Mary-Huard T, Tomé D, Oozeer R, Davila AM. Increased Susceptibility to Obesity and Glucose Intolerance in Adult Female Rats Programmed by High-Protein Diet during Gestation, But Not during Lactation. Nutrients 2020; 12:E315. [PMID: 31991777 PMCID: PMC7071251 DOI: 10.3390/nu12020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fetal and early postnatal nutritional environments contribute to lifelong health. High-protein (HP) intake in early life can increase obesity risk in response to specific feeding conditions after weaning. This study investigated the effects of a maternal HP diet during pregnancy and/or lactation on the metabolic health of offspring. Three groups of dams received a normal-protein (NP, 20E% proteins) diet during gestation and lactation (Control group), an HP diet (55E% proteins) during gestation (HPgest group), or an HP diet during lactation (HPlact group). From weaning until 10 weeks, female pups were exposed to the NP, the HP or the western (W) diet. HPgest pups had more adipocytes (p = 0.009), more subcutaneous adipose tissue (p = 0.04) and increased expression of genes involved in liver fatty acid synthesis at 10 weeks (p < 0.05). HPgest rats also showed higher food intake and adiposity under the W diet compared to the Control and HPlact rats (p ≤ 0.04). The post-weaning HP diet reduced weight (p < 0.0001), food intake (p < 0.0001), adiposity (p < 0.0001) and glucose tolerance (p < 0.0001) compared to the NP and W diets; this effect was enhanced in the HPgest group (p = 0.04). These results show that a maternal HP diet during gestation, but not lactation, leads to a higher susceptibility to obesity and glucose intolerance in female offspring.
Collapse
Affiliation(s)
- Caroline Desclée de Maredsous
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Gabrielle Carlin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Annemarie Oosting
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Corine Delteil
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Dalila Azzout-Marniche
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Catherine Chaumontet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; (P.B.); (T.M.-H.)
| | - Tristan Mary-Huard
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; (P.B.); (T.M.-H.)
| | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| | - Raish Oozeer
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (A.O.); (R.O.)
| | - Anne-Marie Davila
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005 Paris, France; (C.D.d.M.); (G.C.); (C.D.); (D.A.-M.); (C.C.); (F.B.); (D.T.)
| |
Collapse
|
16
|
Carlin G, Chaumontet C, Blachier F, Barbillon P, Darcel N, Delteil C, van der Beek EM, Kodde A, van de Heijning BJM, Tomé D, Davila AM. Perinatal exposure of rats to a maternal diet with varying protein quantity and quality affects the risk of overweight in female adult offspring. J Nutr Biochem 2020; 79:108333. [PMID: 32045724 DOI: 10.1016/j.jnutbio.2019.108333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022]
Abstract
The maternal protein diet during the perinatal period can program the health of adult offspring. This study in rats evaluated the effects of protein quantity and quality in the maternal diet during gestation and lactation on weight and adiposity in female offspring. Six groups of dams were fed a high-protein (HP; 47% protein) or normal-protein (NP; 19% protein) isocaloric diet during gestation (G) using either cow's milk (M), pea (P) or turkey (T) proteins. During lactation, all dams received the NP diet (protein source unchanged). From postnatal day (PND) 28 until PND70, female pups (n=8) from the dam milk groups were exposed to either an NP milk diet (NPMW) or to dietary self-selection (DSS). All other pups were only exposed to DSS. The DSS design was a choice between five food cups containing HPM, HPP, HPT, carbohydrates or lipids. The weights and food intakes of the animals were recorded throughout the study, and samples from offspring were collected on PND70. During the lactation and postweaning periods, body weight was lower in the pea and turkey groups (NPG and HPG) versus the milk group (P<.0001). DSS groups increased their total energy and fat intakes compared to the NPMW group (P<.0001). In all HPG groups, total adipose tissue was increased (P=.03) associated with higher fasting plasma leptin (P<.05). These results suggest that the maternal protein source impacted offspring body weight and that protein excess during gestation, irrespective of its source, increased the risk of adiposity development in female adult offspring.
Collapse
Affiliation(s)
- Gabrielle Carlin
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | | | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Pierre Barbillon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - Nicolas Darcel
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Corine Delteil
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, the Netherlands; Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrea Kodde
- Danone Nutricia Research, Utrecht, the Netherlands
| | | | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Anne-Marie Davila
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France.
| |
Collapse
|
17
|
Intapad S, Dasinger JH, Johnson JM, Brown AD, Ojeda NB, Alexander BT. Male and Female Intrauterine Growth-Restricted Offspring Differ in Blood Pressure, Renal Function, and Glucose Homeostasis Responses to a Postnatal Diet High in Fat and Sugar. Hypertension 2019; 73:620-629. [PMID: 30636548 DOI: 10.1161/hypertensionaha.118.12134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is well established that inadequate nutrition during fetal life followed by postnatal overabundance programs adiposity and glucose intolerance. Studies addressing sexual dimorphism in developmental responses to a dietary mismatch are limited; the effect on blood pressure and renal function is understudied. Therefore, this study tested the hypothesis that a mismatch of prenatal and postnatal nutrition heightens cardiorenal and metabolic risk, outcomes that may vary by sex. Male and female offspring from sham-operated (control) or reduced uterine perfusion dams (growth restricted) were fed regular chow or a diet high in fat and sugar (enriched diet) from weaning until 6 months of age. Male and female offspring were assessed separately; 2-way ANOVA was used to investigate interactions between intrauterine growth-restricted and enriched-diet. Blood pressure was increased in all enriched-diet groups but did not differ in enriched-diet male or female growth-restricted versus same-sex control counterparts. Glomerular filtration rate was reduced in male growth-restricted regardless of diet; a decrease exacerbated by the enriched-diet suggesting the pathogenesis of increased blood pressure induced via an enriched-diet differs between male growth-restricted versus male control. An enriched diet was associated with glucose intolerance in male and female control but not male growth-restricted; the enriched diet exacerbated glucose intolerance in female growth-restricted. Thus, these findings indicate male growth-restricted are resistant to impaired glucose homeostasis, whereas female growth-restricted are susceptible to metabolic dysfunction regardless of postnatal diet. Hence, moderation of fat and sugar intake may be warranted in those born low birth weight to ensure minimal risk for chronic disease.
Collapse
Affiliation(s)
- Suttira Intapad
- From the Department of Physiology and Biophysics (S.I., J.H.D., J.M.J., A.D.B., B.T.A.), University of Mississippi Medical Center, Jackson.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA (S.I.)
| | - John Henry Dasinger
- From the Department of Physiology and Biophysics (S.I., J.H.D., J.M.J., A.D.B., B.T.A.), University of Mississippi Medical Center, Jackson
| | - Jeremy M Johnson
- From the Department of Physiology and Biophysics (S.I., J.H.D., J.M.J., A.D.B., B.T.A.), University of Mississippi Medical Center, Jackson
| | - Andrew D Brown
- From the Department of Physiology and Biophysics (S.I., J.H.D., J.M.J., A.D.B., B.T.A.), University of Mississippi Medical Center, Jackson
| | - Norma B Ojeda
- Department of Pediatrics (N.B.O.), University of Mississippi Medical Center, Jackson
| | - Barbara T Alexander
- From the Department of Physiology and Biophysics (S.I., J.H.D., J.M.J., A.D.B., B.T.A.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
18
|
Impact of Arginine Nutrition and Metabolism during Pregnancy on Offspring Outcomes. Nutrients 2019; 11:nu11071452. [PMID: 31252534 PMCID: PMC6682918 DOI: 10.3390/nu11071452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
By serving as a precursor for the synthesis of nitric oxide, polyamines, and other molecules with biological importance, arginine plays a key role in pregnancy and fetal development. Arginine supplementation is a potential therapy for treating many human diseases. An impaired arginine metabolic pathway during gestation might produce long-term morphological or functional changes in the offspring, namely, developmental programming to increase vulnerability to developing a variety of non-communicable diseases (NCDs) in later life. In contrast, reprogramming is a strategy that shifts therapeutic interventions from adulthood to early-life, in order to reverse the programming processes, which might counterbalance the rising epidemic of NCDs. This review presented the role of arginine synthesis and metabolism in pregnancy. We also provided evidence for the links between an impaired arginine metabolic pathway and the pathogenesis of compromised pregnancy and fetal programming. This was followed by reprogramming strategies targeting the arginine metabolic pathway, to prevent the developmental programming of NCDs. Despite emerging evidence from experimental studies showing that targeting the arginine metabolic pathway has promise as a reprogramming strategy in pregnancy to prevent NCDs in the offspring, these results need further clinical application.
Collapse
|
19
|
Hsu CN, Tain YL. The Good, the Bad, and the Ugly of Pregnancy Nutrients and Developmental Programming of Adult Disease. Nutrients 2019; 11:nu11040894. [PMID: 31010060 PMCID: PMC6520975 DOI: 10.3390/nu11040894] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal nutrition plays a decisive role in developmental programming of many non-communicable diseases (NCDs). A variety of nutritional insults during gestation can cause programming and contribute to the development of adult-onset diseases. Nutritional interventions during pregnancy may serve as reprogramming strategies to reverse programming processes and prevent NCDs. In this review, firstly we summarize epidemiological evidence for nutritional programming of human disease. It will also discuss evidence from animal models, for the common mechanisms underlying nutritional programming, and potential nutritional interventions used as reprogramming strategies.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
20
|
Carlin G, Chaumontet C, Blachier F, Barbillon P, Darcel N, Blais A, Delteil C, Guillin FM, Blat S, van der Beek EM, Kodde A, Tomé D, Davila AM. Maternal High-Protein Diet during Pregnancy Modifies Rat Offspring Body Weight and Insulin Signalling but Not Macronutrient Preference in Adulthood. Nutrients 2019; 11:nu11010096. [PMID: 30621263 PMCID: PMC6356951 DOI: 10.3390/nu11010096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Diet of mothers during gestation may impact offspring phenotype. This study evaluated the consequences of a maternal High-Protein (HP) diet during gestation on food preferences and phenotypic characteristics in adult rat offspring. Dams were fed a HP or a Normal-Protein (NP) isocaloric diet during gestation only. Weaned female pups were divided into 3 diet groups: NP control or one of two dietary self-selection (DSS) conditions. In DSS1, offspring had a free choice between proteins (100%) or a mix of carbohydrates (88%) and lipids (12%). In DSS2, the choice was between proteins (100%), carbohydrate (100%) or lipids (100%). DSS2 groups consumed more of their energy from protein and lipids, with a decreased carbohydrate intake (p < 0.0001) compared to NP groups, regardless of the maternal diet. Offspring from HP gestation dams fed the DSS2 diet (HPDSS2) had a 41.2% increase of total adiposity compared to NPDSS2 (p < 0.03). Liver Insulin receptor and Insulin substrate receptor 1 expression was decreased in offspring from HP compared to NP gestation dams. These results showed the specific effects of DSS and maternal diet and data suggested that adult, female offspring exposed to a maternal HP diet during foetal life were more prone to adiposity development, in response to postweaning food conditions.
Collapse
Affiliation(s)
- Gabrielle Carlin
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | | | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Pierre Barbillon
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Nicolas Darcel
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Corine Delteil
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Florence M Guillin
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Sophie Blat
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, 35000 Rennes, France.
| | - Eline M van der Beek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands.
- Dept Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Andrea Kodde
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands.
| | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| | - Anne-Marie Davila
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France.
| |
Collapse
|
21
|
Cerf ME. High Fat Programming and Cardiovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E86. [PMID: 30428585 PMCID: PMC6262472 DOI: 10.3390/medicina54050086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Programming is triggered through events during critical developmental phases that alter offspring health outcomes. High fat programming is defined as the maintenance on a high fat diet during fetal and/or early postnatal life that induces metabolic and physiological alterations that compromise health. The maternal nutritional status, including the dietary fatty acid composition, during gestation and/or lactation, are key determinants of fetal and postnatal development. A maternal high fat diet and obesity during gestation compromises the maternal metabolic state and, through high fat programming, presents an unfavorable intrauterine milieu for fetal growth and development thereby conferring adverse cardiac outcomes to offspring. Stressors on the heart, such as a maternal high fat diet and obesity, alter the expression of cardiac-specific factors that alter cardiac structure and function. The proper nutritional balance, including the fatty acid balance, particularly during developmental windows, are critical for maintaining cardiac structure, preserving cardiac function and enhancing the cardiac response to metabolic challenges.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
22
|
Miyoshi M, Sato M, Saito K, Otani L, Shirahige K, Miura F, Ito T, Jia H, Kato H. Maternal Protein Restriction Alters the Renal Ptger1 DNA Methylation State in SHRSP Offspring. Nutrients 2018; 10:nu10101436. [PMID: 30301128 PMCID: PMC6213780 DOI: 10.3390/nu10101436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
We previously reported that maternal protein restriction (LP) during pregnancy increases salt sensitivity in offspring using the Stroke-Prone Spontaneously Hypertensive Rat (SHRSP). In the present study, we focus on DNA methylation profiles of prostaglandin E receptor 1 gene (ptger1), which is known to be associated with hypertension. We evaluated the ptger1 DNA methylation status via bisulfite sequencing, and analyzed the expression of ptger1-related genes. The results of these analyses showed that, compared to controls, the LP-S offspring exhibited both marked ptger1 hypermethylation, and significantly increased ptger1 expression. Moreover, they also exhibited significantly decreased expression of the downstream gene epithelial Na+ channel alpha (enacα). Interestingly, LP offspring that were provided with a standard water drinking supply (W) also exhibited increased ptger1 methylation and expression. Together, these results suggest that maternal protein restriction during pregnancy modulates the renal ptger1 DNA methylation state in SHRSP offspring, and thereby likely mediates ptger1 and enacα gene expression to induce salt sensitivity.
Collapse
Affiliation(s)
- Moe Miyoshi
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Masayuki Sato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Kenji Saito
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Lila Otani
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 1130032, Japan.
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan.
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan.
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan.
| |
Collapse
|
23
|
Yamauchi T, Mogi M, Kan-No H, Shan BS, Higaki A, Min LJ, Higaki T, Iwanami J, Ishii EI, Horiuchi M. Roles of angiotensin II type 2 receptor in mice with fetal growth restriction. Hypertens Res 2018; 41:157-164. [PMID: 29335616 DOI: 10.1038/s41440-017-0004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
Abstract
Our previous report indicated that vascular injury enhances vascular remodeling in fetal growth restriction (FGR) mice. The angiotensin II type 2 receptor (AT2R) is relatively highly expressed in fetal mice. Therefore, we investigated the roles of AT2R in FGR-induced cardiovascular disease using AT2R knockout (AT2KO) mice. Dams (wild-type and AT2KO mice) were fed an isocaloric diet containing 20% protein (NP) or 8% protein (LP) until delivery. Arterial blood pressure, body weight, and histological changes in organs were investigated in offspring. The birth weight of offspring from dams fed an LP diet (LPO) was significantly lower than that of offspring from dams fed an NP diet. The heart/body and kidney/body weight ratios in AT2KO-LPO at 12 weeks of age were significantly higher than those in the other groups. Greater thickness of the left ventricular wall, larger cardiomyocyte size and enhancement of perivascular fibrosis were observed in AT2KO-LPO. Interestingly, mRNA expression of collagen I and inflammatory cytokines was markedly higher in the AT2KO-LPO heart at 6 weeks of age but not at 12 weeks of age. AT2R signaling may be involved in cardiovascular disorders of adult offspring with FGR. Regulation of AT2R could contribute to preventing future cardiovascular disease in FGR offspring.
Collapse
Affiliation(s)
- Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Takashi Higaki
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Ei-Ichi Ishii
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| |
Collapse
|
24
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
25
|
Hellmuth C, Uhl O, Kirchberg FF, Harder U, Peissner W, Koletzko B, Nathanielsz PW. Influence of moderate maternal nutrition restriction on the fetal baboon metabolome at 0.5 and 0.9 gestation. Nutr Metab Cardiovasc Dis 2016; 26:786-796. [PMID: 27146364 DOI: 10.1016/j.numecd.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Moderately reduced maternal nutrient availability during pregnancy has adverse effects on the fetuses' growth and metabolism during and after pregnancy. The aim of this study was to explore effects of maternal nutrition restriction (MNR) on key metabolites of the fetal energy metabolism, particularly amino acids (AA), nonesterified fatty acids (NEFA), acylcarnitines and phospholipids. These effects may reflect mechanisms relating MNR to later adverse outcomes. METHODS AND RESULTS Plasma and liver samples of fetal baboons, whose mothers were fed ad libitum (CTR) or MNR (70% of CTR), were collected at 0.5 and 0.9 gestation (G - term 184 days). Metabolites were measured with liquid chromatography coupled to mass spectrometry. In both, CTR and MNR, fetal metabolic profiles changed markedly between 0.5G and 0.9G. Fetal liver glucose concentrations were strongly increased. Hepatic levels of NEFA, sphingomyelins, and alkyl-linked phospholipids increased while plasma NEFA and acyl-linked phospholipids levels decreased with progression of gestation. At 0.5G, MNR fetal plasma levels of short- and medium-chain acylcarnitines were elevated, but did no longer differ between groups at 0.9G. At 0.9G, plasma levels of methionine and threonine as well as hepatic threonine levels were lower in the MNR group. CONCLUSION Small differences in the concentrations of plasma and liver metabolites between MNR and CTR fetuses reflect good adaptation to MNR. Fetal liver metabolic profiles changed markedly between the two gestation stages, reflecting enhanced liver glucose and lipid levels with advancing gestation. Decreased concentrations of AA suggest an up-regulation of gluconeogenesis in MNR.
Collapse
Affiliation(s)
- C Hellmuth
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - O Uhl
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - F F Kirchberg
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - U Harder
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - W Peissner
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany
| | - B Koletzko
- Ludwig-Maximilians-Universität, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Universtiy of Munich Medical Center, 80337, Muenchen, Germany.
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, 82701, WY, USA; Texas Pregnancy & Life-course Health Research Center, San Antonio, 7620 NW Loop 410, 78227, TX, USA
| |
Collapse
|
26
|
Diet before and during Pregnancy and Offspring Health: The Importance of Animal Models and What Can Be Learned from Them. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060586. [PMID: 27314367 PMCID: PMC4924043 DOI: 10.3390/ijerph13060586] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
This review article outlines epidemiologic studies that support the hypothesis that maternal environment (including early nutrition) plays a seminal role in determining the offspring’s long-term health and metabolism, known as the concept of Developmental Origins of Health and Diseases (DOHaD). In this context, current concerns are particularly focused on the increased incidence of obesity and diabetes, particularly in youth and women of child-bearing age. We summarize key similarities, differences and limitations of various animal models used to study fetal programming, with a particular focus on placentation, which is critical for translating animal findings to humans. This review will assist researchers and their scientific audience in recognizing the pros and cons of various rodent and non-rodent animal models used to understand mechanisms involved in fetal programming. Knowledge gained will lead to improved translation of proposed interventional therapies before they can be implemented in humans. Although rodents are essential for fundamental exploration of biological processes, other species such as rabbits and other domestic animals offer more tissue-specific physiological (rabbit placenta) or physical (ovine maternal and lamb birth weight) resemblances to humans. We highlight the important maternal, placental, and fetal/neonatal characteristics that contribute to developmentally programmed diseases, specifically in offspring that were affected in utero by undernutrition, overnutrition or maternal diabetes. Selected interventions aimed at prevention are summarized with a specific focus on the 1000 days initiative in humans, and maternal exercise or modification of the n-3/n-6 polyunsaturated fatty acid (PUFA) balance in the diet, which are currently being successfully tested in animal models to correct or reduce adverse prenatal programming. Animal models are essential to understand mechanisms involved in fetal programming and in order to propose interventional therapies before they can be implemented in humans. Non-rodent animals are particularly important and should not be neglected, as they are often more physiologically-appropriate models to mimic the human situation.
Collapse
|
27
|
Lopes GAD, Ribeiro VLB, Barbisan LF, Marchesan Rodrigues MA. Fetal developmental programing: insights from human studies and experimental models. J Matern Fetal Neonatal Med 2016; 30:722-728. [DOI: 10.1080/14767058.2016.1183635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Luís Fernando Barbisan
- Department of Morphology, Institute of Biosciences, UNESP – Univ. Estadual Paulista, Botucatu, SP, Brazil
| | | |
Collapse
|
28
|
Pennington KA, Ramirez-Perez FI, Pollock KE, Talton OO, Foote CA, Reyes-Aldasoro CC, Wu HH, Ji T, Martinez-Lemus LA, Schulz LC. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice. PLoS One 2016; 11:e0155377. [PMID: 27187080 PMCID: PMC4871503 DOI: 10.1371/journal.pone.0155377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.
Collapse
Affiliation(s)
- Kathleen A. Pennington
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Kelly E. Pollock
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Omonseigho O. Talton
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | | | - Ho-Hsiang Wu
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| |
Collapse
|
29
|
Minooee S, Ramezani Tehrani F, Mirmiran P, Azizi F. Low birth weight may increase body fat mass in adult women with polycystic ovarian syndrome. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.5.335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
30
|
DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring's risk of obesity in Psammomys obesus. Int J Obes (Lond) 2016; 40:1079-88. [PMID: 27108813 DOI: 10.1038/ijo.2016.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVE The rising incidence of obesity is a major public health issue worldwide. Recent human and animal studies suggest that parental diet can influence fetal development and is implicated with risk of obesity and type 2 diabetes in offspring. The hypothalamus is central to body energy homoeostasis and appetite by controlling endocrine signals. We hypothesise that offspring susceptibility to obesity is programmed in the hypothalamus in utero and mediated by changes to DNA methylation, which persist to adulthood. We investigated hypothalamic genome-wide DNA methylation in Psammomys obesus diet during pregnancy to the offspring's risk of obesity. METHODS Using methyl-CpG binding domain capture and deep sequencing (MBD-seq), we examined the hypothalamus of offspring exposed to a low-fat diet and standard chow diet during the gestation and lactation period. RESULTS Offspring exposed to a low-fat parental diet were more obese and had increased circulating insulin and glucose levels. Methylome profiling identified 1447 genomic regions of differential methylation between offspring of parents fed a low-fat diet compared with parents on standard chow diet. Pathway analysis shows novel DNA methylation changes of hypothalamic genes associated with neurological function, nutrient sensing, appetite and energy balance. Differential DNA methylation corresponded to changes in hypothalamic gene expression of Tas1r1 and Abcc8 in the offspring exposed to low-fat parental diet. CONCLUSION Subject to parental low-fat diet, we observe DNA methylation changes of genes associated with obesity in offspring.
Collapse
|
31
|
Chisaka T, Mogi M, Nakaoka H, Kan-No H, Tsukuda K, Wang XL, Bai HY, Shan BS, Kukida M, Iwanami J, Higaki T, Ishii EI, Horiuchi M. Low-Protein Diet-Induced Fetal Growth Restriction Leads to Exaggerated Proliferative Response to Vascular Injury in Postnatal Life. Am J Hypertens 2016; 29:54-62. [PMID: 26002925 DOI: 10.1093/ajh/hpv072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigated the effects of fetal growth restriction (FGR) induced by maternal protein restriction on inflammatory vascular remodeling using a cuff-induced vascular injury mouse model. METHODS Dams (C57BL/6J strain mice) were fed an isocaloric diet containing 20% protein (normal protein; NP) or 8% protein (low protein; LP) from 10 weeks of age until delivery. On the day of delivery, all dams were returned to the NP diet. After weaning, offspring were fed the NP diet. When offspring were 10 weeks of age, vascular injury was induced by polyethylene cuff placement around the femoral artery. RESULTS Birth weight in offspring from dams fed LP until delivery (LPO) was significantly lower, but body weight was the same at 2 weeks after birth compared with that in NP offspring (NPO). Arterial blood pressure at 12 weeks of age did not differ between LPO and NPO. Neointima formation was exaggerated in LPO compared with NPO and associated with an increase in cell proliferation assessed by proliferating cell nuclear antigen (PCNA) staining index. Moreover, LPO showed enhanced expression of monocyte chemotactic protein-1, interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and production of superoxide anion in the injured artery. Moreover, mRNA expression of isoforms of NAD(P)H oxidase subunits such as p22phox, p40phox, p47phox, p67phox, gp91phpx, and Rac1 in the injured arteries were enhanced in LPO. Furthermore, HIF-1α expression was increased in LPO compared with that in NPO. CONCLUSIONS These results suggest that maternal low-protein diet-induced FGR increases susceptibility of the vasculature to postnatal injury.
Collapse
Affiliation(s)
- Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Pediatrics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan;
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Takashi Higaki
- Department of Pediatrics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Ei-Ichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
32
|
Desclée de Maredsous C, Oozeer R, Barbillon P, Mary-Huard T, Delteil C, Blachier F, Tomé D, van der Beek EM, Davila AM. High-Protein Exposure during Gestation or Lactation or after Weaning Has a Period-Specific Signature on Rat Pup Weight, Adiposity, Food Intake, and Glucose Homeostasis up to 6 Weeks of Age. J Nutr 2016; 146:21-9. [PMID: 26674762 DOI: 10.3945/jn.115.216465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/26/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early-life nutrition has a programming effect on later metabolic health; however, the impact of exposure to a high-protein (HP) diet is still being investigated. OBJECTIVE This study evaluated the consequences on pup phenotype of an HP diet during gestation and lactation and after weaning. METHODS Wistar rat dams were separated into 2 groups fed an HP (55% protein) or normal protein (NP) (control; 20% protein) isocaloric diet during gestation, and each group subsequently was separated into 2 subgroups that were fed an HP or NP diet during lactation. After weaning, male and female pups from each mother subgroup were separated into 2 groups that were fed either an NP or HP diet until they were 6 wk old. Measurements included weight, food intake, body composition, blood glucose, insulin, glucagon, leptin, insulin-like growth factor I, and lipids. RESULTS Feeding mothers the HP diet during gestation or lactation induced lower postweaning pup weight (gestation diet × time, P < 0.0001; lactation diet × time, P < 0.0001). Regardless of dams' diets, pups receiving HP compared with NP diet after weaning had 7% lower weight (NP, 135.0 ± 2.6 g; HP, 124.4 ± 2.5 g; P < 0.0001), 16% lower total energy intake (NP, 777 ± 14 kcal; HP, 649 ± 13 kcal; P < 0.0001) and 31% lower adiposity (P < 0.0001). Pups receiving HP compared with NP diet after weaning had increased blood glucose, insulin, and glucagon when food deprived (P < 0.0001 for all). The HP compared with the NP diet during gestation induced higher blood glucose in food-deprived rats (NP, 83.2 ± 2.1 mg/dL; HP, 91.2 ± 2.1 mg/dL; P = 0.046) and increased plasma insulin in fed pups receiving the postweaning NP diet (gestation diet × postweaning diet, P = 0.02). CONCLUSION Increasing the protein concentration of the rat dams' diet during gestation, and to a lesser extent during lactation, and of the pups' diet after weaning influenced pup phenotype, including body weight, fat accumulation, food intake, and glucose tolerance at 6 wk of age.
Collapse
Affiliation(s)
- Caroline Desclée de Maredsous
- UMR 914 Nutrition Physiology and Ingestive Behavior, French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France; Danone Nutricia Research, Utrecht, Netherlands
| | | | - Pierre Barbillon
- UMR 518 Applied Mathematics and Informatics (MIA), French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France; and
| | - Tristan Mary-Huard
- UMR 518 Applied Mathematics and Informatics (MIA), French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France; and Quantitative Genetics Evolution Le Moulon, French National Institute for Agricultural Research (INRA), Paris-Sud University, Paris Saclay University, AgroParisTech, CNRS, Gif-sur-Yvette, France
| | - Corine Delteil
- UMR 914 Nutrition Physiology and Ingestive Behavior, French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France
| | - François Blachier
- UMR 914 Nutrition Physiology and Ingestive Behavior, French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France
| | - Daniel Tomé
- UMR 914 Nutrition Physiology and Ingestive Behavior, French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France
| | | | - Anne-Marie Davila
- UMR 914 Nutrition Physiology and Ingestive Behavior, French National Institute for Agricultural Research (INRA)/AgroParisTech, Paris Saclay University, Paris, France;
| |
Collapse
|
33
|
Trombini AB, Franco CC, Miranda RA, de Oliveira JC, Barella LF, Prates KV, de Souza AA, Pavanello A, Malta A, Almeida DL, Tófolo LP, Rigo KP, Ribeiro TA, Fabricio GS, de Sant'Anna JR, Castro-Prado MA, de Souza HM, de Morais H, Mathias PC. Early treatment with metformin induces resistance against tumor growth in adult rats. Cancer Biol Ther 2015; 16:958-64. [PMID: 26024008 DOI: 10.4161/15384047.2014.962968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.
Collapse
Affiliation(s)
- Amanda B Trombini
- a Laboratory of Secretion Cell Biology; Department of Biotechnology, Genetics and Cell Biology; State University of Maringá ; Maringá, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Maternal iron status in early pregnancy and birth outcomes: insights from the Baby's Vascular health and Iron in Pregnancy study. Br J Nutr 2015; 113:1985-92. [PMID: 25946517 PMCID: PMC4498461 DOI: 10.1017/s0007114515001166] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fe deficiency anaemia during early pregnancy has been linked with low birth
weight and preterm birth. However, this evidence comes mostly from studies
measuring Hb levels rather than specific measures of Fe deficiency. The present
study aimed to examine the association between maternal Fe status during the
first trimester of pregnancy, as assessed by serum ferritin, transferrin
receptor and their ratio, with size at birth and preterm birth. In the Baby VIP
(Baby's Vascular health and Iron in Pregnancy) study, we recruited 362
infants and their mothers after delivery in Leeds, UK. Biomarkers were measured
in maternal serum samples previously obtained in the first trimester of
pregnancy. The cohort included sixty-four (18 %) small for gestational
age (SGA) babies. Thirty-three babies were born preterm (9 %; between 34
and 37 weeks). First trimester maternal Fe depletion was associated with a
higher risk of SGA (adjusted OR 2·2, 95 % CI 1·1,
4·1). This relationship was attenuated when including early pregnancy Hb
in the model, suggesting it as a mediator (adjusted OR 1·6, 95 %
CI 0·8, 3·2). For every 10 g/l increase in maternal Hb
level in the first half of pregnancy the risk of SGA was reduced by 30 %
(adjusted 95 % CI 0, 40 %); levels below 110 g/l were
associated with a 3-fold increase in the risk of SGA (95 % CI 1·0,
9·0). There was no evidence of association between maternal Fe depletion
and preterm birth (adjusted OR 1·5, 95 % 0·6, 3·8).
The present study shows that depleted Fe stores in early pregnancy are
associated with higher risk of SGA.
Collapse
|
35
|
Lv J, Yu C, Guo Y, Bian Z, Lewington S, Zhou H, Tan Y, Chen J, Chen Z, Li L. The associations of month of birth with body mass index, waist circumference, and leg length: findings from the China Kadoorie Biobank of 0.5 million adults. J Epidemiol 2015; 25:221-30. [PMID: 25716579 PMCID: PMC4340999 DOI: 10.2188/jea.je20140154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Season of birth (SoB) has been linked with various health outcomes. This study aimed to examine the associations between month of birth (MoB) and adult measures of leg length (LL), body mass index (BMI), and waist circumference (WC). Methods We analysed survey data from 10 geographically diverse areas of China obtained through the China Kadoorie Biobank. Analysis included 487 529 adults with BMI ≥ 18.5 kg/m2. A general linear model was used to examine the associations between MoB and adult measures of LL, BMI, and WC, adjusted for survey site, sex, age, education level, smoking habit, alcohol consumption, physical activity level, sedentary leisure time, height (only for WC and LL), and hip circumference (only for LL). Results MoB was independently associated with both BMI and WC. Birth months in which participants had higher measures of adiposity were March–July for BMI and March–June for WC. The peak differences were 0.14 kg/m2 for BMI and 0.47 cm for WC. The association between MoB and LL depended on survey site. Participants who were born in February–August in four sites (Harbin, Henan, Gansu, and Hunan) had the shortest LL (all P < 0.01). The peak difference in mean LL was 0.21 cm. No statistically significant association between MoB and LL was noted in the other sites (Qingdao, Suzhou, Sichuan, Zhejiang, Liuzhou, and Haikou). Conclusions These findings suggest that MoB is associated with variations in adult adiposity measures and LL among Chinese adults. Low exposure to ultraviolet B radiation and subsequent reduced levels of vitamin D during the late second and early third trimesters may be involved in these phenomena.
Collapse
Affiliation(s)
- Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Betts KS, Williams GM, Najman JM, Alati R. The relationship between maternal depressive, anxious, and stress symptoms during pregnancy and adult offspring behavioral and emotional problems. Depress Anxiety 2015; 32:82-90. [PMID: 24788841 DOI: 10.1002/da.22272] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prenatal maternal depressive, anxious, and stress symptoms have been found to be associated with child and adolescent behavior problems. In this paper, we investigate their impact on behavior problems and depressive symptoms in adulthood. METHODS Participants included 3,099 mother-offspring pairs from the Mater University Study of Pregnancy (MUSP), an Australian based, prebirth cohort study. We used latent class growth analysis (LCGA) with parallel processes to identify trajectories of maternal depressive, anxious, and stress symptoms over four time periods between the mothers' first clinic visit and 5 years postpregnancy. We fitted the estimates from the maternal trajectories in multivariate logistic regression models to predict internalizing and externalizing behavior at age 21. We adjusted for a wide range of prenatal and postnatal factors, including maternal life events, relationship quality, contact with the new born, as well as concurrent maternal depressive and anxious symptoms and father's history of mental health problem. RESULTS LCGA found seven groups of mothers; one group of mothers exhibited high levels of depressive, anxious, and stress symptoms during pregnancy but not at later time points. Their offspring experienced increased levels of behavior problems and depressive symptoms. CONCLUSIONS This paper provides the first evidence that high levels of maternal subjective depressive, anxious, and stress symptoms experienced in early pregnancy may predict internalizing and externalizing behavior problems and depressive symptoms in young adults.
Collapse
Affiliation(s)
- Kim S Betts
- School of Population Health, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
37
|
Nascimento L, Freitas CM, Silva-Filho R, Leite ACR, Silva AB, da Silva AI, Ferreira DS, Pedroza AA, Maia MBS, Fernandes MP, Lagranha C. The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metab 2014; 39:880-7. [DOI: 10.1139/apnm-2013-0452] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein restriction during perinatal and early postnatal development is associated with a greater incidence of disease in the adult, such arterial hypertension. The aim in the present study was to investigate the effect of maternal low-protein diet on mitochondrial oxidative phosphorylation capacity, mitochondrial reactive oxygen species (ROS) formation, antioxidant levels (enzymatic and nonenzymatic), and oxidative stress levels on the heart of the adult offspring. Pregnant Wistar rats received either 17% casein (normal protein, NP) or 8% casein (low protein, LP) throughout pregnancy and lactation. After weaning male progeny of these NP or LP fed rats, females were maintained on commercial chow (Labina-Purina). At 100 days post-birth, the male rats were sacrificed and heart tissue was harvested and stored at −80 °C. Our results show that restricting protein consumption in pregnant females induced decreased mitochondrial oxidative phosphorylation capacity (51% reduction in ADP-stimulated oxygen consumption and 49.5% reduction in respiratory control ratio) in their progeny when compared with NP group. In addition, maternal low-protein diet induced a significant decrease in enzymatic antioxidant capacity (37.8% decrease in superoxide dismutase activity; 42% decrease in catalase activity; 44.8% decrease in glutathione-S-transferase activity; 47.9% decrease in glutathione reductase; 25.7% decrease in glucose-6 phosphate dehydrogenase) and glutathione level (34.8% decrease) when compared with control. From these findings, we hypothesize that an increased production of ROS and decrease in antioxidant activity levels induced by protein restriction during development could potentiate the progression of metabolic and cardiac diseases in adulthood.
Collapse
Affiliation(s)
- Luciana Nascimento
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Cristiane M. Freitas
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Reginaldo Silva-Filho
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Ana Catarina R. Leite
- Department of Physiology and Pharmacology, CCB-Federal University of Pernambuco, Recife, PE, Brazil
| | - Alessandra B. Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Aline Isabel da Silva
- Ph.D. student in Nutrition Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Diorginis Soares Ferreira
- Ph.D. student in Neuropsychiatry and Behavioral Sciences Program, Federal University of Pernambuco, Recife, PE, Brazil
| | - Anderson Apolonio Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | | | - Mariana P. Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Claudia Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| |
Collapse
|
38
|
Lagisz M, Blair H, Kenyon P, Uller T, Raubenheimer D, Nakagawa S. Transgenerational effects of caloric restriction on appetite: a meta-analysis. Obes Rev 2014; 15:294-309. [PMID: 24387308 DOI: 10.1111/obr.12138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 01/21/2023]
Abstract
Maternal undernutrition can result in significant alterations to the post-natal offspring phenotype, including body size and behaviour. For example, maternal food restriction has been implicated in offspring hyperphagia, potentially causing increased weight gain and fat accumulation. This could result in obesity and other adverse long-term health effects in offspring. We investigated the link between maternal caloric restriction during gestation and offspring appetite by conducting the first meta-analysis on this topic using experimental data from mammalian laboratory models (i.e. rats and mice). We collected 89 effect sizes from 35 studies, together with relevant moderators. Our analysis revealed weak and statistically non-significant overall effect on offspring's appetite. However, we found that lower protein content of restricted diets is associated with higher food intake in female offspring. Importantly, we show that a main source of variation among studies arises from whether, and how, food intake was adjusted for body mass. This probably explains many of the contradictory results in the field. Based on our results, we recommend using allometric scaling of food intake to body mass in future studies.
Collapse
Affiliation(s)
- M Lagisz
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
39
|
Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne) 2014; 5:73. [PMID: 24860550 PMCID: PMC4026717 DOI: 10.3389/fendo.2014.00073] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress-response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be addressed.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Christopher Antoniadis
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
- *Correspondence: Margaret J. Morris, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia e-mail:
| |
Collapse
|
40
|
Martin Agnoux A, Alexandre-Gouabau MC, Le Dréan G, Antignac JP, Parnet P. Relative contribution of foetal and post-natal nutritional periods on feeding regulation in adult rats. Acta Physiol (Oxf) 2014; 210:188-201. [PMID: 24010762 DOI: 10.1111/apha.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023]
Abstract
AIM The aim of this study was to assess the contribution of both foetal and/or post-natal nutritional periods on feeding regulation in adult rats. METHODS Body weight gain, adipose tissue development, food preferences and feeding pattern under regular chow or Western diets were characterized on four experimental groups of rats: pups born from protein-restricted dams (R) and weaned by control (RC) or R dams (RR) and pups born from control dams weaned by C (CC) or R dams (CR). RESULTS Rats born with intrauterine growth restriction (IUGR) and fed a Western diet at adulthood appeared predisposed to body weight gain and more fat accretion, whereas CR rats, despite their preference for high-fat diet and their hyperphagia for Western diet, did not show significant increase in fat tissue. Daytime food intakes, as well as their speed of ingestion, were found modified in RC and RR. Alterations in the hypothalamic appetite regulatory mechanisms were investigated through neuropeptide expression analysis. IUGR rats showed altered expression of key elements of leptin and NPY signalling, while CR rats exhibited lesser expression of enterostatin, MC4r and HT-1Br mRNA. CONCLUSION Altogether, these results indicate that peri-natal nutrition has different lasting effects on feeding pattern and hypothalamic appetite regulation, depending on the time window insult.
Collapse
Affiliation(s)
- A. Martin Agnoux
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - M. -C. Alexandre-Gouabau
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - G. Le Dréan
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| | - J. -P. Antignac
- LUNAM université; Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA); USC INRA 1329; Nantes France
| | - P. Parnet
- INRA, UMR1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- Université de Nantes; UMR 1280, Physiologie des Adaptations Nutritionnelles; Nantes France
- IMAD, Institut des Maladies de l'Appareil Digestif, CRNH (Centre de Recherche en Nutrition Humaine); Nantes France
| |
Collapse
|
41
|
Sable PS, Kale AA, Joshi SR. Prenatal omega 3 fatty acid supplementation to a micronutrient imbalanced diet protects brain neurotrophins in both the cortex and hippocampus in the adult rat offspring. Metabolism 2013; 62:1607-22. [PMID: 23845215 DOI: 10.1016/j.metabol.2013.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Our earlier studies show that maternal diets imbalanced in micronutrients like folic acid and vitamin B12 reduced brain docosahexaenoic acid (DHA) and brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the offspring at birth and postnatal d21. This study followed the offspring till 3 months to examine the hypothesis that impaired brain neurotrophins at birth and d21 due to altered maternal micronutrients can be reversed by prenatal omega 3 fatty acid but not a postnatal control diet leading to altered cognition in adult life. MATERIALS AND METHODS Pregnant rats were divided into control and five treatment groups at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB and EFBD). Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, 8 dams from each group were shifted to control and remaining continued on same diet. RESULTS Imbalance in maternal micronutrients up to 3months decreased DHA, BDNF and NGF in cortex and only BDNF in the hippocampus and impaired cognitive performance. Postnatal control diet normalized BDNF in the cortex but not the hippocampus and also altered cognitive performance. Prenatal omega 3 fatty acid supplementation normalized DHA, BDNF and NGF while long term supplementation was not beneficial only when micronutrients were imbalanced. CONCLUSION Patterns established at birth are not totally reversible by postnatal diets and give clues for planning intervention studies for improving brain functioning and cognitive abilities.
Collapse
Affiliation(s)
- Pratiksha S Sable
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune 411043, India
| | | | | |
Collapse
|
42
|
Duque-Guimarães DE, Ozanne SE. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 2013; 24:525-35. [PMID: 23791137 DOI: 10.1016/j.tem.2013.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
Strong evidence indicates that adverse prenatal and early postnatal environments have a significant long-term influence on risk factors that result in insulin resistance, type 2 diabetes (T2D), and cardiovascular disease later in life. Here we discuss current knowledge of how maternal and neonatal nutrition influence early growth and the long-term risk of developing insulin resistance in different organs and at the whole-body level. Accumulating evidence supports a role for epigenetic mechanisms underlying this nutritional programming, consisting of heritable changes that regulate gene expression which in turn shapes the phenotype across generations. Deciphering these molecular mechanisms in key tissues and discovering key biological markers may provide valuable insight towards the development of effective intervention strategies.
Collapse
Affiliation(s)
- Daniella E Duque-Guimarães
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Disease Unit, Institute of Metabolic Sciences, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
43
|
Pre-weaning growth hormone treatment ameliorates bone marrow macrophage inflammation in adult male rat offspring following maternal undernutrition. PLoS One 2013; 8:e68262. [PMID: 23844177 PMCID: PMC3699531 DOI: 10.1371/journal.pone.0068262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/31/2013] [Indexed: 01/22/2023] Open
Abstract
Maternal undernutrition (UN) is associated with the development of obesity and metabolic complications in adult offspring. While the role of inflammation in obesity and related comorbidities has been well established, there is little evidence regarding the effects of maternal UN-induced programming on immune function in male adult offspring. This study examines the effects growth hormone (GH), which is known to induce anti-inflammatory effects, on maternal UN-induced bone marrow macrophage (BMM) function in adult male offspring. Sprague-Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (CS/UNS) or GH (2.5 µg/g/d; CGH/UNGH) from day 3–21. Bone marrow hematopoietic cells were differentiated to a macrophage phenotype in the presence of M-CSF (50 ng/ml). Differentiated bone marrow macrophages (BMM) were stimulated with LPS (100 ng/ml) for 6 h. UNS-derived BMM had significantly increased secretion and expression of IL-1β and IL-6 following LPS stimulation. This was accompanied by increased expression of IL-1R1, IL-6R and TLR4. Pre-weaning GH treatment reversed this pro-inflammatory phenotype. Furthermore UNGH displayed increased expression of markers of alternative (M2) macrophage activation, mannose receptor and PPARγ. This study demonstrates that fetal UN exposure primes hematopoietic immune cells to a more potent pro-inflammatory phenotype with heightened cytokine secretion and receptor expression. Furthermore these cells are pre-disposed to pro-inflammatory M1 macrophage phenotype which has wide-reaching and important effects in terms of obesity and metabolic disease.
Collapse
|
44
|
Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 2012; 71:276-83. [PMID: 22390978 DOI: 10.1017/s0029665112000055] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The huge health burden accompanying obesity is not only attributable to inadequate dietary and sedentary lifestyle habits, since a predisposing genetic make-up and other putative determinants concerning easier weight gain and fat deposition have been reported. Thus, several investigations aiming to understand energy metabolism and body composition maintenance have been performed considering the participation of perinatal nutritional programming and epigenetic processes as well as inflammation phenomena. The Developmental Origins of Health and Disease hypothesis and inheritance-oriented investigations concerning gene-nutrient interactions on energy homoeostasis and metabolic functions have suggested that inflammation could be not only a comorbidity of obesity but also a cause. There are several examples about the role of nutritional interventions in pregnancy and lactation, such as energetic deprivation, protein restriction and excess fat, which determine a cluster of disorders affecting energy efficiency in the offspring as well as different metabolic pathways, which are mediated by epigenetics encompassing the chromatin information encrypted by DNA methylation patterns, histone covalent modifications and non-coding RNA or microRNA. Epigenetic mechanisms may be boosted or impaired by dietary and environmental factors in the mother, intergenerationally or transiently transmitted, and could be involved in the obesity and inflammation susceptibility in the offspring. The aims currently pursued are the early identification of epigenetic biomarkers concerned in individual's disease susceptibility and the description of protocols for tailored dietary treatments/advice to counterbalance adverse epigenomic events. These approaches will allow diagnosis and prognosis implementation and facilitate therapeutic strategies in a personalised 'epigenomically modelled' manner to combat obesity and inflammation.
Collapse
|