1
|
Ghosh AN, Walsh CJ, Maiden MJ, Stinear TP, Deane AM. Effect of dietary fibre on the gastrointestinal microbiota during critical illness: A scoping review. World J Crit Care Med 2025; 14:98241. [DOI: 10.5492/wjccm.v14.i1.98241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
The systemic effects of gastrointestinal (GI) microbiota in health and during chronic diseases is increasingly recognised. Dietary strategies to modulate the GI microbiota during chronic diseases have demonstrated promise. While changes in dietary intake can rapidly change the GI microbiota, the impact of dietary changes during acute critical illness on the microbiota remain uncertain. Dietary fibre is metabolised by carbohydrate-active enzymes and, in health, can alter GI microbiota. The aim of this scoping review was to describe the effects of dietary fibre supplementation in health and disease states, specifically during critical illness. Randomised controlled trials and prospective cohort studies that include adults (> 18 years age) and reported changes to GI microbiota as one of the study outcomes using non-culture methods, were identified. Studies show dietary fibres have an impact on faecal microbiota in health and disease. The fibre, inulin, has a marked and specific effect on increasing the abundance of faecal Bifidobacteria. Short chain fatty acids produced by Bifidobacteria have been shown to be beneficial in other patient populations. Very few trials have evaluated the effect of dietary fibre on the GI microbiota during critical illness. More research is necessary to establish optimal fibre type, doses, duration of intervention in critical illness.
Collapse
Affiliation(s)
- Angajendra N Ghosh
- Department of Intensive Care, The Northern Hospital, Epping 3076, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Matthew J Maiden
- Department of Intensive Care, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050, Victoria, Australia
| | - Tim P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne 3052, Victoria, Australia
| | - Adam M Deane
- Department of Intensive Care Medicine, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia
| |
Collapse
|
2
|
Apte A, Parge A, Nimkar R, Sinha A. Effect of probiotic and prebiotics supplementation on hemoglobin levels and iron absorption among women of reproductive age and children: a systematic review and meta-analysis. BMC Nutr 2025; 11:31. [PMID: 39920867 PMCID: PMC11803929 DOI: 10.1186/s40795-025-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND This review aims to assess the effect of oral administration of probiotics and/or prebiotics in children and women of reproductive age (WRA) to improve intestinal iron absorption, hemoglobin, and ferritin levels. METHODS Randomized controlled trials from published literature on probiotics and or prebiotics for prevention or treatment of anemia as a supplement or fortification in children or WRA till Jan 31, 2023, were included. Studies on probiotics and prebiotics in patients with anemia due to other causes were excluded. Screening and data extraction was done using Distiller SR and meta-analysis was performed using Revman 5.4.1. RESULTS A total of 1925 records were identified from Pubmed, Embase, and Cochrane, of which 29 were included in the systematic review (14 supplementation and 15 fortification studies; 15 studies in children and 14 studies in WRA). The major interventions included galacto-oligosaccharide, inulin, heat-killed H61, Lactobacillus plantarum 299v, Lactobacillus reuteri, Lactobacillus acidophilus. Meta-analysis of 5 studies in WRA showed that the use of prebiotics and/or probiotics with or without iron was associated with little or no effect on hemoglobin. However, there is low certainty of evidence that the intervention led to improvement in fractional absorption of iron as compared to placebo or iron [8 studies, n = 335, mean increase 0.74%, 95%CI-0.11-1.38, p = 0.02]. Meta-analysis of 6 studies in WRA using prebiotics and/or probiotics with or without iron led to a significant increase in ferritin levels in WRA (mean increase 2.45 ng/ml, 95% CI 0.61-4.3, p = 0.009, n = 320) [Moderate certainty of evidence]. In children, meta-analysis of up to 8 studies did not result in any significant change in hemoglobin, ferritin and fractional iron absorption [low or very low certainty of evidence]. CONCLUSION There is some evidence to show that the use of prebiotics or probiotics (especially Lp299v and GOS) with or without oral iron can improve iron absorption in women and lead to improvement in ferritin levels in women. However, the current evidence does not conclusively show the benefit of these interventions in improving hemoglobin levels in women and children.
Collapse
Affiliation(s)
- Aditi Apte
- KEM Hospital Research Centre, Pune, India.
| | | | | | - Anju Sinha
- Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
3
|
Alonso-Allende J, Milagro FI, Aranaz P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024; 16:2935. [PMID: 39275251 PMCID: PMC11397174 DOI: 10.3390/nu16172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.
Collapse
Affiliation(s)
- Jaime Alonso-Allende
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
4
|
Dorsey AF, Roach J, Burten RB, Azcarate-Peril MA, Thompson AL. Intestinal microbiota composition and efficacy of iron supplementation in Peruvian children. Am J Hum Biol 2024; 36:e24058. [PMID: 38420749 DOI: 10.1002/ajhb.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Despite repeated public health interventions, anemia prevalence among children remains a concern. We use an evolutionary medicine perspective to examine the intestinal microbiome as a pathway underlying the efficacy of iron-sulfate treatment. This study explores whether gut microbiota composition differs between anemic children who respond and do not respond to treatment at baseline and posttreatment and if specific microbiota taxa remain associated with response to iron supplementation after controlling for relevant inflammatory and pathogenic variables. METHODS Data come from 49 pre-school-aged anemic children living in San Juan de Lurigancho, Lima, Peru. We tested for differences in alpha and beta diversity using QIIME 2 and performed differential abundance testing in DESeq2 in R. We ran multivariate regression models to assess associations between abundance of specific taxa and response while controlling for relevant variables in Stata 17. RESULTS While we found no evidence for gut microbiota diversity associated with child response to iron treatment, we observed several differential abundance patterns between responders and non-responders at both timepoints. Additionally, we present support for a nonzero relationship between lower relative abundance of Barnesiellaceae and response to iron supplementation in samples collected before and after treatment. CONCLUSION While larger studies and more specific approaches are needed to understand the relationship between microbes and anemia in an epidemiological context, this study suggests that investigating nutritional status and pathogen exposure is key to better understanding the gut microbiome and impact of iron fortification.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jeff Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rachel B Burten
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amanda L Thompson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Anthropology, University of North Carolina, Chapel Hill, North Carolina, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Adamberg S, Adamberg K. Prevotella enterotype associates with diets supporting acidic faecal pH and production of propionic acid by microbiota. Heliyon 2024; 10:e31134. [PMID: 38779015 PMCID: PMC11109898 DOI: 10.1016/j.heliyon.2024.e31134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolism of dietary fibres by colon microbiota plays an important role for human health. Personal data from a nutrition study (57 subjects) were analysed to elucidate quantitative associations between the diet, faecal microbiome, organic acid concentrations and pH. Ratios of the predominant acids acetate, butyrate and propionate ranged from 1:0.67:0.27 to 1:0.17:0.36. Pectin-rich diets resulted in higher faecal acetate concentrations. Negative correlation between faecal pH and BSS was observed. Higher faecal pH and lower acid concentrations were related to the higher abundance of amino acid degrading Clostridium, Odoribacter and Eubacterium coprostanoligenes, which are weak carbohydrate fermenting taxa. Propionic acid correlated especially to high abundance of Prevotella and low abundance of proteobacteria. The acetate to propionate ratio of the Prevotella enterotype was about half of that of the Bacteroides enterotype. Based on the results we suggest the measurement of faecal pH and organic acid composition for research and diagnostic purposes.
Collapse
Affiliation(s)
- Signe Adamberg
- Tallinn University of Technology, Department of Chemistry and Biotechnology, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Tallinn University of Technology, Department of Chemistry and Biotechnology, 12618, Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618, Tallinn, Estonia
| |
Collapse
|
6
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Xie Z, He W, Gobbi A, Bertram HC, Nielsen DS. The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates. BMC Microbiol 2024; 24:83. [PMID: 38468200 PMCID: PMC10926653 DOI: 10.1186/s12866-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.
Collapse
Affiliation(s)
- Zhuqing Xie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- Present Address: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Present Address: European Food and Safety Authority, Parma, Italy
| | | | | |
Collapse
|
8
|
Nagy DU, Sándor-Bajusz KA, Bódy B, Decsi T, Van Harsselaar J, Theis S, Lohner S. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: a systematic review with meta-analyses. Crit Rev Food Sci Nutr 2023; 63:12018-12035. [PMID: 35833477 DOI: 10.1080/10408398.2022.2098246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inulin-type fructans are considered to stimulate the growth of beneficial microorganisms, like Bifidobacterium in the gut and support health. However, both the fructan source and chemical structure may modify these effects. A systematic review was conducted to assess the effects of chicory-derived inulin-type fructans consumed either in specific foods or as dietary supplements on abundance of Bifidobacterium in the gut and on health-related outcomes. Three electronic databases and two clinical trial registries were systematically searched until January 2021. Two authors independently selected randomized controlled trials that investigated with a protocol of minimum seven days supplementation the effect of chicory-derived inulin-type fructans on Bifidobacterium abundance in any population. Meta-analyses with random-effects model were conducted on Bifidobacterium abundance and bowel function parameters. We evaluated risk of bias using Cochrane RoB tool. Chicory-derived inulin-type fructans at a dose of 3-20 g/day significantly increased Bifidobacterium abundance in participants with an age range from 0 to 83 years (standardized mean difference: 0.83, 95% CI: 0.58-1.08; p < 0.01; 50 studies; 2525 participants). Significant bifidogenic effects were observed in healthy individuals and in populations with health impairments, except gastrointestinal disorders. Significant beneficial effects on bowel function parameters were observed in healthy subjects. Chicory-derived inulin-type fructans may have significant bifidogenic effects and may beneficially influence bowel function in healthy individuals. PROSPERO registration number CRD42020162892.
Collapse
Affiliation(s)
- Dávid U Nagy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Halle (Saale), Germany
| | - Kinga Amália Sándor-Bajusz
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Blanka Bódy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | | | - Stephan Theis
- BENEO-Institute, c/o BENEO GmbH, Obrigheim, (Germany)
| | - Szimonetta Lohner
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Husmann FMD, Zimmermann MB, Herter-Aeberli I. The Effect of Prebiotics on Human Iron Absorption: A Review. Adv Nutr 2022; 13:2296-2304. [PMID: 35816457 PMCID: PMC9776726 DOI: 10.1093/advances/nmac079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 01/29/2023] Open
Abstract
Iron deficiency remains the most common nutritional deficiency. Oral iron supplementation is the recommended first-line treatment and used as a preventive measure as well. Enhancers of iron absorption are highly sought after to improve supplementation outcomes. Evidence from animal and human studies exists that prebiotics can enhance iron absorption. The purpose of this present narrative review of the literature is to summarize the existing evidence on the effects of prebiotics on human iron absorption. Relevant articles were identified from PUBMED, Scopus, and Web of Science from inception to November 2021. Only human trials investigating the effect of prebiotics on iron absorption were included. Eleven articles were identified and included for review. There are promising findings supporting an enhancing effect of certain prebiotics, but inconsistencies between the studies and results exist. The most convincing evidence exists for the prebiotics galacto-oligosaccharides and fructo-oligosaccharides combined with the commonly used iron compound ferrous fumarate, from studies in adult women with low iron stores and in anemic infants. Many factors seem to play a role in the enhancing effect of prebiotics on iron absorption such as type of prebiotic, dose, acute (single-dose) or chronic (long-term) prebiotic consumption, iron compound, iron status, inflammatory status, and age of the population studied. More research investigating the optimal combination of prebiotic, iron compound, and dose as well as the effect of long-term application on iron status outcomes is needed.
Collapse
Affiliation(s)
- Frederike M D Husmann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Rizwan Ahmad AM, Farooq U, Anees M, Anis RA, Rashid S, Ahmed W. Co-administration of Inulin and Iron Fortificants improves Iron Deficiency Biomarkers in Female Sprague Dawley Rats. Food Sci Nutr 2022; 10:2141-2148. [PMID: 35844906 PMCID: PMC9281937 DOI: 10.1002/fsn3.2337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Micronutrient deficiencies affect approximately 2 billion people worldwide and iron deficiency anemia is one of them. The instant research was an attempt to determine the efficacy of co-administration of two iron fortificants (NaFeEDTA and FeSO4) and inulin (a prebiotic) on serum iron, ferritin, transferrin, and total iron-binding capacity in iron-deficient female Sprague Dawley rats. For this research, rats were divided into ten groups, (two control and eight treatment groups). Treatment groups were made iron deficient by feeding them with triapine, an iron binder for two weeks. All treatment groups were fed with inulin at two different dosage levels along with iron fortificants. The study results showed that serum ferritin and serum iron levels significantly improved from initiation to termination of study. Also, mean values of total iron-binding capacity and serum transferrin showed a steady decline over a period of three months indicating that iron stores were being improved. It was concluded that co-administration of inulin and iron fortificants helped improve iron deficiency biomarkers in female Sprague Dawley rats.
Collapse
Affiliation(s)
- Abdul Momin Rizwan Ahmad
- Department of Nutrition & DieteticsNational University of Medical Sciences (NUMS)RawalpindiPakistan
| | - Umar Farooq
- Department of Diet and Nutritional SciencesIBADAT International UniversityIslamabadPakistan
| | - Mariam Anees
- Department of BiochemistryQuaid‐i‐Azam UniversityLahorePakistan
| | - Riffat Aysha Anis
- Department of Diet and Nutritional SciencesIBADAT International UniversityIslamabadPakistan
| | - Summer Rashid
- Department of Food and NutritionMinhaj UniversityLahorePakistan
| | - Waqas Ahmed
- Department of Food Science & Human NutritionUniversity of Veterinary & Animal SciencesLahorePakistan
| |
Collapse
|
11
|
Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022; 10:microorganisms10071330. [PMID: 35889049 PMCID: PMC9317605 DOI: 10.3390/microorganisms10071330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency anemia (IDA) is very common and affects approximately 1/3 of the world’s human population. There are strong research data that some probiotics, such as Lactobacillus acidophilus and Bifidobacterium longum improve iron absorption and influence the course of anemia. Furthermore, prebiotics, including galactooligosaccharides (GOS) and fructooligosaccharides (FOS), increase iron bioavailability and decrease its destructive effect on the intestinal microbiota. In addition, multiple postbiotics, which are probiotic metabolites, including vitamins, short-chain fatty acids (SCFA), and tryptophan, are involved in the regulation of intestinal absorption and may influence iron status in humans. This review presents the actual data from research studies on the influence of probiotics, prebiotics, and postbiotics on the prevention and therapy of IDA and the latest findings regarding their mechanisms of action. A comparison of the latest research data and theories regarding the role of pre-, post-, and probiotics and the mechanism of their action in anemias is also presented and discussed.
Collapse
|
12
|
Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T, Nikoloudaki O, Calabrese FM, Turroni S, Taverniti V, Unión Caballero A, Andrés-Lacueva C, Porrini M, Gobbetti M, De Angelis M, Brigidi P, Pinart M, Nimptsch K, Guglielmetti S, Riso P. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022; 14:2559. [PMID: 35807739 PMCID: PMC9268559 DOI: 10.3390/nu14132559] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers.
Collapse
Affiliation(s)
- Valentina Vinelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Paola Biscotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Francesco Maria Calabrese
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Andrea Unión Caballero
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Maria De Angelis
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Mariona Pinart
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Katharina Nimptsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| |
Collapse
|
13
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
14
|
Kim YT, Kim CH, Kwon JG, Cho JH, Shin YS, Kim HB, Lee JH. In vivo Trial of Bifidobacterium longum Revealed the Complex Network Correlations Between Gut Microbiota and Health Promotional Effects. Front Microbiol 2022; 13:886934. [PMID: 35783421 PMCID: PMC9247516 DOI: 10.3389/fmicb.2022.886934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Complete genome sequence analysis of Bifidobacterium longum subsp. longum BCBL-583 isolated from a Korean female fecal sample showed no virulence factor or antibiotic resistance gene, suggesting human safety. In addition, this strain has oxygen and heat tolerance genes for food processing, and cholesterol reduction and mucin adhesion-related genes were also found. For in vivo evaluations, a high fat diet (HFD) mouse model was used, showing that BCBL-583 administration to the model (HFD-583) reduced the total cholesterol and LDL-cholesterol in the blood and decreased pro-inflammatory cytokines but increased anti-inflammatory cytokines, substantiating its cholesterol reduction and anti-inflammation activities. Subsequent microbiome analysis of the fecal samples from the HFD mouse model revealed that BCBL-583 administration changed the composition of gut microbiota. After 9 weeks feeding of bifidobacteria, Firmicutes, Actinobacteria, and Bacteroidetes increased, but Proteobacteria maintained in the HFD mouse models. Further comparative species-level compositional analysis revealed the inhibitions of cholesterol reduction-related Eubacterium coprostanoligenes and obesity-related Lactococcus by the supplementation of B. longum BCBL-583, suggesting its possible cholesterol reduction and anti-obesity activities. The correlation analysis of HFD-583 between the gut microbiota compositional change and cholesterol/immune response showed that Verrucomicrobia, Firmicutes, Actinobacteria, and Bacteroidetes may play an important role in cholesterol reduction and anti-inflammation. However, correlation analysis of Proteobacteria showed the reverse correlation in HFD-583. Interestingly, the correlation analysis of B. longum ATCC 15707 administration to HFD model showed similar patterns of cholesterol but different in immune response patterns. Therefore, this correlation analysis suggests that the microbial composition and inflammatory cytokine/total-cholesterol may be closely related in the administration of BCBL-583 in the HFD mice group. Consequently, BCBL-583 could be a good probiotic strain for gut health promotion through gut microbiota modulation.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Chul-Hong Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Food Research Center, Binggrae Co., Ltd., Namyangju, South Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Young-Sup Shin
- Food Research Center, Binggrae Co., Ltd., Namyangju, South Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
- Hyeun Bum Kim,
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Ju-Hoon Lee,
| |
Collapse
|
15
|
Agrizzi Verediano T, Agarwal N, Juste Contin Gomes M, Martino HSD, Tako E. Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 63:9017-9032. [PMID: 35403512 DOI: 10.1080/10408398.2022.2060933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits of dietary fiber on intestinal health have been well established. However, there is no consensus on the dietary fiber effects on mineral absorption. The objective of this systematic review is to discuss the evidence on the dietary fiber effects on iron absorption and iron status-related biomarkers. A comprehensive search of 3 databases: PubMed, Scopus and Web of Science was carried out. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, and a total of 32 studies were included with 9 of them clinical studies and 23 in vivo. The studies included assessment of dietary fiber in the form of fructo-oligosaccharides, galacto-oligosaccharides, inulin, pectin, guar gum, oligofructose, xylo-oligosaccharides, and mannan-oligosaccharide. Hemoglobin (n = 21) and fractional iron absorption (n = 6) were the most frequently reported outcomes. The results showed no significant correlations between consumption of dietary fiber to iron absorption/status-related biomarkers. However, the current evidence may not be substantial to invalidate the recommendation of dietary fiber as an agent to improve dietary iron bioavailability, and absorption. In conclusion, there is a need to conduct further clinical trials with long dietary fiber intervention focusing on population at high risk for iron deficiency.
Collapse
Affiliation(s)
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | | | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
16
|
Chen J, Wang Y, Pan J, Lu LW, Yu J, Liu B, Chen F, Deng H. Prebiotic Oligosaccharides Enhance Iron Absorption Via Modulation of Protein Expression and Gut Microbiota in a Dose‐response Manner in Iron‐deficient Growing Rats. Mol Nutr Food Res 2022; 66:e2101064. [DOI: 10.1002/mnfr.202101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie‐Hua Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| | - Yiyuan Wang
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University, Guangzhou, China Zhuhai Maternity and Child Health Hospital Zhuhai 519001 China
| | - Jialiang Pan
- Department of Inspection and Quarantine School of Public Health Southern Medical University Guangzhou 510515 China
| | - Louise Weiwei Lu
- Human Nutrition Unit School of Biological Sciences University of Auckland Auckland 1010 New Zealand
- High Value Nutrition National Science Challenge Auckland 1142 New Zealand
| | - Jianfeng Yu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Bin Liu
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Feng Chen
- Institute for Innovat ive Development of Food Industry Shenzhen University Shenzhen 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study Shenzhen University Shenzhen 518060 China
| | - Hong Deng
- Department of Nutrition and food Hygiene School of Public Health Southern Medical University Guangzhou 510515 China
| |
Collapse
|
17
|
Giorgetti A, Hussman FMD, Zeder C, Herter-Aeberli I, Zimmermann MB. Prebiotic Galacto-oligosaccharides and Fructo-oligosaccharides, but not Acacia Gum, Increase Iron Absorption from a Single High-dose Ferrous Fumarate Supplement in Iron-depleted Women. J Nutr 2022; 152:1015-1021. [PMID: 36967158 DOI: 10.1093/jn/nxac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prebiotic galacto-oligosaccharides (GOS) increase iron absorption from fortification-level iron doses given as ferrous fumarate (FeFum) in women and children. Whether GOS or other fibers, such as prebiotic fructo-oligosaccharides (FOS) and acacia gum, increase iron absorption from higher supplemental doses of FeFum is unclear. OBJECTIVES In iron-depleted [serum ferritin (SF)< 25μg/L] women, we tested if oral co-administration of 15g of GOS, FOS or acacia gum increases iron absorption from a 100mg iron supplement given as FeFum. METHODS In a randomized, single-blind cross-over study, 30 women (median age 26.2 years, median SF 12.9μg/L) consumed a 100mg iron tablet labelled with 4mg of 57Fe or 58Fe, given with either: a) 15g GOS; b) 15g FOS; c) 15g acacia gum; or d) 6.1g lactose and 1.5g sucrose (control; matching the amounts of sucrose and lactose present in the GOS powder providing 15 g GOS), dissolved in water. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte isotopic incorporation 14 days after administration. Data were analysed using a linear mixed-effect model. We also tested, in vitro, iron solubility at different pH and dialyzability from the different supplement combinations administered in vivo. RESULTS FIA from FeFum given with GOS and FOS was significantly higher (+45% and 51%, respectively; P < 0.001 for both) compared with control; total iron absorption [median (IQR)] was 34.6 (28.4; 49.1); 36.1 (29.0; 46.2) and 23.9 (20.5; 34.0) mg, respectively. Acacia gum did not significantly affect FIA from FeFum (P = 0.688). In vitro, iron dialyzability of FeFum + GOS was 46% higher than of FeFum alone (P = 0.003). CONCLUSIONS In iron-depleted women, both GOS and FOS co-administration with FeFum increase iron absorption by ∼50% from a 100mg oral iron dose, resulting in an additional 10-12mg of absorbed iron. Thus, GOS and FOS may be promising new enhancers of supplemental iron absorption.The study was registered at clinicaltrials.gov as NCT04194255 (https://clinicaltrials.gov/ct2/show/NCT04194255).
Collapse
|
18
|
Zimmermann C, Wagner AE. Impact of Food-Derived Bioactive Compounds on Intestinal Immunity. Biomolecules 2021; 11:biom11121901. [PMID: 34944544 PMCID: PMC8699755 DOI: 10.3390/biom11121901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal system is responsible for the digestion and the absorption of nutrients. At the same time, it is essentially involved in the maintenance of immune homeostasis. The strongest antigen contact in an organism takes place in the digestive system showing the importance of a host to develop mechanisms allowing to discriminate between harmful and harmless antigens. An efficient intestinal barrier and the presence of a large and complex part of the immune system in the gut support the host to implement this task. The continuous ingestion of harmless antigens via the diet requires an efficient immune response to reliably identify them as safe. However, in some cases the immune system accidentally identifies harmless antigens as dangerous leading to various diseases such as celiac disease, inflammatory bowel diseases and allergies. It has been shown that the intestinal immune function can be affected by bioactive compounds derived from the diet. The present review provides an overview on the mucosal immune reactions in the gut and how bioactive food ingredients including secondary plant metabolites and probiotics mediate its health promoting effects with regard to the intestinal immune homeostasis.
Collapse
|
19
|
Skrypnik K, Bogdański P, Sobieska M, Schmidt M, Suliburska J. Influence of multistrain probiotic and iron supplementation on iron status in rats. J Trace Elem Med Biol 2021; 68:126849. [PMID: 34488183 DOI: 10.1016/j.jtemb.2021.126849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The impact of multistrain probiotics on iron (Fe) metabolism under Fe-deficient diet conditions remains unknown. The study aimed to compare the effect of 6 weeks simultaneous and exclusive oral multistrain probiotic and iron supplementation on selected parameters of Fe metabolism in rats on an Fe-deficient diet. METHODS Forty rats were assigned to five groups, with eight animals in each, and for 6 weeks received: the CC group- a standard diet, the DD group- an Fe-deficient diet, the DPB group- an Fe-deficient with a multispecies probiotic, the DFE group- an Fe-deficient diet supplemented with iron, the DPBFE group- an Fe-deficient diet with iron and a multispecies probiotic. The Fe content in blood and tissues; serum concentration of erythroferrone, ferritin (Ft), homocysteine, hepcidin (HEPC) and lactoferrin; liver content of divalent metal transporter 1 (DMT1), transferrin receptor protein 1 (TfR1) and 2 (TfR2) and ZRT/IRT-like protein 14 (ZIP14) and faecal microbiota were assessed. RESULTS In DPBFE group, unlike in DPB and DFE groups, duodenal Fe content was higher compared to DD group. Similarly, serum Ft level was higher in DPBFE group, but not in DPB and DFE groups, compared to DD group. CONCLUSIONS Six weeks simultaneous oral multistrain probiotic and Fe supplementation, but not exclusive probiotic or Fe intake, increases duodenal Fe absorption in rats and presents higher effectiveness in increasing tissue Fe stores.
Collapse
Affiliation(s)
- Katarzyna Skrypnik
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, WojskaPolskiego St. 31, Poznan, 60-624, Poland
| | - Paweł Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznań University of Medical Sciences, ul. Szamarzewskiego 82/84, 60-569, Poznań, Poland
| | - Magdalena Sobieska
- Department of Physiotherapy, Chair for Rehabilitation and Physiotherapy, Poznań University of Medical Sciences, 28 Czerwca 1956 r. St. 135/147, 61-545, Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, WojskaPolskiego St. 31, Poznan, 60-624, Poland.
| |
Collapse
|
20
|
Hughes RL, Alvarado DA, Swanson KS, Holscher HD. The Prebiotic Potential of Inulin-type Fructans: A Systematic Review. Adv Nutr 2021; 13:S2161-8313(22)00074-6. [PMID: 34555168 PMCID: PMC8970830 DOI: 10.1093/advances/nmab119] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inulin-type fructans (ITF), including short-chain fructooligosaccharides (scFOS), oligofructose, and inulin, are commonly used fibers that are widely regarded as prebiotic for their ability to be selectively utilized by the intestinal microbiota to confer a health benefit. However, the literature thus far lacks a thorough discussion of the evidence from human clinical trials for the prebiotic effect of ITF, including both effects on the intestinal microbiota composition as well as the intestinal and extraintestinal (e.g., glucose homeostasis, lipids, mineral absorption and bone health, appetite and satiety, inflammation and immune function, and body composition) benefits. Additionally, there is a lack of discussion regarding aspects such as the effect of ITF chain length on its intestinal and extraintestinal effects. The overall objective of this systematic review was to summarize the prebiotic potential of ITF based on the results of human clinical trials in healthy adult populations. Evidence from studies included in the current review suggest that ITF have a prebiotic effect on the intestinal microbiota, promoting the abundances of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii. Beneficial health effects reported following ITF intake include improved intestinal barrier function, improved laxation, increased insulin sensitivity, decreased triglycerides and an improved lipid profile, increased absorption of calcium and magnesium, and increased satiety. While there is some evidence for differing effects of ITF based on chain length, lack of direct comparisons and detailed descriptions of physicochemical properties limit the ability to draw conclusions from human clinical studies. Future research should focus on elucidating the mechanisms by which the intestinal microbiota mediates or modifies the effects of ITF on human health and the contribution of individual factors such as age and metabolic health to move towards personalization of prebiotic application.
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - David A Alvarado
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, USA,Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
21
|
Mikulic N, Uyoga MA, Paganini D, Mwasi E, Stoffel NU, Zeder C, Karanja S, Zimmermann MB. Consumption of a Single Dose of Prebiotic Galacto-Oligosaccharides Does Not Enhance Iron Absorption from Micronutrient Powders in Kenyan Infants: A Stable Iron Isotope Study. J Nutr 2021; 151:1205-1212. [PMID: 33693741 DOI: 10.1093/jn/nxab007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long-term feeding of prebiotic galacto-oligosaccharides (GOS) increases iron absorption in African infants, but the underlying mechanism and how long GOS need to be fed to infants to achieve an increase in absorption is uncertain. OBJECTIVES In Kenyan infants, we tested whether the addition of GOS to a single test meal would affect iron absorption from a micronutrient powder (MNP) containing ferrous sulfate (FeSO4) and another MNP containing ferrous fumarate (FeFum) and sodium iron ethylenediaminetetraacetate (NaFeEDTA). METHODS In a randomized-entry, prospective crossover study, iron deficient (87%) and anemic (70%) Kenyan infants (n = 23; mean ± SD age, 9.9 ± 2.1 months) consumed 4 stable iron isotope-labeled maize porridge meals fortified with MNPs containing 5 mg iron as FeFum + NaFeEDTA, or FeSO4, either without or with 7.5 g GOS. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte incorporation of isotopic labels. Data were analyzed using a 2-way repeated-measures ANOVA. RESULTS There was no significant interaction between GOS and the iron compounds on FIA, and the addition of GOS did not have a significant effect on FIA. There was a statistically significant difference in FIA between the meals fortified with FeSO4 and with FeFum + NaFeEDTA (P < 0.001).Given with GOS, FIA from FeSO4 was 40% higher than from FeFum + NaFeEDTA (P < 0.001); given without GOS, it was 51% higher (P < 0.01). CONCLUSIONS The addition of GOS to a single iron-fortified maize porridge test meal in Kenyan infants did not significantly increase iron absorption, suggesting long-term feeding of GOS may be needed to enhance iron absorption at this age. This study was registered at clinicaltrials.gov as NCT02666417.
Collapse
Affiliation(s)
- Nadja Mikulic
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Daniela Paganini
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Edith Mwasi
- Pediatrics Department, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Simon Karanja
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
22
|
Zhang F, Yung KK, KongYeung C. Effects of common prebiotics on iron status and production of colonic short-chain fatty acids in anemic rats. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Abstract
Magnesium (Mg2+) plays an essential role in many biological processes. Mg2+ deficiency is therefore associated with a wide range of clinical effects including muscle cramps, fatigue, seizures and arrhythmias. To maintain sufficient Mg2+ levels, (re)absorption of Mg2+ in the intestine and kidney is tightly regulated. Genetic defects that disturb Mg2+ uptake pathways, as well as drugs interfering with Mg2+ (re)absorption cause hypomagnesemia. The aim of this review is to provide an overview of the molecular mechanisms underlying genetic and drug-induced Mg2+ deficiencies. This leads to the identification of four main mechanisms that are affected by hypomagnesemia-causing mutations or drugs: luminal transient receptor potential melastatin type 6/7-mediated Mg2+ uptake, paracellular Mg2+ reabsorption in the thick ascending limb of Henle's loop, structural integrity of the distal convoluted tubule and Na+-dependent Mg2+ extrusion driven by the Na+/K+-ATPase. Our analysis demonstrates that genetic and drug-induced causes of hypomagnesemia share common molecular mechanisms. Targeting these shared pathways can lead to novel treatment options for patients with hypomagnesemia.
Collapse
|
24
|
Ahmad AMR, Ahmed W, Iqbal S, Javed M, Rashid S, Iahtisham-ul-Haq. Prebiotics and iron bioavailability? Unveiling the hidden association - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Kumar V, Khare P, Devi K, Kaur J, Kumar V, Kiran Kondepudi K, Chopra K, Bishnoi M. Short-chain fatty acids increase intracellular calcium levels and enhance gut hormone release from STC-1 cells via transient receptor potential Ankyrin1. Fundam Clin Pharmacol 2021; 35:1004-1017. [PMID: 33636045 DOI: 10.1111/fcp.12663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs), metabolites of colonic bacterial fermentation of complex carbohydrates, are closely related to the release of gut hormones. In this study, we examined the involvement of transient receptor potential ankyrin 1 (TRPA1) in SCFA-induced increase in intracellular calcium ([Ca2+ ]i ) and its impact on gut hormone secretion using naturally TRPA1 expressing intestinal secretin tumour cell-1 (STC-1) cell line. Individual SCFAs and their physiological mix enhanced calcium influx in TRPA1-dependent manner. SCFA mix also significantly increased membrane expression of TRPA1. Gene expression studies revealed that SCFA mix elevated the expression of genes involved in calcium-activated calcineurin pathway in TRPA1-dependent manner and cAMP-regulated transcriptional co-activators (CRTC) pathway independent to TRPA1. Genes representing synaptic vesicular exocytosis and gut hormone precursors were significantly elevated with SCFA mix treatment. Treatment with TRPA1 antagonist HC-030031 markedly reduced these effects. The release of gut hormones was elevated with 10 mm SCFA mix in TRPA1 dependent manner. Our in vivo prebiotic study results suggested presence of an environment conducive to increase in gut hormone secretion. Overall, our findings provide an evidence for the possible role of TRPA1 in SCFA-induced increase in gut hormone secretion, hence another mechanism of action for prebiotics.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Pragyanshu Khare
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kirti Devi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Jasleen Kaur
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Vijay Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| |
Collapse
|
26
|
Man S, Liu T, Yao Y, Lu Y, Ma L, Lu F. Friend or foe? The roles of inulin-type fructans. Carbohydr Polym 2021; 252:117155. [DOI: 10.1016/j.carbpol.2020.117155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
|
27
|
Costa GT, Vasconcelos QDJS, Abreu GC, Albuquerque AO, Vilar JL, Aragão GF. Systematic review of the ingestion of fructooligosaccharides on the absorption of minerals and trace elements versus control groups. Clin Nutr ESPEN 2020; 41:68-76. [PMID: 33487309 DOI: 10.1016/j.clnesp.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Fructooligosaccharides (FOS) are non-caloric and unconventional sugars that are not metabolized by the human body, but can be fermented by the colonic microbiota, leading to some beneficial effects on the absorption of minerals and trace elements. There is, however, a lack of research that describes the continued consumption of FOS in the diet between healthy and ill individuals and their impact. The objective of this systematic review was to evaluate the evidence behind the role of FOS in the absorption of minerals and trace elements in the human body. METHODS The bibliographic research covered the period from January 2000 to August 2020. Four databases were investigated. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA). The systematic review protocol was recorded in PROSPERO (139621). Two reviewers examined and extracted data from qualitative and quantitative studies published in the main databases, through a careful analysis. The risk of bias was assessed by four reviewers. RESULTS Of a total of 1494 texts, 30 complete articles composed this review. Two overarching categories represented the results: animal models and human models (randomized crossover design). Regarding human models, the results showed an improvement in minerals, especially the absorption of calcium, magnesium and iron after the ingestion of FOS, and specifically the absorption of minerals and trace elements in postmenopausal women was improved. CONCLUSIONS The use of FOS to improve the absorption of minerals and trace elements seems to be beneficial with evidence corroborating both in human and animal studies. However, the literature lacks articles exploring the daily dose and duration for FOS benefits, as well as long-term side effects in healthy or unhealthy subjects. Future research should focus on addressing the extent of the functional effect of this fiber and identifying the impact on overall health.
Collapse
Affiliation(s)
- G T Costa
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | - G C Abreu
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - A O Albuquerque
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - J L Vilar
- Surgery Department, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - G F Aragão
- Drug Research and Development Center, Federal University of Ceará, Brazil; Health Sciences Center, State University of Ceará, Brazil.
| |
Collapse
|
28
|
Jeroense FMD, Zeder C, Zimmermann MB, Herter-Aeberli I. Acute Consumption of Prebiotic Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate, but not from Ferrous Sulfate and Ferric Pyrophosphate: Stable Iron Isotope Studies in Iron-Depleted Young Women. J Nutr 2020; 150:2391-2397. [PMID: 32692367 DOI: 10.1093/jn/nxaa199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although acute consumption of high doses of prebiotic galacto-oligosaccharides (GOS) increases fractional iron absorption (FIA) from ferrous fumarate (FeFum), it is uncertain if low doses of GOS have this effect. Furthermore, whether GOS improve iron absorption from other commonly used iron compounds and whether ascorbic acid (AA) enhances the effect of GOS on iron absorption from FeFum is unclear. OBJECTIVES In iron-depleted women [serum ferritin (SF) <30 μg/L], we assessed: 1) whether the acute enhancing effect of GOS on FeFum is dose dependent; 2) if GOS would affect FIA from ferrous sulfate (FeSO4) or ferric pyrophosphate (FePP); and 3) if AA and GOS given together enhance FIA from FeFum to a greater extent compared with GOS alone. METHODS We recruited 46 women (mean age 22.0 y, mean BMI 21.3 kg/m2, median SF 17.1 μg/L), and measured FIA from 14 mg iron labeled with stable isotopes in the following conditions: 1) FIA from FeFum given with 3.5 g, 7 g GOS, and without GOS; 2) FIA from FeSO4 and FePP given with and without 15 g GOS; and 3) FIA from FeFum given with 7 g GOS with and without 93 mg AA. FIA was measured as erythrocyte incorporation of stable isotopes after 14 d. Comparisons were made using paired samples t-test or Wilcoxon rank sum test where appropriate. RESULTS Giving 7 g of GOS significantly increased FIA from FeFum (+26%; P = 0.039), whereas 3.5 g GOS did not (P = 0.130). GOS did not significantly increase FIA from FeSO4 (P = 0.998) or FePP (P = 0.059). FIA from FeFum given with GOS and AA was significantly higher compared with FeFum given with GOS alone (+30%; P <0.001). CONCLUSIONS In iron-depleted women, GOS does not increase FIA from FeSO4 or FePP, but it increases FIA from FeFum. Thus, a combination of FeFum and GOS may be a well-absorbed formula for iron supplements. The study was registered at clinicaltrials.gov as NCT03762148.
Collapse
Affiliation(s)
- Frederike M D Jeroense
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Rusu IG, Suharoschi R, Vodnar DC, Pop CR, Socaci SA, Vulturar R, Istrati M, Moroșan I, Fărcaș AC, Kerezsi AD, Mureșan CI, Pop OL. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency-A Literature-Based Review. Nutrients 2020; 12:E1993. [PMID: 32635533 PMCID: PMC7400826 DOI: 10.3390/nu12071993] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in the human body is a global issue with an impact on more than two billion individuals worldwide. The most important functions ensured by adequate amounts of iron in the body are related to transport and storage of oxygen, electron transfer, mediation of oxidation-reduction reactions, synthesis of hormones, the replication of DNA, cell cycle restoration and control, fixation of nitrogen, and antioxidant effects. In the case of iron deficiency, even marginal insufficiencies may impair the proper functionality of the human body. On the other hand, an excess in iron concentration has a major impact on the gut microbiota composition. There are several non-genetic causes that lead to iron deficiencies, and thus, several approaches in their treatment. The most common methods are related to food fortifications and supplements. In this review, following a summary of iron metabolism and its health implications, we analyzed the scientific literature for the influence of iron fortification and supplementation on the gut microbiome and the effect of probiotics, prebiotics, and/or synbiotics in iron absorption and availability for the organism.
Collapse
Affiliation(s)
- Ioana Gabriela Rusu
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Romana Vulturar
- Department of Molecular Sciences, University of Medicine and Pharmacy Iuliu Hatieganu, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400327 Cluj-Napoca, Romania
| | - Magdalena Istrati
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania;
| | - Ioana Moroșan
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania;
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Andreea Diana Kerezsi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (I.G.R.); (R.S.); (D.C.V.); (C.R.P.); (S.A.S.); (A.C.F.); (A.D.K.); (C.I.M.)
| |
Collapse
|
30
|
Hepcidin and Erythroferrone Correlate with Hepatic Iron Transporters in Rats Supplemented with Multispecies Probiotics. Molecules 2020; 25:molecules25071674. [PMID: 32260496 PMCID: PMC7180848 DOI: 10.3390/molecules25071674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The influence of probiotic supplementation on iron metabolism remains poorly investigated. However, a range of studies, especially on Lactobacillus plantarum 299v (Lp229v), have indicated a possible positive impact of probiotics on iron absorption. The aim of the study was to determine the effect of multistrain probiotic supply on iron balance. Thirty Wistar rats were randomized into three groups: placebo (KK group), and multistrain probiotic per os in a daily dose of 2.5 × 109 colony forming units (CFU) (PA group) or 1 × 1010 CFU (PB group). Multistrain probiotic consisted of nine bacterial strains: Bifidobacterium bifidum W23, B. lactis W51, B. lactis W52, Lactobacillus acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, Lactococcus lactis W19, and Lc. lactis W58, in equal proportions. After six weeks, blood and organ samples were collected. No differences were found between the three groups in terms of serum concentrations of hepcidin (HEPC), lactoferrin (LTF), homocysteine (HCY), ferritin (Ft), or erythroferrone (ErFe), or in liver content of divalent metal transporter 1 (DMT1), transferrin receptors 1 and 2 (TfR), or ZRT/IRT-like protein 14 (ZIP14) proteins. In the overall sample, positive correlations were noted between the serum concentrations of hepcidin and lactoferrin, and hepcidin and ferritin; serum concentration of hepcidin and DMT1 and TfR1 in the liver; and serum concentration of erythroferrone and TfR2 in the liver. The correlations of serum hepcidin and erythroferrone with liver DMT1 and TfR represent significant mechanisms of Fe homeostasis. Our study has shown that multistrain probiotic supplementation used in the experiment did not disrupt the biochemical and hepatic regulatory processes of Fe balance and did not demonstrate significant influence on selected parameters of Fe metabolism.
Collapse
|
31
|
Costa G, Vasconcelos Q, Abreu G, Albuquerque A, Vilarejo J, Aragão G. Changes in nutrient absorption in children and adolescents caused by fructans, especially fructooligosaccharides and inulin. Arch Pediatr 2020; 27:166-169. [DOI: 10.1016/j.arcped.2020.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
|
32
|
Cui J, Lian Y, Zhao C, Du H, Han Y, Gao W, Xiao H, Zheng J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr Rev Food Sci Food Saf 2019; 18:1514-1532. [DOI: 10.1111/1541-4337.12489] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiefen Cui
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yunhe Lian
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Chengying Zhao
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hengjun Du
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Yanhui Han
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Wei Gao
- Research and Development Dept.Chenguang Biotech Group Co., Ltd. Hebei 057250 China
| | - Hang Xiao
- Dept. of Food ScienceUniv. of Massachusetts Amherst MA 01003 U.S.A
| | - Jinkai Zheng
- Inst. of Food Science and TechnologyChinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|
33
|
Alexander C, Swanson KS, Fahey GC, Garleb KA. Perspective: Physiologic Importance of Short-Chain Fatty Acids from Nondigestible Carbohydrate Fermentation. Adv Nutr 2019; 10:576-589. [PMID: 31305907 PMCID: PMC6628845 DOI: 10.1093/advances/nmz004] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, it has become increasingly obvious that dietary fiber or nondigestible carbohydrate (NDC) consumption is critical for maintaining optimal health and managing symptoms of metabolic disease. In accordance with this, the US FDA released its first official definition of dietary fiber in 2016 for regulation of Nutrition and Supplement Facts labels. Included in this definition is the requirement of an isolated or synthetic NDC to produce an accepted physiologic health benefit, such as improved laxation or reduced fasting cholesterol concentrations, upon consumption. Even though NDC fermentation and production of short-chain fatty acids elicit many physiologic effects, including serving as a source of energy for colonocytes, curbing glycemic response and satiety, promoting weight loss, enhancing mineral absorption, reducing systemic inflammation, and improving intestinal health, the process of fermentation is not considered a physiologic endpoint. Instead, expensive and laborious clinical trials must be conducted and an accepted physiologic benefit observed. In this review, we discuss the physiologic importance of NDC fermentation through extensive examination of clinical evidence and propose that the degree of fermentability of an NDC, rather than the endpoints of a clinical trial, may be appropriate for classifying it as a dietary fiber.
Collapse
Affiliation(s)
- Celeste Alexander
- Division of Nutritional Sciences,Abbott Nutrition, Columbus, OH,Address correspondence to CA (e-mail: )
| | - Kelly S Swanson
- Division of Nutritional Sciences,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - George C Fahey
- Division of Nutritional Sciences,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Keith A Garleb
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL,Abbott Nutrition, Columbus, OH
| |
Collapse
|
34
|
Jeroense FMD, Michel L, Zeder C, Herter-Aeberli I, Zimmermann MB. Consumption of Galacto-Oligosaccharides Increases Iron Absorption from Ferrous Fumarate: A Stable Iron Isotope Study in Iron-Depleted Young Women. J Nutr 2019; 149:738-746. [PMID: 31004135 DOI: 10.1093/jn/nxy327] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Animal studies suggest prebiotics can increase iron absorption, but results from human studies are equivocal. OBJECTIVES In iron-depleted women, before (baseline) and after daily consumption of galacto-oligosaccharides (GOS) for 4 wk, we sought to assess fractional iron absorption (FIA) from an iron supplement given with and without single doses of GOS in test meals or water. METHODS In all women (n = 34; median serum ferritin concentration = 16.4 µg/L), FIA from doses of 14 mg iron labeled with stable isotopes was measured in the following conditions at baseline: 1) FIA from ferrous fumarate (FeFum) in water given with and without 15 g GOS; 2) FIA from FeFum in a test meal given with and without 15 g GOS; 3) FIA from ferrous sulfate (FeSO4) in a test meal given without 15 g GOS. All subjects then consumed ∼15 g GOS daily for 4 wk. Then the following conditions were tested: 4) FIA from FeFum in a test meal with and without 15 g GOS; and 5) FIA from FeSO4 in a test meal with 15 g GOS. FIA was measured as erythrocyte incorporation of stable isotopes. RESULTS At baseline, GOS significantly increased FIA from FeFum when given with water (+61%; P < 0.001) and the meal (+28%; P = 0.002). After 4 wk of GOS consumption, GOS again significantly increased FIA from FeFum in the meal (+29%; P = 0.044). However, compared with baseline, consumption of GOS for 4 wk did not significantly enhance absorption from FeFum in the meal given without GOS. FIA from FeSO4 given with GOS in a meal after 4 wk of GOS consumption was not significantly greater than FIA from FeSO4 in a meal without GOS at baseline. CONCLUSIONS In iron-depleted women, GOS given with FeFum increases FIA, but 4 wk of GOS consumption did not enhance this effect. The study was registered at clinicaltrials.gov as NCT03325270.
Collapse
Affiliation(s)
- Frederike M D Jeroense
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ladina Michel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Feruś K, Drabińska N, Krupa-Kozak U, Jarocka-Cyrta E. A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018; 10:nu10111818. [PMID: 30469412 PMCID: PMC6266607 DOI: 10.3390/nu10111818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Iron deficiency anemia (IDA) occurs in 15–46% of patients with celiac disease (CD), and in some cases, it may be its only manifestation. Studies in animal models have shown that prebiotics, including inulin, may help to increase intestinal absorption of iron. The aim of this study was to evaluate the effect of a prebiotic, oligofructose-enriched inulin (Synergy 1), on iron homeostasis in non-anemic children and adolescents with celiac disease (CD) in association with a gluten-free diet (GFD). Thirty-four CD patients (4–18 years old) were randomized into two groups receiving Synergy 1 (10 g/day) or a placebo (maltodextrin) for three months. Before and after intervention, blood samples were collected from all patients for assessment of blood morphology, biochemical parameters and serum hepcidin concentration. We found that serum hepcidin concentration after the intervention was significantly decreased by 60.9% (p = 0.046) in the Synergy 1 group, whereas no significant difference was observed in the placebo group. No differences in morphological and biochemical blood parameters (including ferritin, hemoglobin and C-reactive protein (CRP)) were observed after intervention in either group. Given that hepcidin decrease may improve intestinal iron absorption, these results warrant further investigation in a larger cohort and especially in patients with IDA.
Collapse
Affiliation(s)
- Klaudia Feruś
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum Faculty of Medicine, University of Warmia & Mazury, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Urszula Krupa-Kozak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Elżbieta Jarocka-Cyrta
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum Faculty of Medicine, University of Warmia & Mazury, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
36
|
Sloan TJ, Jalanka J, Major GAD, Krishnasamy S, Pritchard S, Abdelrazig S, Korpela K, Singh G, Mulvenna C, Hoad CL, Marciani L, Barrett DA, Lomer MCE, de Vos WM, Gowland PA, Spiller RC. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One 2018; 13:e0201410. [PMID: 30048547 PMCID: PMC6062106 DOI: 10.1371/journal.pone.0201410] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background & aims Ingestion of poorly digested, fermentable carbohydrates (fermentable oligo-, di-, mono-saccharides and polyols; FODMAPs) have been implicated in exacerbating intestinal symptoms and the reduction of intake with symptom alleviation. Restricting FODMAP intake is believed to relieve colonic distension by reducing colonic fermentation but this has not been previously directly assessed. We performed a randomised controlled trial comparing the effect of a low FODMAP diet combined with either maltodextrin or oligofructose on colonic contents, metabolites and microbiota. Methods A parallel randomised controlled trial in healthy adults (n = 37). All subjects followed a low FODMAP diet for a week and supplemented their diet with either maltodextrin (MD) or oligofructose (OF) 7g twice daily. Fasted assessments performed pre- and post-diet included MRI to assess colonic volume, breath testing for hydrogen and methane, and stool collection for microbiota analysis. Results The low FODMAP diet was associated with a reduction in Bifidobacterium and breath hydrogen, which was reversed by oligofructose supplementation. The difference in breath hydrogen between groups post-intervention was 27ppm (95% CI 7 to 50, P<0.01). Colonic volume increased significantly from baseline in both groups (OF increased 110ml (19.6%), 95% CI 30ml to 190ml, P = 0.01; MD increased 90ml (15.5%), 95% CI 6ml to 175ml, P = 0.04) with no significant difference between them. Colonic volumes correlated with total breath hydrogen + methane. A divergence in Clostridiales abundance was observed with increased abundance of Ruminococcaceae in the maltodextrin group, while in the oligofructose group, Lachnospiraceae decreased. Subjects in either group with high methane production also tended to have high microbial diversity, high colonic volume and greater abundance of methanogens. Conclusion A low FODMAP diet reduces total bacterial count and gas production with little effect on colonic volume.
Collapse
Affiliation(s)
- Tim J. Sloan
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Jonna Jalanka
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | - Giles A. D. Major
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Shanthi Krishnasamy
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sue Pritchard
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Salah Abdelrazig
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Katri Korpela
- Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | - Gulzar Singh
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Claire Mulvenna
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Caroline L. Hoad
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Luca Marciani
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David A. Barrett
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Miranda C. E. Lomer
- Department of Nutritional Sciences, King’s College London, London, United Kingdom
| | - Willem M. de Vos
- Immunobiology Research Program, University of Helsinki, Helsinki, Finland
| | - Penny A. Gowland
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Robin C. Spiller
- The NIHR Nottingham Biomedical Research Centre (BRC) at Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT, Shanahan ER, Staudacher HM, Campbell KL. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr 2018; 107:965-983. [PMID: 29757343 DOI: 10.1093/ajcn/nqy041] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Background Dysfunction of the gut microbiota is frequently reported as a manifestation of chronic diseases, and therefore presents as a modifiable risk factor in their development. Diet is a major regulator of the gut microbiota, and certain types of dietary fiber may modify bacterial numbers and metabolism, including short-chain fatty acid (SCFA) generation. Objective A systematic review and meta-analysis were undertaken to assess the effect of dietary fiber interventions on gut microbiota composition in healthy adults. Design A systematic search was conducted across MEDLINE, EMBASE, CENTRAL, and CINAHL for randomized controlled trials using culture and/or molecular microbiological techniques evaluating the effect of fiber intervention on gut microbiota composition in healthy adults. Meta-analyses via a random-effects model were performed on alpha diversity, prespecified bacterial abundances including Bifidobacterium and Lactobacillus spp., and fecal SCFA concentrations comparing dietary fiber interventions with placebo/low-fiber comparators. Results A total of 64 studies involving 2099 participants were included. Dietary fiber intervention resulted in higher abundance of Bifidobacterium spp. (standardized mean difference (SMD): 0.64; 95% CI: 0.42, 0.86; P < 0.00001) and Lactobacillus spp. (SMD: 0.22; 0.03, 0.41; P = 0.02) as well as fecal butyrate concentration (SMD: 0.24; 0.00, 0.47; P = 0.05) compared with placebo/low-fiber comparators. Subgroup analysis revealed that fructans and galacto-oligosaccharides led to significantly greater abundance of both Bifidobacterium spp. and Lactobacillus spp. compared with comparators (P < 0.00001 and P = 0.002, respectively). No differences in effect were found between fiber intervention and comparators for α-diversity, abundances of other prespecified bacteria, or other SCFA concentrations. Conclusions Dietary fiber intervention, particularly involving fructans and galacto-oligosaccharides, leads to higher fecal abundance of Bifidobacterium and Lactobacillus spp. but does not affect α-diversity. Further research is required to better understand the role of individual fiber types on the growth of microbes and the overall gut microbial community. This review was registered at PROSPERO as CRD42016053101.
Collapse
Affiliation(s)
- Daniel So
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College, London, United Kingdom
| | - Megan Rossi
- Department of Nutritional Sciences, King's College, London, United Kingdom
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Gerald Holtmann
- Faculty of Medicine, University of Queensland, Brisbane, Australia.,Department of Gastroenterology & Hepatology
| | - Jaimon T Kelly
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Erin R Shanahan
- The University of Queensland Diamantina Institute, Translational Research Institute.,Department of Gastroenterology & Hepatology
| | | | - Katrina L Campbell
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia.,Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
38
|
Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain. Biomed Pharmacother 2018; 104:751-762. [PMID: 29807225 DOI: 10.1016/j.biopha.2018.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/29/2022] Open
Abstract
Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders.
Collapse
|
39
|
Ceppa F, Mancini A, Tuohy K. Current evidence linking diet to gut microbiota and brain development and function. Int J Food Sci Nutr 2018; 70:1-19. [DOI: 10.1080/09637486.2018.1462309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florencia Ceppa
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| | - Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| |
Collapse
|
40
|
Christides T, Ganis JC, Sharp PA. In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics. Eur J Nutr 2018; 57:669-678. [PMID: 27942845 PMCID: PMC5845627 DOI: 10.1007/s00394-016-1353-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Iron is essential for development and growth in young children; unfortunately, iron deficiency (ID) is a significant public health problem in this population. Young Child Formulae (YCF), milk-derived products fortified with iron and ascorbic acid (AA, an enhancer of iron absorption) may be good sources of iron to help prevent ID. Furthermore, some YCF are supplemented with prebiotics, non-digestible carbohydrates suggested to enhance iron bioavailability. The aim of our study was to evaluate iron bioavailability of YCF relative to prebiotic and AA concentrations. We hypothesised that YCF with the highest levels of prebiotics and AA would have the most bioavailable iron. METHODS We used the in vitro digestion/Caco-2 cell model to measure iron bioavailability from 4 commercially available YCF with approximately equal amounts of iron, but varying amounts of: AA and the prebiotics fructo- and galacto-oligosaccharides. Caco-2 cell ferritin formation was used as a surrogate marker for iron bioavailability. RESULTS The YCF with the highest concentration of prebiotics and AA had the highest iron bioavailability; conversely, the YCF with the lowest concentration of prebiotics and AA had the lowest. After the addition of exogenous prebiotics, so that all tested YCF had equivalent amounts, there was no longer a significant difference between YCF iron bioavailability. CONCLUSION Our results suggest that ascorbic acid and prebiotics in YCF improve iron bioavailability. Ensuring that iron is delivered in a bioavailable form would improve the nutritional benefits of YCF in relation to ID/IDA amongst young children; therefore, further exploration of our findings in vivo is warranted.
Collapse
Affiliation(s)
- Tatiana Christides
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Julia Clark Ganis
- Department of Life and Sports Sciences, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Anthony Sharp
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| |
Collapse
|
41
|
Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, Verbeke K, Raes J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017; 66:1968-1974. [PMID: 28213610 PMCID: PMC5739857 DOI: 10.1136/gutjnl-2016-313271] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Contrary to the long-standing prerequisite of inducing selective (ie, bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterisation of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (gas chromatography mass spectrometry) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and faecal metabolites profiles. DESIGN Faecal samples collected during a double-blind, randomised, cross-over intervention study set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analysed. Faecal microbiota composition and metabolite profiles were linked to the study's clinical outcome as well as to quality-of-life measurements recorded. RESULTS While faecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition and specific inulin-induced changes in relative abundances of Anaerostipes, Bilophila and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favourable change in constipation-specific quality-of-life measures. CONCLUSIONS Ecosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated with three genera, one of which (Bilophila) representing a promising novel target for mechanistic research. TRIAL REGISTRATION NUMBER NCT02548247.
Collapse
Affiliation(s)
- Doris Vandeputte
- Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
- Department of Bioengineering Sciences, Research Group of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Jun Wang
- Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | | | | | - Kristin Verbeke
- KU Leuven—University of Leuven, Translational Research in Gastrointestinal Diseases (TARGID), Laboratory of Digestion and Absorption, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
- Department of Bioengineering Sciences, Research Group of Microbiology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
42
|
Paganini D, Uyoga MA, Cercamondi CI, Moretti D, Mwasi E, Schwab C, Bechtler S, Mutuku FM, Galetti V, Lacroix C, Karanja S, Zimmermann MB. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants. Am J Clin Nutr 2017; 106:1020-1031. [PMID: 28814396 DOI: 10.3945/ajcn.116.145060] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 07/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Whether consumption of prebiotics increases iron absorption in infants is unclear.Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants.Design: Infants (n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57FeFum+Na58FeEDTA or ferrous sulfate (54FeSO4). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models.Results: There was a significant group-by-compound interaction on iron absorption (P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, (P < 0.001) and, in the Fe+GOS group, were 18.8% (IQR: 8.3-37.5%) and 25.5% (IQR: 15.1-37.8%), respectively (P = 0.124). Between groups, iron absorption was greater from the FeFum+NaFeEDTA (P = 0.047) in the Fe+GOS group but not from the FeSO4 (P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. (P = 0.008) and Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.018); Lactobacillus/Pediococcus/Leuconostoc spp. decreased in the Fe group (P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group (P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH (P < 0.001) and positively correlated with Lactobacillus/Pediococcus/Leuconostoc spp. (P = 0.001).Conclusion: GOS consumption by infants increased iron absorption by 62% from an MNP containing FeFum+NaFeEDTA, thereby possibly reflecting greater colonic iron absorption. This trial was registered at clinicaltrials.gov as NCT02666417.
Collapse
Affiliation(s)
| | - Mary A Uyoga
- College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | | | - Edith Mwasi
- Department of Pediatrics, Msambweni County Referral Hospital, Msambweni, Kenya; and
| | - Clarissa Schwab
- Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Christophe Lacroix
- Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Simon Karanja
- College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
43
|
Weinborn V, Valenzuela C, Olivares M, Arredondo M, Weill R, Pizarro F. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food Funct 2017; 8:1994-1999. [PMID: 28485415 DOI: 10.1039/c6fo01833e] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55Fe and 59Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.
Collapse
Affiliation(s)
- Valerie Weinborn
- Department of Food Science and Technology, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
44
|
Polysaccharide from Lycium barbarum L. leaves enhances absorption of endogenous calcium, and elevates cecal calcium transport protein levels and serum cytokine levels in rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Kortman GAM, Reijnders D, Swinkels DW. Oral iron supplementation: Potential implications for the gut microbiome and metabolome in patients with CKD. Hemodial Int 2017; 21 Suppl 1:S28-S36. [PMID: 28328083 DOI: 10.1111/hdi.12553] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) and loss of kidney function are at increased risk for morbidity and mortality. The risks of CKD are attributed to "uremia," an increased concentration of uremic retention solutes (toxins) in the plasma. Recently, a colo-renal axis became clearly apparent and uremia has been associated with an altered gut microbiome composition and metabolism. There is a high prevalence of anemia in patients with CKD, for which patients are often treated with oral or intravenous iron. Recent in vivo and in vitro studies have reported adverse effects of oral iron supplementation on the gut microbiota composition, gut metabolome, and intestinal health, which in turn may result in an increased production of uremic toxins. It may also affect circulating levels of other microbe-derived molecules, that can act as mediators of immune regulation. Changes in body iron levels have also been reported to exert subtle effects on host immune function by modulating immune cell proliferation and differentiation, and by directly regulating cytokine formation and antimicrobial immune effector mechanisms. Based on the foregoing it is conceivable that oral iron supplementation in iron deficient predialysis CKD patients adversely changes gut microbiota composition, the gut and systemic metabolome, and host immunity and infection. Future studies are needed to confirm these hypotheses and to assess whether, compared to IV iron supplementation, oral iron supplementation negatively impacts on morbidity of CKD, and whether these adverse effects depend on the iron bioavailability of the iron formulation to the microbiota.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine - Translational Metabolic Laboratory-830, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien Reijnders
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine - Translational Metabolic Laboratory-830, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:476-486. [PMID: 28082121 DOI: 10.1016/j.ajpath.2016.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.
Collapse
|
47
|
Baye K, Guyot JP, Mouquet-Rivier C. The unresolved role of dietary fibers on mineral absorption. Crit Rev Food Sci Nutr 2016; 57:949-957. [DOI: 10.1080/10408398.2014.953030] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kaleab Baye
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jean-Pierre Guyot
- IRD UMR 204, Prévention des Malnutritions et des Pathologies Associées (Nutripass), Montpellier, France
| | - Claire Mouquet-Rivier
- IRD UMR 204, Prévention des Malnutritions et des Pathologies Associées (Nutripass), Montpellier, France
| |
Collapse
|
48
|
Benítez-Páez A, Gómez Del Pulgar EM, Kjølbæk L, Brahe LK, Astrup A, Larsen L, Sanz Y. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Vasconcelos MW, Gruissem W, Bhullar NK. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 2016; 44:8-15. [PMID: 27780080 DOI: 10.1016/j.copbio.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Plant-based foods offer a wide range of nutrients that are essential for human and animal health. Among these nutrients, iron stands out as one of the most important micronutrients. Increasing the iron content in many staple and non-staple plant foods continues to be a goal of many scientists around the world. However, the success of such initiatives has sometimes fallen short of their expected targets. In this review we highlight the most recent and promising results that have contributed to increasing the iron content in different crops. We also discuss methods that to date have been used to reach iron biofortification goals and new strategies that we believe are most promising for crop biofortification in the future. Plant anatomical, physiological and metabolic hurdles still need to be tackled for making progress on further increasing currently reached levels of micronutrient improvements. New strategies need to take into account growing environmental challenges that may constrain biofortification efforts.
Collapse
Affiliation(s)
- Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
50
|
Portune KJ, Benítez-Páez A, Del Pulgar EMG, Cerrudo V, Sanz Y. Gut microbiota, diet, and obesity-related disorders-The good, the bad, and the future challenges. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600252] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin J. Portune
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Eva Maria Gomez Del Pulgar
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Victor Cerrudo
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| |
Collapse
|