1
|
Salih M, Yahya Alnour M, Omer Ahmed T, Arbab AH, Yousef BA. Catechins anti-diabetic actions are mediated via multiple receptors, a mechanism deduced via molecular docking and dynamic simulations. J Biomol Struct Dyn 2025:1-15. [PMID: 40326217 DOI: 10.1080/07391102.2025.2499671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/09/2024] [Indexed: 05/07/2025]
Abstract
Diabetes mellitus is a growing burden that affects a large proportion of the population worldwide, with long-term complications that cause a devastating effect on the function of various organs. The currently available treatments lack optimum therapeutic goals, increasing the need for new drug discovery. Catechins are natural flavonoids that demonstrate anti-diabetic effects; however, catechin's mechanism of action remains unclear. This study was aimed to unleash the molecular mechanism behind the catechin's effect on blood glucose levels. For that, we explored the capability of some catechins to bind and interact with glucagon-like peptide-1 receptor-1, pancreatic ATP-sensitive potassium channel, dipeptidyl peptidase-4, and sodium-glucose transporter-2, which is essential for euglycemia, using molecular docking screening and dynamic simulations. The results showed that all the tested catechins are potential sodium-glucose transporter-2 inhibitors, a mechanism revealed for the first time, and glucagon-like peptide-1 receptor-1 agonists with various affinities to these receptors. Moreover, among these compounds, (-)-Epigallocatechin 3-O-gallate, (-)-Gallocatechin 3-O-gallate demonstrated the ability to act as an ATP-sensitive potassium channel inhibitor, and dipeptidyl peptidase-4 inhibitor in addition to the previously mentioned mechanisms. The discovery introduces (-)-gallocatechin 3-O-gallate and (-)-Epigallocatechin 3-O-gallate as a hot subject for research, as the compounds require further optimization to initiate further pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Muhanad Salih
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Mosab Yahya Alnour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan University of Science and Technology, Khartoum, Sudan
| | - Tarig Omer Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Ahmed H Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Bashir A Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
2
|
Weigant J, Afchar A, Barzen M, Dicks L, Zimmermann BF, Schmid M, Weinhold L, Stoffel‐Wagner B, Ellinger J, Stehle P, Ellinger S. Cardiometabolic Impact of Encapsulated Cocoa Powder and Pure Cocoa Ingredients Supplementation: A Comparative Placebo-Controlled RCT in Adults. Mol Nutr Food Res 2025; 69:e202400490. [PMID: 39901369 PMCID: PMC11874242 DOI: 10.1002/mnfr.202400490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Consuming cocoa rich in flavan-3-ols (particularly epicatechin [EC]) may reduce vascular stiffness and blood pressure (BP) and improve serum lipid profiles. Because interventional studies on pure EC exhibited inconclusive results, the role of other cocoa ingredients such as methylxanthines (MX) on vascular health was assumed. This study aimed to systematically compare the effects of flavanol-rich cocoa and its major components EC and MX on vascular function and serum lipid levels. In a randomized controlled trial (RCT), 75 healthy young adults ingested capsules containing either (i) flavanol-rich cocoa powder, (ii) EC, (iii) MX, (iv) EC + MX, or (v) placebo (n = 15 per group) daily for 4 weeks. Capsules provided equal amounts of EC and/or MX as the cocoa capsules. Pulse wave velocity (PWV), BP, endothelin-1, and lipids were investigated before and after intervention. No group-specific statistically significant differences in aortic PWV (p = 0.410) or any other parameters (p ≥ 0.05) were observed between before and after the intervention. Daily intake of neither flavanol-rich cocoa nor pure cocoa ingredients influenced vascular function and lipid profiles in healthy adults. Consequently, RCTs involving subjects with increased cardiometabolic risk may clarify the effects of EC and MX as cocoa components on cardiovascular health parameters. Trial Registration: URL: https://drks.de/search/en/trial. Unique identifier: DRKS00022056.
Collapse
Affiliation(s)
- Janina Weigant
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Human NutritionUniversity of BonnBonnGermany
- Department of Nutritional and Food SciencesNiederrhein University of Applied SciencesMönchengladbachGermany
| | - Anuschka Afchar
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Human NutritionUniversity of BonnBonnGermany
| | - Meike Barzen
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Human NutritionUniversity of BonnBonnGermany
| | - Lisa Dicks
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Human NutritionUniversity of BonnBonnGermany
- Department of Nutritional and Food SciencesNiederrhein University of Applied SciencesMönchengladbachGermany
| | - Benno F. Zimmermann
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Food SciencesUniversity of BonnBonnGermany
| | - Matthias Schmid
- Faculty of Medicine, Institute of Medical Biometry, Informatics and Epidemiology (IMBIE)University of BonnBonnGermany
| | - Leonie Weinhold
- Faculty of Medicine, Institute of Medical Biometry, Informatics and Epidemiology (IMBIE)University of BonnBonnGermany
| | - Birgit Stoffel‐Wagner
- Faculty of Medicine, Institute of Clinical Chemistry and Clinical PharmacologyUniversity Hospital BonnBonnGermany
| | - Jörg Ellinger
- Faculty of Medicine, Department of Urology and Pediatric UrologyUniversity Hospital BonnUniversity BonnBonnGermany
| | - Peter Stehle
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Nutritional PhysiologyUniversity of BonnBonnGermany
| | - Sabine Ellinger
- Faculty of Agricultural, Nutritional and Engineering Sciences, Institute of Nutritional and Food Science, Human NutritionUniversity of BonnBonnGermany
- Department of Nutritional and Food SciencesNiederrhein University of Applied SciencesMönchengladbachGermany
| |
Collapse
|
3
|
Carnauba RA, Sarti FM, Coutinho CP, Hassimotto NM, Marchioni DM, Lotufo PA, Bensenor IM, Lajolo FM. Associations Between Polyphenol Intake, Cardiometabolic Risk Factors and Metabolic Syndrome in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Nutr 2025; 155:570-579. [PMID: 39608609 DOI: 10.1016/j.tjnut.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Fruit- and vegetable-rich diets may protect against metabolic syndrome (MetS), partly due to their high polyphenol content. OBJECTIVES This study examined the association between dietary polyphenol intake, MetS risk, and cardiometabolic factors in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). METHODS A total of 6387 participants (mean age 49.8 y, 65% female) were included. Food intake was assessed via a semiquantitative Food Frequency Questionnaire with polyphenol content from the Phenol-Explorer database. MetS was defined using the Joint Interim Statement. Logistic regressions assessed associations between polyphenol intake tertiles and cardiometabolic risk factors, as well as the odds of MetS during the follow-up period. RESULTS During a median of 8.19 y follow-up, 2031 cases of MetS occurred. The second and third tertiles of total polyphenol intake were associated with 22% and 23% lower odds of MetS, respectively, after adjusting for sociodemographic, lifestyle, and dietary factors (T2 vs. T1, odds ratio [OR] 0.78 [95% confidence interval {CI}: 0.68, 0.90]; T3 vs. T1, OR 0.77 [0.66, 0.90]). Inverse associations were also found between phenolic acids, lignans, stilbenes, other polyphenols, and the odds of MetS. Although no significant link was observed for total flavonoids, flavan-3-ols showed inverse associations with MetS (monomers: T3 vs. T1, OR 0.92 [0.80, 0.94]; dimers to polymers: T3 vs. T1, OR 0.82 [0.70, 0.96]). Total polyphenol intake was also inversely associated with waist-hip ratio, diastolic blood pressure, systolic blood pressure, HOMA-IR, triglycerides, and C-reactive protein, and positively associated with total cholesterol, LDL cholesterol, and HDL cholesterol. CONCLUSIONS Higher intakes of dietary polyphenols, particularly phenolic acids, lignans, stilbenes, other polyphenols, and flavan-3-ols, were inversely associated with the odds of MetS and its components. These findings suggest that promoting polyphenol-rich diets could be a valuable strategy in reducing cardiometabolic risk and preventing MetS in the population, potentially informing dietary guidelines and public health interventions.
Collapse
Affiliation(s)
- Renata A Carnauba
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil.
| | - Flavia M Sarti
- Center for Research in Complex Systems Modeling, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Camille P Coutinho
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Neuza Ma Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Dirce M Marchioni
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, University of Sao Paulo, São Paulo, Brazil
| | - Isabela M Bensenor
- Department of Internal Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Franco M Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center, CEPID-FAPESP (Research Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| |
Collapse
|
4
|
Martiniakova M, Sarocka A, Penzes N, Biro R, Kovacova V, Mondockova V, Sevcikova A, Ciernikova S, Omelka R. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients 2025; 17:275. [PMID: 39861406 PMCID: PMC11767469 DOI: 10.3390/nu17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers. Polyphenols such as flavonoids, phenolic acids, stilbenes, tannins, and lignans constitute an extensive and heterogeneous group of phytochemicals in fresh fruits, vegetables and their products. Various in vitro studies, animal model studies and available clinical trials revealed that flavonoids (e.g., quercetin, kaempferol, rutin, epicatechin, genistein, daidzein, anthocyanins), phenolic acids (e.g., chlorogenic, caffeic, ellagic, gallic acids, curcumin), stilbenes (e.g., resveratrol), tannins (e.g., procyanidin B2, seaweed phlorotannins), lignans (e.g., pinoresinol) have the ability to lower hyperglycemia, enhance insulin sensitivity and improve insulin secretion, scavenge reactive oxygen species, reduce chronic inflammation, modulate gut microbiota, and alleviate secondary complications of T2DM. The interaction between polyphenols and conventional antidiabetic drugs offers a promising strategy in the management and treatment of T2DM, especially in advanced disease stages. Synergistic effects of polyphenols with antidiabetic drugs have been documented, but also antagonistic interactions that may impair drug efficacy. Therefore, additional research is required to clarify mutual interactions in order to use the knowledge in clinical applications. Nevertheless, dietary polyphenols can be successfully applied as part of supportive treatment for T2DM, as they reduce both obvious clinical symptoms and secondary complications.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (R.B.); (V.K.)
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (A.S.); (S.C.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia; (A.S.); (N.P.); (V.M.)
| |
Collapse
|
5
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Apolinário da Silva AP, Xavier da Silva Neto J, Wemmenson Gonçalves Moura LF, de Lima Rebouças E, Flávio da Silva Lopes F, Barbosa da Silva WM, Maia de Morais S, Bezerra da Silva B, Florindo Guedes MI. Okra (Abelmoschus esculentus L. moench) fruit powder standardized in flavonoids improves glycemic control and metabolic memory in acute and chronic hyperglycemia. FOOD BIOSCI 2024; 61:104870. [DOI: 10.1016/j.fbio.2024.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Wu X, Xiao J. Response and Adaptive Mechanism of Flavonoids in Pigmented Potatoes at Different Altitudes. PLANT & CELL PHYSIOLOGY 2024; 65:1184-1196. [PMID: 38625713 DOI: 10.1093/pcp/pcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Altitude is an important ecological factor affecting plant physiology and ecology, material metabolism and gene expression. Tuber color changes were observed in purple and red potatoes growing at four different elevations ranging from 1,800 ± 50 to 3,300 ± 50 m in the Tiger Leaping Gorge area of Yunnan Province. The results showed that the total phenol content, total flavone content, total anthocyanin content and biological yield of anthocyanin increased with increasing altitude until 2,800 ± 50 m, and the highest anthocyanin content were detected in the purple potato Huaxinyangyu and the red potato Jianchuanhong at the flowering stage and budding stage, respectively. Combined transcriptomic and metabolomic analyses revealed that the content and diversity of flavonoids are associated with genes expression via the promotion of propane metabolism to improve potato adaptation to different altitudes. These results provide a foundation for understanding the coloring mechanism and creating new potato germplasms with high resistance and good quality via genetic manipulation.
Collapse
Affiliation(s)
| | - Jiping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming 650201, China
| |
Collapse
|
8
|
Liu P, Tang L, Li G, Wu X, Hu F, Peng W. Association between consumption of flavonol and its subclasses and chronic kidney disease in US adults: an analysis based on National Health and Nutrition Examination Survey data from 2007-2008, 2009-2010, and 2017-2018. Front Nutr 2024; 11:1399251. [PMID: 38957868 PMCID: PMC11217562 DOI: 10.3389/fnut.2024.1399251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background There is little research on the relationship between flavonol consumption and chronic kidney disease (CKD). This study aimed to examine the link between flavonol consumption and the risk of CKD among US adults, using data from the 2007-2008, 2009-2010 and 2017-2018 National Health and Nutrition Examination Survey (NHANES). Methods A cross-sectional approach was used, drawing on data from three NHANES cycles. The flavonol consumption of the participants in this study was assessed using a 48 h dietary recall interview. CKD was diagnosed based on an estimated glomerular filtration rate below 60 mL/min/1.73 m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher. Results Compared to the lowest quartile of flavonol intake (Q1), the odds ratios for CKD were 0.598 (95% CI: 0.349, 1.023) for the second quartile (Q2), 0.679 (95% CI: 0.404, 1.142) for the third quartile (Q3), and 0.628 (95% CI: 0.395, 0.998) for the fourth quartile (Q4), with a p value for trend significance of 0.190. In addition, there was a significant trend in CKD risk with isorhamnetin intake, with the odds ratios for CKD decreasing to 0.860 (95% CI: 0.546, 1.354) in the second quartile, 0.778 (95% CI: 0.515, 1.177) in the third quartile, and 0.637 (95% CI: 0.515, 1.177) in the fourth quartile (p for trend = 0.013). Conclusion Our analysis of the NHANES data spanning 2007-2008, 2009-2010, and 2017-2018 suggests that high consumption of dietary flavonol, especially isorhamnetin, might be linked to a lower risk of CKD in US adults. These findings offer new avenues for exploring strategies for managing CKD.
Collapse
Affiliation(s)
- Peijia Liu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixia Li
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Wu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Feng Hu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wujian Peng
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Alqarni S, Alsebai M, Alsaigh BA, Alrashedy AS, Albahrani IT, Aljohar AY, Alazmi AO. Do polyphenols affect body fat and/or glucose metabolism? Front Nutr 2024; 11:1376508. [PMID: 38919387 PMCID: PMC11198119 DOI: 10.3389/fnut.2024.1376508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Background Obesity is reaching epidemic proportions with 51% of the population expected to be obese by 2030. Recently, polyphenols have been highlighted as an effective approach to managing obesity and associated risks. Polyphenols are a large class of bioactive plant compounds classified into two major categories: flavonoids which are distinguished by the fundamental C6-C3-C6 skeleton and non-flavonoids. Objective This systematic review evaluated the effect of different polyphenol sources in overweight and obese people with and without type 2 diabetes. The primary outcome was lipid profile and the secondary outcomes were blood glucose, HbA1c (%), HOMA-IR, weight, and body mass index. Method A search was undertaken in PubMed, Web of Science, Medline, and Wiley for randomized control trials that assessed different sources of polyphenols in overweight and obese people with or without type 2 diabetes. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Result The search yielded 935 studies, of which six randomized control trials met the inclusion criteria. Five studies found no significant difference in lipid profile between the control and intervention groups in triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol. However, one study showed significant differences in triglycerides (p = 0.04) and HDL cholesterol (p = 0.05) between the two groups with no significant difference in total cholesterol and LDL cholesterol. There were no significant changes in blood glucose observed in the included studies, with only two studies reporting a significant difference in A1c between the groups. Four studies found no difference in HOMA-IR, while one study showed a significant decrease in HOMA-IR in the intervention group compared to the control group. Three studies reported no difference in BMI or weight between the two groups. Conclusion The data associated with the specific health benefits of polyphenols and their sources in people with overweight, obese, and type 2 diabetes are still limited, so further research is required to support their use and prove their benefits.
Collapse
Affiliation(s)
- Saleha Alqarni
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mashael Alsebai
- Department of Clinical Nutrition, Nottingham University, Nottingham, United Kingdom
| | - Batool Adal Alsaigh
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abeer Sayer Alrashedy
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Israa Talal Albahrani
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amjad Obaid Alazmi
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
11
|
Laczkó Zöld E, Toth LM, Farczadi L, Ştefănescu R. Polyphenolic profile and antioxidant properties of Momordica charantia L. 'Enaja' cultivar grown in Romania. Nat Prod Res 2024; 38:1060-1066. [PMID: 37211778 DOI: 10.1080/14786419.2023.2213805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
This is the first study describing phenolics of Momordica charantia L. 'Enaja' cultivar (bitter melon) produced in Romania. Total polyphenol content, total tannin content, total flavonoid content, and antioxidant activity of bitter melon stems and leaves, young fruits, and ripe fruits grown in Romania were analysed, along with fruits imported from India. The UPLC-DAD analysis led to the identification of (+)-catechin, (-)-epicatechin, luteolin-3',7-di-O-glucoside, luteolin-7-O-glucoside and vanillic acid. (-)-Epicatechin (859 µg/g) and (+)-catechin (1677 µg/g) were the most abundant compounds in stems and leaves, while in the ripe fruits, luteolin-7-O-glucoside (310 µg/g) was the main phenolic. Stems and leaves were the most active for capturing free DPPH radicals (IC50 = 216.9 ± 11.91 µg/ml); the scavenging activity strongly correlated with the flavonoid content (r = 0.8806, r2 = 0.7754). Momordica charantia fruits from Romania, both young and ripe, are a source of polyphenols as valuable as those imported from India.
Collapse
Affiliation(s)
- Eszter Laczkó Zöld
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Larisa Melinda Toth
- Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| | - Ruxandra Ştefănescu
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Mureș, Romania
| |
Collapse
|
12
|
Qi J, Pan Z, Wang X, Zhang N, He G, Jiang X. Research advances of Zanthoxylum bungeanum Maxim. polyphenols in inflammatory diseases. Front Immunol 2024; 15:1305886. [PMID: 38343532 PMCID: PMC10853423 DOI: 10.3389/fimmu.2024.1305886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoping Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
14
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
15
|
Garza-Juárez A, Pérez-Carrillo E, Arredondo-Espinoza EU, Islas JF, Benítez-Chao DF, Escamilla-García E. Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods 2023; 12:3262. [PMID: 37685194 PMCID: PMC10486909 DOI: 10.3390/foods12173262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The high rate of deaths around the world from noncommunicable diseases (NCDs) (70%) is a consequence of a poor diet lacking in nutrients and is linked to lifestyle and environmental conditions that together trigger predisposing factors. NCDs have increased 9.8% of public health spending worldwide, which has been increasing since 2000. Hence, international organizations such as the WHO, the Pan American Health Organization, and the Food and Agriculture Organization of the United Nations have been developing strategic plans to implement government and economic policies to strengthen programs in favor of food security and nutrition. A systematic review is presented to document an analysis of the origin and characteristics of obesity, cardiovascular disease, chronic respiratory diseases, diabetes, and cancers affecting a large part of the world's population. This review proposes a scientifically based report of functional foods including fruits, vegetables, grains, and plants, and how their bioactive compounds called nutraceuticals-when consumed as part of a diet-benefit in the prevention and treatment of NCDs from an early age. Multifactorial aspects of NCDs, such as culture and eating habits, are limitations to consider from the clinical, nutritional, and biochemical points of view of everyone who suffers from them.
Collapse
Affiliation(s)
- Aurora Garza-Juárez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Esther Pérez-Carrillo
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Eder Ubaldo Arredondo-Espinoza
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Monterrey 66427, Mexico
| | - José Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Diego Francisco Benítez-Chao
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Erandi Escamilla-García
- Microbial Biotechnology Laboratory, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
16
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
17
|
Climie RE, Alastruey J, Mayer CC, Schwarz A, Laucyte-Cibulskiene A, Voicehovska J, Bianchini E, Bruno RM, Charlton PH, Grillo A, Guala A, Hallab M, Hametner B, Jankowski P, Königstein K, Lebedeva A, Mozos I, Pucci G, Puzantian H, Terentes-Printzios D, Yetik-Anacak G, Park C, Nilsson PM, Weber T. Vascular ageing: moving from bench towards bedside. Eur J Prev Cardiol 2023; 30:1101-1117. [PMID: 36738307 PMCID: PMC7614971 DOI: 10.1093/eurjpc/zwad028] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Prevention of cardiovascular disease (CVD) remains one of the largest public health challenges of our time. Identifying individuals at increased cardiovascular risk at an asymptomatic, sub-clinical stage is of paramount importance for minimizing disease progression as well as the substantial health and economic burden associated with overt CVD. Vascular ageing (VA) involves the deterioration in vascular structure and function over time and ultimately leads to damage in the heart, brain, kidney, and other organs. Vascular ageing encompasses the cumulative effect of all cardiovascular risk factors on the arterial wall over the life course and thus may help identify those at elevated cardiovascular risk, early in disease development. Although the concept of VA is gaining interest clinically, it is seldom measured in routine clinical practice due to lack of consensus on how to characterize VA as physiological vs. pathological and various practical issues. In this state-of-the-art review and as a network of scientists, clinicians, engineers, and industry partners with expertise in VA, we address six questions related to VA in an attempt to increase knowledge among the broader medical community and move the routine measurement of VA a little closer from bench towards bedside.
Collapse
Affiliation(s)
- Rachel E. Climie
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, 7000 Hobart, Australia
- Sports Cardiology, Baker Heart and Diabetes Institute, 99 Commercial Rd, Melbourne 3000, Australia
- Integrative Epidemiology of Cardiovascular Disease, Université de Paris, INSERM, U970, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, 75015 Paris, France
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 249 Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher C. Mayer
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Achim Schwarz
- ALF Distribution GmbH, Stephanstrasse 19, 52064 Aachen, Germany
| | - Agne Laucyte-Cibulskiene
- Department of Clinical Sciences, Lund University, Skane University Hospital, Sölvegatan 19 - BMC F12, 221 84 Lund, Malmö, Sweden
- Faculty of Medicine, Vilnius University, M. K. C iurlionio g. 21, 03101 Vilnius, Lithuania
| | - Julija Voicehovska
- Department of Internal Diseases, Riga Stradins University, Dzirciema str. 16, Riga, L-1007, Latvia
- Nephrology and Renal Replacement Therapy Clinics, Riga East University Hospital, Hipokrata str. 2, Riga, LV-1079, Latvia
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Via Moruzzi, 1, 56124 Pisa (PI), Italy
| | - Rosa-Maria Bruno
- Integrative Epidemiology of Cardiovascular Disease, Université de Paris, INSERM, U970, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, 75015 Paris, France
| | - Peter H. Charlton
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Andrea Grillo
- Medicina Clinica, Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Paseo de la Vall d’Hebron, 129, 08035 Barcelona, Spain
| | - Magid Hallab
- Clinique Bizet, 23 Georges Bizet, 75116 Paris, France
| | - Bernhard Hametner
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, 231 Czerniakowska St., 00-416 Warsaw, Poland
| | - Karsten Königstein
- Department of Sport, Exercise and Health (DSBG) University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - Anna Lebedeva
- Department of Internal Medicine and Cardiology, Dresden Heart Centre, Dresden University of Technology, Fetscher str. 76, 01307 Dresden, Germany
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, ‘Victor Babes’ University of Medicine and Pharmacy, T. Vladimirescu Street 14, 300173 Timisoara, Romania
| | - Giacomo Pucci
- Unit of Internal Medicine, Terni University Hospital - Department of Medicine and Surgery, University of Perugia, Terni, Italy
| | - Houry Puzantian
- Hariri School of Nursing, American University of Beirut, P.O. Box 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No:32 Atasehir, 34752 Istanbul, Turkey
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London WC1E 7HB, UK; and
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Sölvegatan 19 - BMC F12, 221 84 Lund, Malmö, Sweden
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Grieskirchnerstrasse 42, 4600 Wels, Austria
| |
Collapse
|
18
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Catechins and Proanthocyanidins Involvement in Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24119228. [PMID: 37298181 DOI: 10.3390/ijms24119228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies on natural antioxidant compounds have highlighted their potentiality against various pathological conditions. The present review aims to selectively evaluate the benefits of catechins and their polymeric structure on metabolic syndrome, a common disorder characterized by a cluster of three main risk factors: obesity, hypertension, and hyperglycemia. Patients with metabolic syndrome suffer chronic low inflammation state and oxidative stress both conditions effectively countered by flavanols and their polymers. The mechanism behind the activity of these molecules has been highlighted and correlated with the characteristic features present on their basic flavonoidic skelethon, as well as the efficient doses needed to perform their activity in both in vitro and in vivo studies. The amount of evidence provided in this review offers a starting point for flavanol dietary supplementation as a potential strategy to counteract several metabolic targets associated with metabolic syndrome and suggests a key role of albumin as flavanol-delivery system to the different target of action inside the organism.
Collapse
Affiliation(s)
- Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carlo Maffei
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
19
|
Sun Y, Ho CT, Zhang X. Neuroprotection of Food Bioactives in Neurodegenerative Diseases: Role of the Gut Microbiota and Innate Immune Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2718-2733. [PMID: 36700657 DOI: 10.1021/acs.jafc.2c07742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gut-brain connections may be mediated by an assortment of microbial molecules, which can subsequently traverse intestinal and blood-brain barriers and impact neurological function. Pattern recognition receptors (PRRs) are important innate immune proteins in the gut. Gut microbiota act in concert with the PRRs is a novel target for regulating host-microbe signaling and immune homeostasis, which may involve the pathogenesis of neurodegenerative diseases. Natural food bioactives bestow a protective advantage on neurodegenerative diseases through immunomodulatory effects of the modified gut microbiota or alterations in the landscape of microbiota-produced metabolites via PRRs modulation. In this review, we discuss the effect of natural food bioactives on the gut microbiota and the role of PRRs in the gut-brain crosstalk. We focused on the neuroprotective mechanisms of natural bioactive compounds behind the action of the gut microbiota and PRRs. Research advances in natural food bioactives as antineurodegeneration agents were also presented.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
20
|
Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants (Basel) 2023; 12:antiox12020258. [PMID: 36829817 PMCID: PMC9952755 DOI: 10.3390/antiox12020258] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Quercetin is a monomeric polyphenol of plant origin that belongs to the flavonol-type flavonoid subclass. Extensive studies using cultured cells and experimental model animals have demonstrated the anti-atherosclerotic effects of dietary quercetin in relation to the prevention of cardiovascular disease (CVD). As quercetin is exclusively present in plant-based foods in the form of glycosides, this review focuses on the bioavailability and bioefficacy of quercetin glycosides in relation to vascular health effects. Some glucose-bound glycosides are absorbed from the small intestine after glucuronide/sulfate conjugation. Both conjugated metabolites and deconjugated quercetin aglycones formed by plasma β-glucuronidase activity act as food-derived anti-atherogenic factors by exerting antioxidant, anti-inflammatory, and plasma low-density lipoprotein cholesterol-lowering effects. However, most quercetin glycosides reach the large intestine, where they are subject to gut microbiota-dependent catabolism resulting in deglycosylated aglycone and chain-scission products. These catabolites also affect vascular health after transfer into the circulation. Furthermore, quercetin glycosides may improve gut microbiota profiles. A variety of human cohort studies and intervention studies support the idea that the intake of quercetin glycoside-rich plant foods such as onion helps to prevent CVD. Thus, quercetin glycoside-rich foods offer potential benefits in terms of cardiovascular health and possible clinical applications.
Collapse
|
21
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
22
|
Obrenovich M, Singh SK, Li Y, Perry G, Siddiqui B, Haq W, Reddy VP. Natural Product Co-Metabolism and the Microbiota-Gut-Brain Axis in Age-Related Diseases. Life (Basel) 2022; 13:41. [PMID: 36675988 PMCID: PMC9865576 DOI: 10.3390/life13010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Complementary alternative medicine approaches are growing treatments of diseases to standard medicine practice. Many of these concepts are being adopted into standard practice and orthomolecular medicine. Age-related diseases, in particular neurodegenerative disorders, are particularly difficult to treat and a cure is likely a distant expectation for many of them. Shifting attention from pharmaceuticals to phytoceuticals and "bugs as drugs" represents a paradigm shift and novel approaches to intervention and management of age-related diseases and downstream effects of aging. Although they have their own unique pathologies, a growing body of evidence suggests Alzheimer's disease (AD) and vascular dementia (VaD) share common pathology and features. Moreover, normal metabolic processes contribute to detrimental aging and age-related diseases such as AD. Recognizing the role that the cerebral and cardiovascular pathways play in AD and age-related diseases represents a common denominator in their pathobiology. Understanding how prosaic foods and medications are co-metabolized with the gut microbiota (GMB) would advance personalized medicine and represents a paradigm shift in our view of human physiology and biochemistry. Extending that advance to include a new physiology for the advanced age-related diseases would provide new treatment targets for mild cognitive impairment, dementia, and neurodegeneration and may speed up medical advancements for these particularly devastating and debilitating diseases. Here, we explore selected foods and their derivatives and suggest new dementia treatment approaches for age-related diseases that focus on reexamining the role of the GMB.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Department of Veteran's Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| | - Yi Li
- Department of Nutrition and Dietetics, Saint Louis University, Saint Louis, MO 63103, USA
| | - George Perry
- Department of Neuroscience Developmental and Regenerative Biology, University of Texas, San Antonio, TX 78249, USA
| | - Bushra Siddiqui
- School of Medicine, Northeast Ohio College of Medicine, Rootstown, OH 44272, USA
| | - Waqas Haq
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
23
|
Dicks L, Haddad Z, Deisling S, Ellinger S. Effect of an (-)-Epicatechin Intake on Cardiometabolic Parameters-A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:4500. [PMID: 36364762 PMCID: PMC9657629 DOI: 10.3390/nu14214500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2024] Open
Abstract
Growing evidence exists that consumption of cocoa-rich food improves the parameters of cardiometabolic health. These effects are ascribed to cocoa flavanols, particularly to (-)-epicatechin (EC), a natural ingredient of cocoa. Hence, to evaluate if EC may explain the effects of cocoa, this systematic review aimed to provide an overview on randomized controlled trials (RCTs) investigating the impact of an EC intake on cardiometabolic biomarkers. For this, the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement was considered and the risk of bias (RoB) was assessed by using the Cochrane RoB 2 tool. In total, 11 studies were included examining parameters on vascular function, glucose/lipid metabolism, oxidative stress, inflammation, appetite sensations, and body weight before and after EC treatment. Except for a dose-dependent acute increase in flow-mediated dilatation (FMD) and in the peripheral arterial tonometry (PAT) index in healthy young adults, effects by EC treatment were not observed. For most trials, some concerns exist for overall RoB. Thus, EC intake may improve endothelial function in healthy young adults. For further parameters (mostly secondary outcomes), it remains unclear if EC has no effect or if this was not detectable. Unbiased RCTs on the impact of an EC intake are needed, which should also investigate the additive or synergistic effects of EC with other cocoa ingredients.
Collapse
Affiliation(s)
| | | | | | - Sabine Ellinger
- Department of Nutrition and Food Sciences, Human Nutrition, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| |
Collapse
|
24
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Ramirez DG, Reusch JEB, Keller AC. (-)-Epicatechin Reverses Glucose Intolerance in Rats Housed at Thermoneutrality. PLANTA MEDICA 2022; 88:735-744. [PMID: 35777366 PMCID: PMC9343939 DOI: 10.1055/a-1843-9855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/09/2023]
Abstract
Diabetes is a life-threatening and debilitating disease with pathological hallmarks, including glucose intolerance and insulin resistance. Plant compounds are a source of novel and effective therapeutics, and the flavonoid (-)-epicatechin, common to popular foods worldwide, has been shown to improve carbohydrate metabolism in both clinical studies and preclinical models. We hypothesized that (-)-epicatechin would alleviate thermoneutral housing-induced glucose intolerance. Male rats were housed at either thermoneutral (30 °C) or room temperature (24 °C) for 16 weeks and gavaged with either 1 mg/kg body weight or vehicle for the last 15 days before sacrifice. Rats housed at thermoneutrality had a significantly elevated serum glucose area under the curve (p < 0.05) and reduced glucose-mediated insulin secretion. In contrast, rats at thermoneutrality treated with (-)-epicatechin had improved glucose tolerance and increased insulin secretion (p < 0.05). Insulin tolerance tests revealed no differences in insulin sensitivity in any of the four groups. Pancreatic immunohistochemistry staining showed significantly greater islet insulin positive cells in animals housed at thermoneutrality. In conclusion, (-)-epicatechin improved carbohydrate tolerance via increased insulin secretion in response to glucose challenge without a change in insulin sensitivity.
Collapse
Affiliation(s)
- Ji Hye Chun
- Aquillius Corp., San Diego, CA, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Melissa M. Henckel
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Leslie A. Knaub
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Sara E. Hull
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Greg B. Pott
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - David G. Ramirez
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Jane E.-B. Reusch
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Amy C. Keller
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| |
Collapse
|
25
|
Popiolek-Kalisz J, Fornal E. The effects of quercetin supplementation on blood pressure – meta-analysis. Curr Probl Cardiol 2022; 47:101350. [DOI: 10.1016/j.cpcardiol.2022.101350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
|
26
|
Effects of the Treatment with Flavonoids on Metabolic Syndrome Components in Humans: A Systematic Review Focusing on Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23158344. [PMID: 35955475 PMCID: PMC9369232 DOI: 10.3390/ijms23158344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diets high in bioactive compounds, such as polyphenols, have been used to mitigate metabolic syndrome (MetS). Polyphenols are a large group of naturally occurring bioactive compounds, classified into two main classes: non-flavonoids and flavonoids. Flavonoids are distributed in foods, such as fruits, vegetables, tea, red wine, and cocoa. Studies have already demonstrated the benefits of flavonoids on the cardiovascular and nervous systems, as well as cancer cells. The present review summarizes the results of clinical studies that evaluated the effects of flavonoids on the components of the MetS and associated complications when offered as supplements over the long term. The results show that flavonoids can significantly modulate several metabolic parameters, such as lipid profile, blood pressure, and blood glucose. Only theaflavin and catechin were unable to affect metabolic parameters. Moreover, only body weight and body mass index were unaltered. Thus, the evidence presented in this systematic review offers bases in support of a flavonoid supplementation, held for at least 3 weeks, as a strategy to improve several metabolic parameters and, consequently, reduce the risk of diseases associated with MetS. This fact becomes stronger due to the rare side effects reported with flavonoids.
Collapse
|
27
|
Segrestin B, Delage P, Nemeth A, Seyssel K, Disse E, Nazare JA, Lambert-Porcheron S, Meiller L, Sauvinet V, Chanon S, Simon C, Ratiney H, Beuf O, Pralong F, Yassin NAH, Boizot A, Gachet M, Burton-Pimentel KJ, Vidal H, Meugnier E, Vionnet N, Laville M. Polyphenol Supplementation Did Not Affect Insulin Sensitivity and Fat Deposition During One-Month Overfeeding in Randomized Placebo-Controlled Trials in Men and in Women. Front Nutr 2022; 9:854255. [PMID: 35614978 PMCID: PMC9125251 DOI: 10.3389/fnut.2022.854255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.
Collapse
Affiliation(s)
- Bérénice Segrestin
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Pauline Delage
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Kevin Seyssel
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Disse
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Julie-Anne Nazare
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Laure Meiller
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Valerie Sauvinet
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphanie Chanon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Chantal Simon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Hélène Ratiney
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Olivier Beuf
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - François Pralong
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Naba-Al-Huda Yassin
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Mélanie Gachet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Kathryn J Burton-Pimentel
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hubert Vidal
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Laville
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
28
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
29
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Effect of Dietary Phenolic Compounds on Incidence of Cardiovascular Disease in the SUN Project; 10 Years of Follow-Up. Antioxidants (Basel) 2022; 11:antiox11040783. [PMID: 35453468 PMCID: PMC9027220 DOI: 10.3390/antiox11040783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of plant-based diets have been reported. Plant-based diets found in Spain and other Mediterranean countries differ from typical diets in other countries. In the Mediterranean diet, a high intake of phenolic compounds through olives, olive oil, and red wine may play an important role in cardiovascular prevention. Prospective studies carried out in Mediterranean countries may provide interesting insights. A relatively young Mediterranean cohort of 16,147 Spanish participants free of cardiovascular disease (CVD) was followed (61% women, mean (SD) age 37(12) years at baseline) for a median of 12.2 years. Dietary intake was repeatedly assessed using a 136-item validated food frequency questionnaire, and (poly)phenol intake was obtained using the Phenol-Explorer database. Participants were classified as incident cases of CVD if a medical diagnosis of myocardial infarction, stroke, or cardiovascular death was medically confirmed. Time-dependent Cox regression models were used to assess the relationship between (poly)phenol intake and the incidence of major CVD. A suboptimal intake of phenolic compounds was independently associated with a higher risk of CVD, multivariable-adjusted hazard ratio for the lowest versus top 4 quintiles: 1.85 (95% CI: 1.09–3.16). A moderate-to-high dietary intake of phenolic compounds, especially flavonoids, is likely to reduce CVD incidence in the context of a Mediterranean dietary pattern.
Collapse
|
31
|
Xu A, Wen ZH, Su SX, Chen YP, Liu WC, Guo SQ, Li XF, Zhang X, Li R, Xu NB, Wang KX, Li WX, Guan DG, Duan CZ. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front Pharmacol 2022; 13:784242. [PMID: 35355727 PMCID: PMC8959705 DOI: 10.3389/fphar.2022.784242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.
Collapse
Affiliation(s)
- Anqi Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Hua Wen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Xing Su
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi-Feng Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning-Bo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-Zhi Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
(-)-Epicatechin Alters Reactive Oxygen and Nitrogen Species Production Independent of Mitochondrial Respiration in Human Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4413191. [PMID: 35069974 PMCID: PMC8767396 DOI: 10.1155/2022/4413191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Introduction Vascular endothelial dysfunction is characterised by lowered nitric oxide (NO) bioavailability, which may be explained by increased production of reactive oxygen species (ROS), mitochondrial dysfunction, and altered cell signalling. (-)-Epicatechin (EPI) has proven effective in the context of vascular endothelial dysfunction, but the underlying mechanisms associated with EPI's effects remain unclear. Objective(s). Our aim was to investigate whether EPI impacts reactive oxygen and nitrogen species (RONS) production and mitochondrial function of human vascular endothelial cells (HUVECs). We hypothesised that EPI would attenuate ROS production, increase NO bioavailability, and enhance indices of mitochondrial function. Methods HUVECs were treated with EPI (0-20 μM) for up to 48 h. Mitochondrial and cellular ROS were measured in the absence and presence of antimycin A (AA), an inhibitor of the mitochondrial electron transport protein complex III, favouring ROS production. Genes associated with mitochondrial remodelling and the antioxidant response were quantified by RT-qPCR. Mitochondrial bioenergetics were assessed by respirometry and signalling responses determined by western blotting. Results Mitochondrial superoxide production without AA was increased 32% and decreased 53% after 5 and 10 μM EPI treatment vs. CTRL (P < 0.001). With AA, only 10 μM EPI increased mitochondrial superoxide production vs. CTRL (25%, P < 0.001). NO bioavailability was increased by 45% with 10 μM EPI vs. CTRL (P = 0.010). However, EPI did not impact mitochondrial respiration. NRF2 mRNA expression was increased 1.5- and 1.6-fold with 5 and 10 μM EPI over 48 h vs. CTRL (P = 0.015 and P = 0.001, respectively). Finally, EPI transiently enhanced ERK1/2 phosphorylation (2.9 and 3.2-fold over 15 min and 1 h vs. 0 h, respectively; P = 0.035 and P = 0.011). Conclusion(s). EPI dose-dependently alters RONS production of HUVECs but does not impact mitochondrial respiration. The induction of NRF2 mRNA expression with EPI might relate to enhanced ERK1/2 signalling, rather than RONS production. In humans, EPI may improve vascular endothelial dysfunction via alteration of RONS and activation of cell signalling.
Collapse
|
33
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Walker LA, Reusch JEB, Keller AC. (-)-Epicatechin Improves Vasoreactivity and Mitochondrial Respiration in Thermoneutral-Housed Wistar Rat Vasculature. Nutrients 2022; 14:nu14051097. [PMID: 35268072 PMCID: PMC8912787 DOI: 10.3390/nu14051097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is a global health concern. Vascular dysfunction is an aspect of CVD, and novel treatments targeting vascular physiology are necessary. In the endothelium, eNOS regulates vasodilation and mitochondrial function; both are disrupted in CVD. (−)-Epicatechin, a botanical compound known for its vasodilatory, eNOS, and mitochondrial-stimulating properties, is a potential therapy in those with CVD. We hypothesized that (−)-epicatechin would support eNOS activity and mitochondrial respiration, leading to improved vasoreactivity in a thermoneutral-derived rat model of vascular dysfunction. We housed Wistar rats at room temperature or in thermoneutral conditions for a total of 16 week and treated them with 1mg/kg body weight (−)-epicatechin for 15 day. Vasoreactivity, eNOS activity, and mitochondrial respiration were measured, in addition to the protein expression of upstream cellular signaling molecules including AMPK and CaMKII. We observed a significant improvement of vasodilation in those housed in thermoneutrality and treated with (−)-epicatechin (p < 0.05), as well as dampened mitochondrial respiration (p < 0.05). AMPK and CaMKIIα and β expression were lessened with (−)-epicatechin treatment in those housed at thermoneutrality (p < 0.05). The opposite was observed with animals housed at room temperature supplemented with (−)-epicatechin. These data illustrate a context-dependent vascular response to (−)-epicatechin, a candidate for CVD therapeutic development.
Collapse
Affiliation(s)
- Ji Hye Chun
- Microtek, Inc., San Diego, CA 92127, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
| | - Melissa M. Henckel
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A. Knaub
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara E. Hull
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greg B. Pott
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jane E.-B. Reusch
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy C. Keller
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3921
| |
Collapse
|
34
|
Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells 2022; 11:cells11030479. [PMID: 35159288 PMCID: PMC8833923 DOI: 10.3390/cells11030479] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against AD; however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.
Collapse
|
35
|
Varghese R, George Priya Doss C, Kumar RS, Almansour AI, Arumugam N, Efferth T, Ramamoorthy S. Cardioprotective effects of phytopigments via multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153859. [PMID: 34856476 DOI: 10.1016/j.phymed.2021.153859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the deadliest non-communicable diseases, and millions of dollars are spent every year to combat CVDs. Unfortunately, the multifactorial etiology of CVDs complicates the development of efficient therapeutics. Interestingly, phytopigments show significant pleiotropic cardioprotective effects both in vitro and in vivo. PURPOSE This review gives an overview of the cardioprotective effects of phytopigments based on in vitro and in vivo studies as well as clinical trials. METHODS A literature-based survey was performed to collect the available data on cardioprotective activities of phytopigments via electronic search engines such as PubMed, Google Scholar, and Scopus. RESULTS Different classes of phytopigments such as carotenoids, xanthophylls, flavonoids, anthocyanins, anthraquinones alleviate major CVDs (e.g., cardiac hypertrophy, atherosclerosis, hypertension, cardiotoxicities) via acting on signaling pathways related to AMPK, NF-κB, NRF2, PPARs, AKT, TLRs, MAPK, JAK/STAT, NLRP3, TNF-α, and RA. CONCLUSION Phytopigments represent promising candidates to develop novel and effective CVD therapeutics. More randomized, placebo-controlled clinical studies are recommended to establish the clinical efficacy of phytopigments.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
36
|
Diversity: current and prospective secondary metabolites for nutrition and medicine. Curr Opin Biotechnol 2021; 74:164-170. [PMID: 34942505 DOI: 10.1016/j.copbio.2021.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Plants have been used as sources of food, feed and medicine for millennia. The ever-increasing population has, however, dramatically increased the burden on our arable land to meet nutritional demand. Concomitantly, and in part due to poor nutrition, we are faced with massive increases in chronic diseases, meaning the need for medicine has also increased. Here, we look back on research in these areas, surveying the polyphenols as a case study for health-conferring metabolites. We conclude that the tools that will allow us to breed more nutritious crops are all at hand. We stress that collaboration between plant and medical research needs to be intensified in order to improve our understanding of the bioactivities. In doing so, we attempt to draw a roadmap for the use of plants for mid-21st Century human health.
Collapse
|
37
|
( -)-Epicatechin and cardiometabolic risk factors: a focus on potential mechanisms of action. Pflugers Arch 2021; 474:99-115. [PMID: 34812946 DOI: 10.1007/s00424-021-02640-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 01/27/2023]
Abstract
This review summarizes experimental evidence on the beneficial effects of ( -)-epicatechin (EC) attenuating major cardiometabolic risk factors, i.e., dyslipidemias, obesity (adipose tissue dysfunction), hyperglycemia (insulin resistance), and hypertension (endothelial dysfunction). Studies in humans are revised and complemented with experiments in animal models, and cultured cells, aiming to understand the molecular mechanisms involved in EC-mediated effects. Firstly, an assessment of EC metabolism gives relevance to both conjugated-EC metabolites product of host metabolism and microbiota-derived species. Integration and analysis of results stress the maintenance of redox homeostasis and mitigation of inflammation as relevant processes associated with cardiometabolic diseases. In these processes, EC appears having significant effects regulating NADPH oxidase (NOX)-dependent oxidant production, nitric oxide (NO) production, and energy homeostasis (mitochondrial biogenesis and function). The potential participation of cell membranes and membrane-bound receptors is also discussed in terms of direct molecular action of EC and EC metabolites reaching cells and tissues.
Collapse
|
38
|
Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021; 12:10324-10355. [PMID: 34558584 DOI: 10.1039/d1fo02033a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.
Collapse
Affiliation(s)
- Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María Á Ávila-Gálvez
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2781-901, Oeiras, Portugal
| | - Juan A Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
39
|
Roshanravan N, Askari SF, Fazelian S, Ayati MH, Namazi N. The roles of quercetin in diabetes mellitus and related metabolic disorders; special focus on the modulation of gut microbiota: A comprehensive review. Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34620011 DOI: 10.1080/10408398.2021.1983765] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercetin is a dietary flavonoid that can affect the balance between anti-oxidant defense system and oxidative stress. A number of studies showed the positive effects of quercetin on diabetes mellitus and related metabolic disorders through different pathways such as gut flora. However, findings are conflicting. In addition, it seems no studies have summarized all potential mechanisms of quercetin in diabetes mellitus, so far. Therefore, the aims of the present comprehensive review were to provide an overview on biological and biochemical characteristics of quercetin and investigate the effect of quercetin on diabetes mellitus and related metabolic disorders by focusing on its effects on the modulation of gut microbiota. For this purpose, findings of In vitro, animal studies, clinical trials, and review studies with the English language published until January 2021 were summarized. They were identified through electronic databases (PubMed, Scopus, and Cochrane Library) and Google Scholar. Findings showed that quercetin can be an effective component for improving glycemic status and other metabolic disorders related to diabetes mellitus based on In vitro and animal studies. However, environmental factors, food processing and using nanoformulations can affect its efficacy in human studies. Several potential mechanisms, including the modulation of gut flora are proposed for its actions. However, due to limited clinical trials and contradictory findings, more high-quality clinical trials are needed to make a decision on the efficacy of supplementation with quercetin as a complementary therapy for the management of diabetes mellitus, metabolic disorders, and modulating gut flora.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayyedeh Fatemeh Askari
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Ayati
- School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Pharmacology of Catechins in Ischemia-Reperfusion Injury of the Heart. Antioxidants (Basel) 2021; 10:antiox10091390. [PMID: 34573022 PMCID: PMC8465198 DOI: 10.3390/antiox10091390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (−)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.
Collapse
|
42
|
Mozos I, Jianu D, Stoian D, Mozos C, Gug C, Pricop M, Marginean O, Luca CT. The Relationship Between Dietary Choices and Health and Premature Vascular Ageing. Heart Lung Circ 2021; 30:1647-1657. [PMID: 34393048 DOI: 10.1016/j.hlc.2021.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
The paper aims to review the available data about the main mechanisms enabling improvement or accelerating vascular ageing due to food choices, considering recent experimental and clinical data, and emphasising potential implications for clinical practice and therapy. The main food choices which will be discussed are diets rich in fruits and vegetables, the Mediterranean diet, polyunsaturated fatty acids, cocoa, caffeine, tea, meat, dairy products, sodium, and potassium intake.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences - Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.
| | - Daniela Jianu
- 1st Department of Internal Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; Department of Internal Medicine, Military Hospital, Timişoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Costin Mozos
- Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Cristina Gug
- Department of Microscopic Morphology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Pricop
- Discipline of Maxillofacial Surgery, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania.
| | - Otilia Marginean
- 1st Department of Pediatrics, Center for Research on Growth and Developmental Disorders in Children, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Constantin Tudor Luca
- Department of Cardiology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
43
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
44
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
45
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
46
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
47
|
Protective Effects of Curcumin Phytosomes Against High-Fat Diet-Induced Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:37-44. [PMID: 33861435 DOI: 10.1007/978-3-030-64872-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Curcumin has been shown to have beneficial effects on pathogenic factors involved in the development of atherosclerosis. The aim of this study was to assess the effects of curcumin phytosomes on atherosclerosis induced by high-fat diet in rabbits. A total of 16 adult male New Zealand white rabbits (1.8-2 kg) were fed with a diet containing 0.5% cholesterol for 4 weeks. The rabbits were randomly divided into four groups of four animals each. Group I orally received PBS for 4 weeks. Group II animals were treated with curcumin-phosphatidylcholine solid state dispersion (Meriva®, Indena, Italy) suspended in normal saline at doses equivalent to 100 mg/kg of curcuminoids per day p.o., for 4 weeks. Groups III and IV were treated with curcumin-phosphatidylserine solid state dispersion (Meriserin®, Indena, Italy) suspended in normal saline at doses equivalent to 10 and 100 mg/kg of curcuminoids, respectively, per day p.o., for 4 weeks. For atherosclerosis evaluation, histological examinations on aortic arch section were performed. Blood samples were obtained to determine lipid profile and high-sensitivity C-reactive protein (hs-CRP) levels. Curcumin-phosphatidylserine (100 mg/kg) therapy resulted in a significant reduction in grading of atherosclerotic plaque and intima/media thickness ratio (P < 0.05) and decreased presence of inflammatory cells in the atherosclerotic lesions compared to the control group. However, no significant differences were observed between the curcumin-phospholipid preparations and the control group regarding lipid profile and hs-CRP levels. Results of the present study revealed an atheroprotective effect of curcumin-phosphatidylserine (100 mg/kg) solid dispersion as revealed by a reduction in the development of atherosclerotic lesions.
Collapse
|
48
|
Noor N, Gani A, Gani A, Shah A, Ashraf ZU. Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic. Int J Biol Macromol 2021; 180:375-384. [PMID: 33716131 PMCID: PMC7946821 DOI: 10.1016/j.ijbiomac.2021.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
The world is currently under the threat of COVID pandemic and has focused every dimension of research in finding a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression and other associated symptoms which are taking a toll on their overall mental health. Nanoencapsulation of certain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can become new area of interest in the present scenario. Besides the brain boosting benefits, we have also highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating COVID-19 given to their previous history of action against certain viruses. This review outlines the nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues related to COVID pandemic.
Collapse
Affiliation(s)
- Nairah Noor
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Asir Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Asima Shah
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
49
|
Roberts KA, Draijer R, Hopkins ND, de Graaf Y, Holder SM, Carter SE, Thijssen DHJ, Low DA. Impact of green tea on the deleterious cardiometabolic effects of 7-days unhealthy lifestyle in young healthy males. Physiol Rep 2021; 9:e14720. [PMID: 33682367 PMCID: PMC7937942 DOI: 10.14814/phy2.14720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to examine if catechin-rich green tea abrogates the negative effects of 7-days of physical inactivity and excessive calorie-intake on insulin homeostasis and peripheral vascular function. METHODS Using a randomized, double-blind, crossover design, twelve healthy men (29 ± 6 yrs) underwent 7-days unhealthy lifestyle (UL), including physical inactivity (-50% steps/day) and overfeeding (+50% kcal/day). This was combined with green tea consumption (UL-tea; 3 doses/day) or placebo (UL-placebo). Before and after each intervention, we examined postprandial blood glucose and insulin (3-h after a 1,202 kcal meal) and upper and lower limb vascular function (flow-mediated dilation (FMD%)) and carotid artery reactivity (CAR%). RESULTS UL-placebo increased postprandial glucose and insulin, while UL-tea decreased postprandial glucose and insulin (Time*Intervention interaction effects: both p < 0.05). UL-placebo decreased CAR% and femoral FMD%, while UL-tea prevented these effects (Time*Intervention interaction effects of p < 0.04 and p < 0.001, respectively). There was no main effect of Time or Time*Intervention interaction (both p > 0.05) for brachial FMD%. CONCLUSION Seven days of physical inactivity and overfeeding impair insulin homeostasis and vascular function. These effects were mitigated by a daily intake of catechin-rich green tea.
Collapse
Affiliation(s)
- Kirsty A Roberts
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Richard Draijer
- Unilever Foods Innovation Centre, Wageningen, The Netherlands
| | - Nicola D Hopkins
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Young de Graaf
- Unilever Foods Innovation Centre, Wageningen, The Netherlands
| | - Sophie M Holder
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Sophie E Carter
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.,Department of Physiology, Research Institute for Health Science, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - David A Low
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
50
|
Qureshi MY, Patterson MC, Clark V, Johnson JN, Moutvic MA, Driscoll SW, Kemppainen JL, Huston J, Anderson JR, Badley AD, Tebben PJ, Wackel P, Oglesbee D, Glockner J, Schreiner G, Dugar S, Touchette JC, Gavrilova RH. Safety and efficacy of (+)-epicatechin in subjects with Friedreich's ataxia: A phase II, open-label, prospective study. J Inherit Metab Dis 2021; 44:502-514. [PMID: 32677106 DOI: 10.1002/jimd.12285] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND (+)-Epicatechin (EPI) induces mitochondrial biogenesis and antioxidant metabolism in muscle fibers and neurons. We aimed to evaluate safety and efficacy of (+)-EPI in pediatric subjects with Friedreich's ataxia (FRDA). METHODS This was a phase II, open-label, baseline-controlled single-center trial including 10 participants ages 10 to 22 with confirmed FA diagnosis. (+)-EPI was administered orally at 75 mg/d for 24 weeks, with escalation to 150 mg/d at 12 weeks for subjects not showing improvement of neuromuscular, neurological or cardiac endpoints. Neurological endpoints were change from baseline in Friedreich's Ataxia Rating Scale (FARS) and 8-m timed walk. Cardiac endpoints were changes from baseline in left ventricular (LV) structure and function by cardiac magnetic resonance imaging (MRI) and echocardiogram, changes in cardiac electrophysiology, and changes in biomarkers for heart failure and hypertrophy. RESULTS Mean FARS/modified (m)FARS scores showed nonstatistically significant improvement by both group and individual analysis. FARS/mFARS scores improved in 5/9 subjects (56%), 8-m walk in 3/9 (33%), 9-peg hole test in 6/10 (60%). LV mass index by cardiac MRI was significantly reduced at 12 weeks (P = .045), and was improved in 7/10 (70%) subjects at 24 weeks. Mean LV ejection fraction was increased at 24 weeks (P = .008) compared to baseline. Mean maximal septal thickness by echocardiography was increased at 24 weeks (P = .031). There were no serious adverse events. CONCLUSION (+)-EPI was well tolerated over 24 weeks at up to 150 mg/d. Improvement was observed in cardiac structure and function in subset of subjects with FRDA without statistically significant improvement in primary neurological outcomes. SYNOPSIS A (+)-epicatechin showed improvement of cardiac function, nonsignificant reduction of FARS/mFARS scores, and sustained significant upregulation of muscle-regeneration biomarker follistatin.
Collapse
Affiliation(s)
- Muhammad Yasir Qureshi
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marc C Patterson
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicki Clark
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan N Johnson
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A Moutvic
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherilyn W Driscoll
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeff R Anderson
- Office of Translation to Practice, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Tebben
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip Wackel
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Department of Pathology and Laboratory Medicine, Rochester, Minnesota, USA
| | - James Glockner
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Ralitza H Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|