1
|
Yanik T, Durhan ST. Pro-Opiomelanocortin and Melanocortin Receptor 3 and 4 Mutations in Genetic Obesity. Biomolecules 2025; 15:209. [PMID: 40001512 PMCID: PMC11853658 DOI: 10.3390/biom15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Genetic obesity results from loss-of-function mutations, including those affecting the leptin-melanocortin system, which regulates body weight. Pro-opiomelanocortin (POMC)-derived neurohormones act as ligands for melanocortin receptors (MCRs), regulating the leptin-melanocortin pathway through protein-protein interactions. Loss-of-function mutations in the genes encoding POMC, MC3R, and MC4R can lead to the dysregulation of energy expenditure and feeding balance, early-onset obesity, and developmental dysregulation. Recent studies have identified new genetic regulatory mechanisms and potential biomarker regions for the POMC gene and MC4R secondary messenger pathway associated with obesity. Recent advances in crystal structure studies have enhanced our understanding of the protein interactions in this pathway. This narrative review focuses on recent developments in two key areas related to POMC regulation and the leptin-melanocortin pathway: (1) genetic variations in and functions of POMC, and (2) MC3R and MC4R variants that lead to genetic obesity in humans. Understanding these novel mutations in POMC and MC4R/MC3R, as well as their structural and intracellular mechanisms, may help identify strategies for the treatment and diagnosis of obesity, particularly childhood obesity.
Collapse
Affiliation(s)
- Tulin Yanik
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Türkiye
| | - Seyda Tugce Durhan
- Department of Biochemistry, Middle East Technical University, Ankara 06800, Türkiye;
| |
Collapse
|
2
|
Wang Y, Yang T, Mo H, Yao M, Song Q, Yu H, Du Y, Li Y, Yu J, Wang L. Identification and functional analysis of six melanocortin-4-receptor-like (MC4R-like) mutations in goldfish (Carassius auratus). Gen Comp Endocrinol 2025; 360:114639. [PMID: 39536983 DOI: 10.1016/j.ygcen.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Melanocortin receptor-4 (MC4R) belongs to the G protein-coupled receptor family, characterized by a classical structure of seven transmembrane domains (7TMD). They play an important role in food intake and weight regulation. In the present study, we identified melanocortin-4-receptor-like (caMC4RL) mutants of goldfish from the Qian River in the Qin Ling region and characterized their functional properties, including the constitutive activities of the mutants, ligand-induced cAMP and ERK1/2 accumulation, and AMPK activation. The results show that six caMC4RL mutants were identified in goldfish from the Qian River in the Qin Ling region, and are located in the conserved position of the Cyprinidae MC4Rs. The mutations (E57K, P296S, and R302T/K) result in the loss of Gs signaling function. The mutations (P296 and R302T/K) exhibited biased signaling in response to ACTH stimulation in the MAPK/ERK pathway. In addition, the E57K mutant may play a role in weight regulation and could serve as molecular markers for molecular breeding. These data will provide fundamental information for functional studies of teleost GPCR mutants and MC4R isoforms.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianze Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingchuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyou Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Bayhaghi G, Karim ZA, Silva J. Descriptive analysis of MC4R gene variants associated with obesity listed on ClinVar. Sci Prog 2024; 107:368504241297197. [PMID: 39552559 PMCID: PMC11571248 DOI: 10.1177/00368504241297197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVES The most recent version of ClinVar was utilized to filter variants of the MC4R gene based on location, condition, and clinical significance with the goal of obtaining benign and disease-associated variants of the MC4R gene. MC4R gene variants can lead to dysregulation of energy expenditure and appetite control, which prompted this study to delineate the distinctive features of MC4R gene variants submitted to the ClinVar repository regarding their association with obesity and related phenotypes. METHOD A thorough search was conducted in the ClinVar repository for clinically significant MC4R variants through the utilization of the gene name MC4R[gene] and MeSH terms "MC4R[gene]" and "single gene"[properties]" in the search box. Leading to the identification of clinically significant genetic variants associated with obesity. RESULTS Utilizing the ClinVar clinical significance ranking system, the MC4R variants were categorized into six groups based on ClinVar/ClinGen's ranking system: pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), benign (B), likely benign (LB), and conflicting classifications (CC). A total of 103 pathogenic variants were observed. These variants have different clinical significance that are associated with monogenic obesity, monogenic diabetes, and body mass index quantitative traits. It was observed that over 80% of the mutations were single nucleotide variants, with nearly half being missense mutations spread throughout the topological and transmembrane domains. Furthermore, TM7 had the highest number of single nucleotide missense mutations. CONCLUSION Further analysis of the relationships between monogenic obesity and diabetes requires additional investigation to discover the underlying causes of these conditions. The study findings imply that mutations in MC4R's topological and transmembrane regions may significantly influence receptor activation and signaling. As more MC4R variants are discovered and their correlation with obesity is established, there is potential to definitively establish a strong connection between MC4R pathogenic variants and the development of obesity.
Collapse
Affiliation(s)
- Giti Bayhaghi
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA, USA
| | - Zubair A. Karim
- Department of Nutrition & Dietetics, College of Allied Health Science, Augusta University, Augusta, GA, USA
| | - Jeane Silva
- Department of Health Management, Economics and Policy, School of Public Health Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Carrasco-Luna J, Navarro-Solera M, Gombert M, Martín-Carbonell V, Carrasco-García Á, Del Castillo-Villaescusa C, García-Pérez MÁ, Codoñer-Franch P. Association of the rs17782313, rs17773430 and rs34114122 Polymorphisms of/near MC4R Gene with Obesity-Related Biomarkers in a Spanish Pediatric Cohort. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1221. [PMID: 37508717 PMCID: PMC10378299 DOI: 10.3390/children10071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Obesity is a multifactorial disease whose onset and development are shaped by the individual genetic background. The melanocortin 4 receptor gene (MC4R) is involved in the regulation of food intake and energy expenditure. Some of the single nucleotide polymorphisms (SNPs) of this gene are related to obesity and metabolic risk factors. The present study was undertaken to assess the relationship between three polymorphism SNPs, namely, rs17782313, rs17773430 and rs34114122, and obesity and metabolic risk factors. One hundred seventy-eight children with obesity aged between 7 and 16 years were studied to determine anthropometric variables and biochemical and inflammatory parameters. Our results highlight that metabolic risk factors, especially alterations in carbohydrate metabolism, were related to rs17782313. The presence of the minor C allele in the three variants (C-C-C) was significantly associated with anthropometric measures indicative of obesity, such as the body mass and fat mass indexes, and increased the values of insulinemia to 21.91 µIU/mL with respect to the wild type values. Our study suggests that the C-C-C haplotype of the SNPs rs17782313, rs17773430 and rs34114122 of the MC4R gene potentiates metabolic risk factors at early ages in children with obesity.
Collapse
Affiliation(s)
- Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department for Biotechnology, Faculty of Experimental Science, Catholic University of Valencia, 46001 Valencia, Spain
| | - María Navarro-Solera
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Vanessa Martín-Carbonell
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Álvaro Carrasco-García
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
| | - Cristina Del Castillo-Villaescusa
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| | - Miguel Ángel García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, INCLIVA, 46100 Valencia, Spain;
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain; (J.C.-L.); (M.N.-S.); (V.M.-C.); (Á.C.-G.)
- Department of Pediatrics, University Hospital Doctor Peset, Foundation of Promotion of Health, Biomedical Research in the Valencian Region (FISABIO), 46020 Valencia, Spain;
| |
Collapse
|
5
|
Zheng Y, Rajcsanyi LS, Kowalczyk M, Giuranna J, Herpertz-Dahlmann B, Seitz J, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Giel K, Egberts K, Burghardt R, Föcker M, Al-Lahham S, Hebebrand J, Fuhrer D, Tan S, Zwanziger D, Peters T, Hinney A. Lipocalin 2 - mutation screen and serum levels in patients with anorexia nervosa or obesity and in lean individuals. Front Endocrinol (Lausanne) 2023; 14:1137308. [PMID: 37025415 PMCID: PMC10071025 DOI: 10.3389/fendo.2023.1137308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
CONTEXT The bone-derived adipokine lipocalin-2 is relevant for body weight regulation by stimulating the leptin-melanocortin pathway. OBJECTIVE We aimed to (i) detect variants in the lipocalin-2 gene (LCN2) which are relevant for body weight regulation and/or anorexia nervosa (AN); (ii) describe and characterize the impact of LCN2 and MC4R variants on circulating lipocalin-2 level. METHODS Sanger sequencing of the coding region of LCN2 in 284 children and adolescents with severe obesity or 287 patients with anorexia nervosa. In-silico analyses to evaluate functional implications of detected LCN2 variants. TaqMan assays for rare non-synonymous variants (NSVs) in additional independent study groups. Serum levels of lipocalin-2 were measured by ELISA in 35 females with NSVs in either LCN2 or MC4R, and 33 matched controls without NSVs in the two genes. RESULTS Fourteen LCN2-variants (five NSVs) were detected. LCN2-p.Leu6Pro and p.Gly9Val located in the highly conserved signal peptide region may induce functional consequences. The secondary structure change of lipocalin-2 due to LCN2-p.Val89Ile may decrease solubility and results in a low lipocalin-2 level in a heterozygotes carrier (female recovered from AN). Lean individuals had lower lipocalin-2 levels compared to patients with obesity (p = 0.033). CONCLUSION Lipocalin-2 levels are positively associated with body mass index (BMI). Single LCN2-variants might have a profound effect on lipocalin-2 levels.
Collapse
Affiliation(s)
- Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Yiran Zheng,
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Kowalczyk
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, TU-Dresden, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
- Centre of Excellence for Eating Disorders, University of Tübingen, Tübingen, Germany
| | - Katrin Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital, Tübingen, Germany
- Centre of Excellence for Eating Disorders, University of Tübingen, Tübingen, Germany
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Roland Burghardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Oberberg Fachklinik Fasanenkiez, Berlin, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Saad Al-Lahham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Fuhrer
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susanne Tan
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Association between SNPs in Leptin Pathway Genes and Anthropometric, Biochemical, and Dietary Markers Related to Obesity. Genes (Basel) 2022; 13:genes13060945. [PMID: 35741707 PMCID: PMC9222344 DOI: 10.3390/genes13060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is one of the main public health problems in Mexico and the world and one from which a large number of pathologies derive. Single nucleotide polymorphisms (SNPs) of various genes have been studied and proven to contribute to the development of multiple diseases. SNPs of the leptin pathway have been associated with the control of hunger and energy expenditure as well as with obesity and type 2 diabetes mellitus. Therefore, the present work focused on determining the association between anthropometric markers and biochemical and dietary factors related to obesity and SNPs of leptin pathway genes, such as the leptin gene (LEP), the leptin receptor (LEPR), proopiomelanocortin (POMC), prohormone convertase 1 (PCSK1), and the melanocortin 4 receptor (MC4R). A population of 574 young Mexican adults of both sexes, aged 19 years old on average and without metabolic disorders previously diagnosed, underwent a complete medical and nutritional evaluation, biochemical determination, and DNA extraction from the blood; DNA samples were subsequently genotyped. Association analyses between anthropometric, biochemical, and dietary variables with SNPs were performed using binary logistic regressions (p-value = 0.05). Although the sampled population did not have previously diagnosed diseases, the evaluation results showed that 33% were overweight or obese according to BMI and 64% had non-clinically elevated levels of body fat. From the 74 SNP markers analyzed from the five previously mentioned genes, 62 showed polymorphisms within the sampled population, and only 35 of these had significant associations with clinical variables. The risk associations (OR > 1) occurred between clinical markers with elevated values for waist circumference, waist−height index, BMI, body fat percentage, glucose levels, insulin levels, HOMA-IR, triglyceride levels, cholesterol levels, LDL-c, low HDL-c, carbohydrate intake, and protein intake and SNPs of the LEP, LEPR, PCSK1, and MC4R genes. On the other hand, the protective associations (OR < 1) were associated with markers including elevated values for insulin, HOMA-IR, cholesterol, c-LDL, energy intake > 2440 Kcal/day, and lipid intake and SNPs of the LEP and LEPR genes and POMC. The present study describes associations between SNPs in leptin pathway genes, revealing positive and negative interactions between reported SNPs and the clinical markers related to obesity in a sampled Mexican population. Hence, our results open the door for the further study of new genetic variants and their influence on obesity.
Collapse
|
7
|
Moazzam-Jazi M, Sadat Zahedi A, Akbarzadeh M, Azizi F, Daneshpour MS. Diverse effect of MC4R risk alleles on obesity-related traits over a lifetime: Evidence from a well-designed cohort study. Gene 2022; 807:145950. [PMID: 34481003 DOI: 10.1016/j.gene.2021.145950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
This population-based longitudinal study is the first investigation that assesses the association of common MC4R SNPs with the obesity-related parameters over time and determines the effect of risk alleles during the three adulthood life periods (early, middle, and late) in a large Iranian cohort, a population with a unique genetic make-up that has been understudied and relatively unexplored. We obtained the genotype of 5370 unrelated adults who participated in the ongoing Tehran Cardiometabolic Genetic Study (TCGS) cohort project for the common MC4R SNPs. Linear regression and linear mixed model analyses were performed to examine the effect of MC4R polymorphisms on maximum BMI and other obesity-related factors over time. We recognized that several SNPs associated with the maximum BMI and the increased BMI, waist circumference, and waist-hip ratio across Iranian adults over a lifetime. Interestingly, we found that rs9954571-A has a yet unreported protective role against obesity-related factors, including BMI, waist circumference, waist-hip ratio, and triglyceride level. Additionally, a survey of the impact of the MC4R risk score throughout the adulthood life periods indicated that the MC4R risk score is influenced both the elevated BMI and waist circumference only during the early adulthood period. Our findings can expand our knowledge about the MC4R genetic variant's contributions to adulthood obesity and highlight the importance of evaluating the genetic components affecting obesity over a lifetime, which could be considered for obesity clinical screening and treatment.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
9
|
Aasdahl L, Nilsen TIL, Meisingset I, Nordstoga AL, Evensen KAI, Paulsen J, Mork PJ, Skarpsno ES. Genetic variants related to physical activity or sedentary behaviour: a systematic review. Int J Behav Nutr Phys Act 2021; 18:15. [PMID: 33482856 PMCID: PMC7821484 DOI: 10.1186/s12966-020-01077-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Research shows that part of the variation in physical activity and sedentary behaviour may be explained by genetic factors. Identifying genetic variants associated with physical activity and sedentary behaviour can improve causal inference in physical activity research. The aim of this systematic review was to provide an updated overview of the evidence of genetic variants associated with physical activity or sedentary behaviour. METHODS We performed systematic literature searches in PubMed and Embase for studies published from 1990 to April 2020 using keywords relating to "physical activity", "exercise", "sedentariness" and "genetics". Physical activity phenotypes were either based on self-report (e.g., questionnaires, diaries) or objective measures (e.g., accelerometry, pedometer). We considered original studies aiming to i) identify new genetic variants associated with physical activity or sedentary behaviour (i.e., genome wide association studies [GWAS]), or ii) assess the association between known genetic variants and physical activity or sedentary behaviour (i.e., candidate gene studies). Study selection, data extraction, and critical appraisal were carried out by independent researchers, and risk of bias and methodological quality was assessed for all included studies. RESULTS Fifty-four out of 5420 identified records met the inclusion criteria. Six of the included studies were GWAS, whereas 48 used a candidate gene approach. Only one GWAS and three candidate gene studies were considered high-quality. The six GWAS discovered up to 10 single nucleotide polymorphisms (SNPs) associated with physical activity or sedentariness that reached genome-wide significance. In total, the candidate gene studies reported 30 different genes that were associated (p < 0.05) with physical activity or sedentary behaviour. SNPs in or close to nine candidate genes were associated with physical activity or sedentary behaviour in more than one study. CONCLUSION GWAS have reported up to 10 loci associated with physical activity or sedentary behaviour. Candidate gene studies have pointed to some interesting genetic variants, but few have been replicated. Our review highlights the need for high-quality GWAS in large population-based samples, and with objectively assessed phenotypes, in order to establish robust genetic instruments for physical activity and sedentary behaviour. Furthermore, consistent replications in GWAS are needed to improve credibility of genetic variants. TRIAL REGISTRATION Prospero CRD42019119456 .
Collapse
Affiliation(s)
- Lene Aasdahl
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway. .,Unicare Helsefort Rehabilitation Centre, Rissa, Norway.
| | - Tom Ivar Lund Nilsen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Clinic of Anaesthesia and Intensive Care, St. Olavs Hospital, Trondheim, Norway
| | - Ingebrigt Meisingset
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Anne Lovise Nordstoga
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway.,Unit for Physiotherapy Services, Trondheim, Norway
| | - Julie Paulsen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
| | - Paul Jarle Mork
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Eivind Schjelderup Skarpsno
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Lv L, Liang XF, Huang K, He S. Effect of agmatine on food intake in mandarin fish (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1709-1716. [PMID: 31140073 DOI: 10.1007/s10695-019-00659-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Agmatine, an endogenous biogenic amine, is considered to be a central neurotransmitter. And it plays an important role in mammal feeding behavior. However, there were few studies on the effect of agmatine on feeding behavior in fishes. Here, we investigated the impact of intracerebroventricular (ICV) injections of agmatine (1.25-20 nmol/fish) on food intake in mandarin fish (Siniperca chuatsi). At 1-h post-injection, food intake showed a significant decrease in agmatine-treated fishes compared with the saline treated. Furthermore, the food intake in agmatine treatment mostly did not differ from that in saline treatment at 4--24-h post-injection as well as the results of genes expression of neuropeptide Y (NPY), agouti-regulated peptide (AgRP), and anorexigenic melanocortin 4 receptor (MC4R). In accordance with the insulin level increasing in liver, the gene expression of insulin receptor substrate (IRS2) was significantly higher in agmatine treatment compared to saline treatment at 1-h post-injection. Thus, the anorexigenic effect of agmatine is likely to decrease NPY and AgRP expression levels and increase MC4R and IRS2 levels which was coupled with stimulation of insulin secretion. Although these initial findings are limited in dose, the data firstly provides evidence for the anorectic effects of agmatine in fish.
Collapse
Affiliation(s)
- Liyuan Lv
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Kang Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
11
|
Szkup M, Owczarek AJ, Schneider-Matyka D, Brodowski J, Łój B, Grochans E. Associations between the components of metabolic syndrome and the polymorphisms in the peroxisome proliferator-activated receptor gamma ( PPAR-γ), the fat mass and obesity-associated ( FTO), and the melanocortin-4 receptor ( MC4R) genes. Aging (Albany NY) 2019; 10:72-82. [PMID: 29315078 PMCID: PMC5811243 DOI: 10.18632/aging.101360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/30/2016] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is regarded as a set of abnormalities, increasing the risk of serious functioning disorders. It can develop as a result of genetic predisposition. AIM The aim of this study was to establish associations between MetS-related abnormalities and the PPAR-γ rs1801282, FTO rs9939609, and MC4R rs17782313 polymorphisms. MATERIAL AND METHODS The study involved 425 women aged 45-60 years. The participants were surveyed and subjected to anthropometric, biochemical and genetic analysis. RESULTS In the recessive inheritance model for the FTO polymorphism, a statistically significant relationship was demonstrated between the A/A genotype and glycemia. The results obtained in the codominant and overdominant models for the PPAR-y polymorphism showed a tendency to statistical significance (the C/G genotype inclined to hypertriglyceridemia), and were statistically significant in the codominant, dominant, and recessive models (the C/C genotype predisposed to increased blood pressure). CONCLUSIONS 1. MetS-related abnormalities can be genetically determined, however only some of these relationships can be demonstrated due to the categorical division of symptoms according to the IDF criteria from 2009. 2. The A/A genotype of the FTO rs9939609 polymorphism increases the risk of hyperglycemia, and the C/C genotype of the PPAR-γ rs1801282 variant entails elevated blood pressure in 45-60-year-old women.
Collapse
Affiliation(s)
- Małgorzata Szkup
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, 71-210, Poland
| | - Aleksander Jerzy Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec, 41-200, Poland
| | - Daria Schneider-Matyka
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, 71-210, Poland
| | - Jacek Brodowski
- Primary Care Department, Pomeranian Medical University in Szczecin, Szczecin, 71-210, Poland
| | - Beata Łój
- Klinik für Gynäkologie und Geburtshilfe, Sana HANSE-Klinikum Wismar GmbH, Wismar, 23966, Germany
| | - Elżbieta Grochans
- Department of Nursing, Pomeranian Medical University in Szczecin, Szczecin, 71-210, Poland
| |
Collapse
|
12
|
Gimeno-Ferrer F, Albuquerque D, García Banacloy A, Guzmán Luján C, Vidal Garcia C, Marcaida Benito G, Sánchez Juan C, Bruna Esteban M, Rodríguez-López R. Genetic screening for MC4R gene identifies three novel mutations associated with severe familiar obesity in a cohort of Spanish individuals. Gene 2019; 704:74-79. [PMID: 30981838 DOI: 10.1016/j.gene.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 11/19/2022]
Abstract
MC4R gene is a hypothalamic satiety control mediator in which mutations cause a monogenic form of obesity. The aim of this study was to perform a genetic screening to identify variations in the entire region of MC4R gene. A total of 236 unrelated and severely obese patients (BMI ≥ 40 kg/m2) with Spanish ancestry and severe overweight familiar history have been enrolled into the study. Seven MC4R gene variants were identified in the heterozygous state in 21 patients. Coding variants p.Thr101Ile and p.Ala259Asp are new and variants p.Ser30Phe, p.Val103Ile and p.Ile251Leu were previously described. Two variants have been also observed in the promoter region of the MC4R gene; the c.-24G>A mutation, described for the first time, and the known c.-178A>C variant. Both in silico and family segregation analysis confirm the correlation between novel identified mutations in MC4R gene and obesity development. The correlation between the four variants (c.-24G>A, p.Thr101Ile, p.Ala259Asp and p.Ser30Phe) and the obesity phenotype, therefore, allows the conclusion that all of the four mutations cause a monogenic form of obesity.
Collapse
Affiliation(s)
- Fátima Gimeno-Ferrer
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
| | - David Albuquerque
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain; Research Center for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Amor García Banacloy
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain; Department of Surgery, University of Valencia, Valencia, Spain
| | - Carola Guzmán Luján
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain; Laboratory of Molecular Genetics, Clinical Analysis Service, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Clara Vidal Garcia
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
| | - Goitzane Marcaida Benito
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain; Laboratory of Molecular Genetics, Clinical Analysis Service, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Carlos Sánchez Juan
- Endocrinology and Nutrition Unit, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Marcos Bruna Esteban
- General and Digestive Surgery Unit, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Raquel Rodríguez-López
- Genomics Group, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain; Laboratory of Molecular Genetics, Clinical Analysis Service, Consorcio Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
13
|
Shrestha D, Rahman ML, Hinkle SN, Workalemahu T, Tekola-Ayele F. Maternal BMI-Increasing Genetic Risk Score and Fetal Weights among Diverse US Ethnic Groups. Obesity (Silver Spring) 2019; 27:1150-1160. [PMID: 31231956 PMCID: PMC6592626 DOI: 10.1002/oby.22499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Associations between maternal genetic risk for obesity and fetal weight were examined at the end of the first (13 weeks 6 days), second (27 weeks 6 days), and third (40 weeks 0 days) trimesters of pregnancy among four race/ethnic groups in the US. METHODS For 603 white, 591 black, 535 Hispanic, and 216 Asian women, maternal genetic risk score (GRS) was calculated as the sum of 189 BMI-increasing alleles and was categorized into high or low GRS. Associations between GRS (continuous and categorical) and estimated fetal weight were tested overall and stratified by prepregnancy BMI, gestational weight gain (GWG), and fetal sex. RESULTS High GRS compared with low GRS was associated with increased fetal weight at the end of the second (β: 22.7 g; 95% CI: 2.4-43.1; P = 0.03) and third trimesters (β: 88.3 g; 95% CI: 9.0-167.6; P = 0.03) among Hispanic women. The effect of GRS was stronger among Hispanic women with normal prepregnancy weight, adequate first trimester GWG, or inadequate second trimester GWG (P < 0.05). Among Asian women, high GRS was associated with increased weight among male fetuses but decreased weight among female fetuses (P < 0.05). CONCLUSIONS Maternal obesity genetic risk was associated with fetal weight with potential effect modifications by maternal prepregnancy BMI, GWG, and fetal sex.
Collapse
Affiliation(s)
- Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mohammad L. Rahman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Harvard Medical School, Department of Population Medicine and Harvard Pilgrim Health Care Institute
| | - Stefanie N. Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Zhang X, Speakman JR. Genetic Factors Associated With Human Physical Activity: Are Your Genes Too Tight To Prevent You Exercising? Endocrinology 2019; 160:840-852. [PMID: 30721946 DOI: 10.1210/en.2018-00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
The benefits of physical activity (PA) on health and fitness are well known. It has become apparent from studies of heritability that there is a considerable genetic component to PA. However, PA is such a complex phenotype that the measurement and quantification of it provide a challenge to a clearer understanding of its genetic basis. In this review, we assessed available evidence from family and twin studies that have estimated the heritability of PA. Heritability is greater when evaluated by accelerometry compared with questionnaires, and for questionnaires higher in twin than family studies. Accelerometry studies suggest heritability of PA is 51% to 56%. There have been many genome-wide linkage studies, candidate gene studies, and four genome-wide association studies that have highlighted specific genetic factors linked to different PA levels. These studies have generally failed to replicate identified loci, with the exception of the melanocortin 4 receptor, and this may be because of the variability in the measurement techniques used to characterize the behavior. Future work should aim to standardize the procedures used to measure PA in the context of trying to identify genetic causes. The link of genetics to physical exercise is not so tight that it prevents voluntary interventions.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, People's Republic of China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- CAS Center of Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
15
|
Gao L, Wang L, Yang H, Pan H, Gong F, Zhu H. MC4R Single Nucleotide Polymorphisms Were Associated with Metabolically Healthy and Unhealthy Obesity in Chinese Northern Han Populations. Int J Endocrinol 2019; 2019:4328909. [PMID: 31781208 PMCID: PMC6875380 DOI: 10.1155/2019/4328909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) has been reported to be associated with the risk of obesity, and metabolically unhealthy obese (MUHO) patients tend to have a greater risk of cardiovascular complications than metabolically healthy obese (MHO) patients. Therefore, we aimed to study single nucleotide polymorphisms (SNPs) in the MC4R gene associated with metabolically healthy and unhealthy obesity in Chinese Northern Han populations. A total of 1100 Chinese Northern Han subjects were recruited and divided into four groups according to the criteria of the Adult Treatment Panel-III (ATP-III) and World Health Organization (WHO): MUHO (n = 300), MHO (n = 196), metabolic unhealthy normal weight (MUH-NW) (n = 303), and metabolic healthy normal weight (MH-NW) (n = 301). DNA samples were extracted, and six SNPs of the MC4R gene, including rs2331841, rs656710, rs17782313, rs571312, rs12970134, and rs11872992, were genotyped with the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. Among the six SNPs of the MC4R gene, rs2331841 (A/G) was the most significant and could account for 0.9% of obesity etiology. Compared with the normal weight group, rs2331841 of the MC4R gene was associated with obesity (P=0.032). The obesity risk of subjects with the AG genotype in the rs2331841 site was 82% higher than the risk of those with the GG genotype (β = 0.60, OR = 1.82, P=0.030). After adjusting for sex and age, the frequency of the A allele in the rs2331841 site was higher in the MUHO group than in the MH-NW group (27.9% vs. 21.1%, respectively, OR = 1.49, 95% CI 1.14-1.96, P=0.005) and in the MUHO group than in the MHO group (27.9% vs. 22.3%, respectively, OR = 1.39, 95% CI 1.02-1.92, P=0.039). Among the three genotypes of rs2331841, the subjects with the AA/AG genotype had higher diastolic blood pressure (DBP) than those with the GG genotype. Our data first suggest that SNPs in the rs2331841 site of the MC4R gene are closely related to obesity and its related metabolic disorders in Chinese Northern Han populations. The participants with an A allele of rs2331841 had a higher risk of obesity and MUHO than other participants.
Collapse
Affiliation(s)
- Luying Gao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Niazi RK, Gjesing AP, Hollensted M, Have CT, Grarup N, Pedersen O, Ullah A, Shahid G, Ahmad W, Gul A, Hansen T. Identification of novel LEPR mutations in Pakistani families with morbid childhood obesity. BMC MEDICAL GENETICS 2018; 19:199. [PMID: 30442103 PMCID: PMC6238292 DOI: 10.1186/s12881-018-0710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Background Mutations in the genes encoding leptin (LEP), the leptin receptor (LEPR), and the melanocortin 4 receptor (MC4R) are known to cause severe early-onset childhood obesity. The aim of the current study was to examine the prevalence of damaging LEP, LEPR, and MC4R mutations in Pakistani families having a recessive heritance of early-onset obesity. Methods Using targeted resequencing, the presence of rare mutations in LEP, LEPR, and MC4R, was investigated in individuals from 25 families suspected of having autosomal recessive early-onset obesity. Segregation patterns of variants were assessed based on chip-based genotyping. Results Homozygous LEPR variants were identified in two probands. One carried a deletion (c.3260AG) resulting in the frameshift mutation p.Ser1090Trpfs*6, and the second carried a substitution (c.2675C > G) resulting in the missense mutation p.Pro892Arg. Both mutations were located within regions of homozygosity shared only among affected individuals. Both probands displayed early-onset obesity, hyperphagia and diabetes. No mutations were found in LEP and MC4R. Conclusions The current study highlights the implication of LEPR mutations in cases of severe early-onset obesity in consanguineous Pakistani families. Through targeted resequencing, we identified novel damaging mutations, and our approach may therefore be utilized in clinical testing or diagnosis of known forms of monogenic obesity with the aim of optimizing obesity treatment. Electronic supplementary material The online version of this article (10.1186/s12881-018-0710-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robina Khan Niazi
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Children Hospital, Pakistan Institute of Medical Sciences, Islamabad, Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hollensted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gulbin Shahid
- Children Hospital, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asma Gul
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Boswell N, Byrne R, Davies PSW. Aetiology of eating behaviours: A possible mechanism to understand obesity development in early childhood. Neurosci Biobehav Rev 2018; 95:438-448. [PMID: 30391377 DOI: 10.1016/j.neubiorev.2018.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 11/15/2022]
Abstract
Childhood obesity is an issue of public health concern that is understood to emerge due to disequilibrium in energy homeostasis. This commentary explores literature regarding neuro-biological mechanisms of energy homeostasis and the relationship between subjective measures of children's eating behaviours and objective measures of appetite, in order to better understand the aetiology of childhood obesity. Early life influences, such as in utero exposure, breastfeeding, and general disadvantage, appear to have an important influence on neuro-biological mechanisms of appetite and may contribute to inequitable distributions of obesity within the population. Subject measures of eating behaviours appear to capture various aspects of neuro-biologically driven (objective) appetite systems, however, these systems are complex, interdependent and not yet fully understood. Future research focusing attention on early life influences on appetite and eating behaviours is warranted to increase understanding of differences in rates of obesity within the population, to determine opportunities for targeted obesity prevention initiatives, and to explore the potential to measure change in eating behaviours as a marker of appetite and obesity risk.
Collapse
Affiliation(s)
- Nikki Boswell
- The University of Queensland, Brisbane QLD, Australia.
| | - Rebecca Byrne
- Queensland University of Technology, Brisbane QLD, Australia.
| | | |
Collapse
|
18
|
Morris MR, Friebertshauser RJ, Zupi M, Liotta MN, Dunn G, Kleinas N, Rios-Cardenas O. Feeding Rates in the Swordtail Fish Xiphophorus multilineatus: A Model System for Genetic Variation in Nutritional Programming. Zebrafish 2018; 15:484-491. [DOI: 10.1089/zeb.2018.1624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Molly R. Morris
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | | | - Megan Zupi
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | | | - Garrett Dunn
- Department of Biology, Washington and Jefferson College, Washington, Pennsylvania
| | - Nicole Kleinas
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Oscar Rios-Cardenas
- Instituto de Ecología A.C., Red de Biología Evolutiva, Xalapa, Veracruz, México
| |
Collapse
|
19
|
Amato RJ, Boland J, Myer N, Few L, Dowd D. Pharmacogenomics and Psychiatric Clinical Care. J Psychosoc Nurs Ment Health Serv 2018; 56:22-31. [DOI: 10.3928/02793695-20170928-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022]
|
20
|
Lu Y, Klimovich CM, Robeson KZ, Boswell W, Ríos-Cardenas O, Walter RB, Morris MR. Transcriptome assembly and candidate genes involved in nutritional programming in the swordtail fish Xiphophorus multilineatus. PeerJ 2017; 5:e3275. [PMID: 28480144 PMCID: PMC5417068 DOI: 10.7717/peerj.3275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nutritional programming takes place in early development. Variation in the quality and/or quantity of nutrients in early development can influence long-term health and viability. However, little is known about the mechanisms of nutritional programming. The live-bearing fish Xiphophorus multilineatus has the potential to be a new model for understanding these mechanisms, given prior evidence of nutritional programming influencing behavior and juvenile growth rate. We tested the hypotheses that nutritional programming would influence behaviors involved in energy homeostasis as well gene expression in X. multilineatus. METHODS We first examined the influence of both juvenile environment (varied in nutrition and density) and adult environment (varied in nutrition) on behaviors involved in energy acquisition and energy expenditure in adult male X. multilineatus. We also compared the behavioral responses across the genetically influenced size classes of males. Males stop growing at sexual maturity, and the size classes of can be identified based on phenotypes (adult size and pigment patterns). To study the molecular signatures of nutritional programming, we assembled a de novo transcriptome for X. multilineatus using RNA from brain, liver, skin, testis and gonad tissues, and used RNA-Seq to profile gene expression in the brains of males reared in low quality (reduced food, increased density) and high quality (increased food, decreased density) juvenile environments. RESULTS We found that both the juvenile and adult environments influenced the energy intake behavior, while only the adult environment influenced energy expenditure. In addition, there were significant interactions between the genetically influenced size classes and the environments that influenced energy intake and energy expenditure, with males from one of the four size classes (Y-II) responding in the opposite direction as compared to the other males examined. When we compared the brains of males of the Y-II size class reared in a low quality juvenile environment to males from the same size class reared in high quality juvenile environment, 131 genes were differentially expressed, including metabolism and appetite master regulator agrp gene. DISCUSSION Our study provides evidence for nutritional programming in X. multilineatus, with variation across size classes of males in how juvenile environment and adult diet influences behaviors involved in energy homeostasis. In addition, we provide the first transcriptome of X. multilineatus, and identify a group of candidate genes involved in nutritional programming.
Collapse
Affiliation(s)
- Yuan Lu
- Molecular Bioscience Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | | | - Kalen Z Robeson
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - William Boswell
- Molecular Bioscience Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Oscar Ríos-Cardenas
- Red de Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz, Mexico
| | - Ronald B Walter
- Molecular Bioscience Research Group, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Molly R Morris
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|
21
|
Abstract
Genetic testing in psychiatric practice may be a beneficial adjunct to the nursing toolbox of considerations used to improve patient outcomes. Since 2004, the psychiatric community has used genotyping to personalize medication options for their patients. Although not a definitive or exact science, pharmacogenetic testing for psychopharmacological treatment options offers nurses and their patients insights into potential treatments that will reduce the current trial-and-error prescribing practices and more quickly improve patients' quality of life. The current article guides nurses through the process of conducting genetic testing, interpreting the results, and applying the results in clinical practice using a fictitious case example. [Journal of Psychosocial Nursing and Mental Health Services, 55(3), 19-23.].
Collapse
|
22
|
Huang T, Zheng Y, Hruby A, Williamson DA, Bray GA, Shen Y, Sacks FM, Qi L. Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. J Nutr 2017; 147:439-444. [PMID: 28148682 DOI: 10.3945/jn.116.242958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/18/2016] [Accepted: 01/09/2017] [Indexed: 02/01/2023] Open
Abstract
Background: The melanocortin-4 receptor (MC4R) plays a pivotal role in the regulation of appetite and eating behavior. Variants in the MC4R gene have been related to appetite and obesity.Objective: We aimed to examine whether weight-loss diets modified the effect of the "obesity-predisposing" MC4R genotype on appetite-related measures in a randomized controlled trial.Methods: A total of 811 overweight and obese subjects [25 ≤ body mass index (BMI; kg/m2) ≤ 40] aged 30-70 y were included in the 2-y POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) trial. We genotyped MC4R rs7227255 in 735 overweight adults and assessed appetite-related characteristics, including craving, fullness, hunger, and prospective consumption, as well as a composite appetite score. We examined the effects of the genotype-by-weight-loss diet intervention interaction on appetite variables by using general linear models in both the whole population and in white participants only.Results: We found that dietary protein intake (low compared with high: 15% of energy compared with 25% of energy, respectively) significantly modified MC4R genetic effects on changes in appetite score and craving (P-interaction = 0.03 and 0.02, respectively) at 2 y, after adjustment for age, sex, ethnicity, baseline BMI, weight change, and baseline perspective phenotype. The obesity-predisposing A allele was associated with a greater increase in overall appetite score (β = 0.10, P = 0.05) and craving (β = 0.13, P = 0.008) compared with the non-A allele among participants who consumed a high-protein diet. MC4R genotype did not modify the effects of fat or carbohydrate intakes on appetite measures. Similar interaction patterns were observed in whites.Conclusion: Our data suggest that individuals with the MC4R rs7227255 A allele rather than the non-A allele might experience greater increases in appetite and food craving when consuming a high-protein weight-loss diet. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health, and.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Adela Hruby
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Nutritional Epidemiology Program, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Donald A Williamson
- Pennington Biomedical Research Center of the Louisiana State University System, Baton Rouge, LA
| | - George A Bray
- Pennington Biomedical Research Center of the Louisiana State University System, Baton Rouge, LA
| | - Yiru Shen
- School of Medicine, Tufts University, Boston, MA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA; .,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA; and.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Bradnová O, Vejražková D, Vaňková M, Lukášová P, Včelák J, Stanická S, Dvořáková K, Bendlová B. Metabolic and hormonal consequencies of the "obesity risk" MC4R variant (rs12970134) in Czech women. Physiol Res 2016; 64:S187-95. [PMID: 26680479 DOI: 10.33549/physiolres.933119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although the mutations in MC4R gene became known as the most common genetic cause of human obesity, the effect of rs12970134 A/G near MC4R gene on insulin resistance has been described. The aim of this study was to determine the effect of rs12970134 on obesity, hormone levels, and glucose metabolism in a cohort of women varying in glucose tolerance: 850 normoglycemic women, 423 diagnosed with polycystic ovary syndrome (PCOS), 402 gestational diabetics (GDM), and 250 type 2 diabetic (T2D) women. We did not confirm the explicit effect of rs12970134 on obesity. However, the influence of the A-allele on body adiposity index was observed in a cohort of women diagnosed with PCOS. In normoglycemic women, the A-allele carriership was associated with lower fasting levels of glucose, insulin, C-peptide, and index of insulin resistance. Furthermore, higher levels of growth hormone, leptin and SHBG, and lower levels of fT3, testosterone, and androstenedione were recorded in normoglycemic A-allele carriers. In conclusion, the study presents the evidence of the impact of rs12970134 on complex hypothalamic regulations.
Collapse
Affiliation(s)
- O Bradnová
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kirac D, Kasimay Cakir O, Avcilar T, Deyneli O, Kurtel H, Yazici D, Kaspar EC, Celik N, Guney AI. Effects of MC4R, FTO, and NMB gene variants to obesity, physical activity, and eating behavior phenotypes. IUBMB Life 2016; 68:806-16. [PMID: 27634552 DOI: 10.1002/iub.1558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 02/01/2023]
Abstract
Obesity is a major contributory factor of morbidity and mortality. It has been suggested that biological systems may be involved in the tendency to be and to remain physically inactive also behaviors such as food and beverage preferences and nutrient intake may at least partially genetically determined. Consequently, besides environment, genetic factors may also contribute to the level of physical activity and eating behaviors thus effect obesity. Therefore the aim of this study is to investigate the effect of various gene mutations on obesity, physical activity levels and eating behavior phenotypes. One hundred patients and 100 controls were enrolled to the study. Physical activity levels were measured with an actical acceloremeter device. Eating behaviors were evaluated using Three-Factor Eating questionnaire (TFEQ). Associations between eating behavior scores and physical characteristics were also evaluated. The information about other obesity risk factors were also collected. Mutations were investigated with PCR, direct sequencing and Real-Time PCR. rs1051168, rs8050146 -2778C > T mutations were found statistically significant in patients, rs1121980 was found statistically significant in controls. 21 mutations were found in MC4R and near MC4R of which 18 of them are novel and 8 of them cause amino acid change. In addition, it was found that, some obesity related factors and questions of TFEQ are associated with various investigated gene mutations. Any relation between gene mutations and physical activity levels were not detected. It is thought that, due to the genotype data and eating behaviors, it may be possible to recommend patients for proper eating patterns to prevent obesity. © 2016 IUBMB Life, 68(10):806-816, 2016.
Collapse
Affiliation(s)
- Deniz Kirac
- Department of Medical Biology, Yeditepe University, Istanbul, Turkey.
| | | | - Tuba Avcilar
- Department of Medical Genetics, Marmara University, Istanbul, Turkey
| | - Oguzhan Deyneli
- Department of Endocrinology and Metabolism, Marmara University, Istanbul, Turkey
| | - Hizir Kurtel
- Department of Physiology, Marmara University, Istanbul, Turkey
| | - Dilek Yazici
- Department of Endocrinology and Metabolism, Marmara University, Istanbul, Turkey
| | | | - Nurgul Celik
- Department of Medical Genetics, Marmara University, Istanbul, Turkey
| | - Ahmet Ilter Guney
- Department of Medical Genetics, Marmara University, Istanbul, Turkey
| |
Collapse
|
25
|
Amarger V, Bouvagnet A, Moyon T, Vaiman D, Darmaun D, de Lauzon-Guillain B, Robitaille J, Flamant C, Rozé JC, Parnet P. A Common Genetic Variant in the Insulin Receptor Gene Is Associated with Eating Difficulties at 2 Years of Age in a Cohort of Preterm Infants. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 8:153-63. [PMID: 26629831 DOI: 10.1159/000442159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Children born preterm are more likely than full-term infants to develop eating difficulties that can affect their growth. Although this behavior is certainly influenced by their fetal and postnatal history, a large individual variability exists that results from a complex interaction between genetic and environmental factors. We performed an original pilot study to identify common genetic variants associated with eating difficulties at 2 years of age in the POLYNUCA cohort of preterm infants. METHODS Eating behavior was assessed using a parental questionnaire in a cohort of 234 very preterm infants (including 38 pairs of twins). Eighty-two common single nucleotide polymorphisms (SNPs) were selected in a total of 40 candidate genes involved in the regulation of energy homeostasis and food intake. RESULTS Eating behavior was strongly correlated in monozygotic (r = 0.92, p = 0.001) but not dizygotic twins (r = 0.27, p = 0.14), suggesting a strong heritability of this trait. One SNP (rs11671975) in the insulin receptor (INSR) gene was significantly associated with eating behavior. This effect was maintained after adjustment for birth weight Z score and maternal education level, two factors that are associated with eating difficulties at 2 years of age. CONCLUSION The INSR gene is potentially associated with eating difficulties in preterm infants.
Collapse
Affiliation(s)
- Valérie Amarger
- UMR 1280, Institut National de la Recherche Agronomique (INRA), Universitx00E9; de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Young KL, Graff M, North KE, Richardson AS, Mohlke KL, Lange LA, Lange EM, Harris KM, Gordon-Larsen P. Interaction of smoking and obesity susceptibility loci on adolescent BMI: The National Longitudinal Study of Adolescent to Adult Health. BMC Genet 2015; 16:131. [PMID: 26537541 PMCID: PMC4634717 DOI: 10.1186/s12863-015-0289-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/29/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adolescence is a sensitive period for weight gain and risky health behaviors, such as smoking. Genome-wide association studies (GWAS) have identified loci contributing to adult body mass index (BMI). Evidence suggests that many of these loci have a larger influence on adolescent BMI. However, few studies have examined interactions between smoking and obesity susceptibility loci on BMI. This study investigates the interaction of current smoking and established BMI SNPs on adolescent BMI. Using data from the National Longitudinal Study of Adolescent to Adult Health, a nationally-representative, prospective cohort of the US school-based population in grades 7 to 12 (12-20 years of age) in 1994-95 who have been followed into adulthood (Wave II 1996; ages 12-21, Wave III; ages 18-27), we assessed (in 2014) interactions of 40 BMI-related SNPs and smoking status with percent of the CDC/NCHS 2000 median BMI (%MBMI) in European Americans (n = 5075), African Americans (n = 1744) and Hispanic Americans (n = 1294). RESULTS Two SNPs showed nominal significance for interaction (p < 0.05) between smoking and genotype with %MBMI in European Americans (EA) (rs2112347 (POC5): β = 1.98 (0.06, 3.90), p = 0.04 and near rs571312 (MC4R): β 2.15 (-0.03, 4.33) p = 0.05); and one SNP showed a significant interaction effect after stringent correction for multiple testing in Hispanic Americans (HA) (rs1514175 (TNNI3K): β 8.46 (4.32, 12.60), p = 5.9E-05). Stratifying by sex, these interactions suggest a stronger effect in female smokers. CONCLUSIONS Our study highlights potentially important sex differences in obesity risk by smoking status in adolescents, with those who may be most likely to initiate smoking (i.e., adolescent females), being at greatest risk for exacerbating genetic obesity susceptibility.
Collapse
Affiliation(s)
- Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- , 137 East Franklin Street, Suite 306, Chapel Hill, NC, 27514, USA.
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Andrea S Richardson
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Karen L Mohlke
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Leslie A Lange
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Ethan M Lange
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Kathleen M Harris
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Sociology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Penny Gordon-Larsen
- Carolina Population Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Ceccarini G, Maffei M, Vitti P, Santini F. Fuel homeostasis and locomotor behavior: role of leptin and melanocortin pathways. J Endocrinol Invest 2015; 38:125-31. [PMID: 25501840 DOI: 10.1007/s40618-014-0225-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND While it is now accepted that genes and their products affect food intake, the concept that locomotor behavior or the propensity for physical activity is controlled by neuro hum oral regulators is frequently underappreciated. In mammals, complex interactions have developed to allow the cross-talk between fuel homeostasis and physical activity. AIM The aim of this review is to provide a synopsis of the influence of the leptin-melanocortin pathway, a well-studied pivotal player in body weight regulation, on locomotor behaviors. CONCLUSIONS In rodents, reductions in leptin levels that physiologically occur following acute food deprivation or a reduction of the fat mass consequent to prolonged caloric restrictions are associated with a decrease in total locomotor activity and simultaneous increase in food-anticipatory activity, a locomotor behavior which reflects a foraging attitude. These actions can be prevented by leptin administration and are at least partially mediated by the neurons of the melanocortin pathway. In humans, twin studies have attributed to genetic factors approximately 50% of the variance of physical activity. An elevated number of the genes or loci which may affect physical activity are involved in body weight homeostasis. Polymorphisms of the melanocortin-4 and leptin receptors have repeatedly been associated with the level of physical activity. Unraveling the complexity of the regulation of locomotor behavior and the interconnections with the pathways involved in energy homeostasis may help explain the substantial individual variability in physical activities in humans and disentangle the harmful effects of sedentary lifestyle, which may be distinct from the detrimental effects of obesity.
Collapse
Affiliation(s)
- G Ceccarini
- Obesity Center at the Endocrine Unit, University Hospital of Pisa, Pisa, Italy.
| | - M Maffei
- Obesity Center at the Endocrine Unit, University Hospital of Pisa, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - P Vitti
- Obesity Center at the Endocrine Unit, University Hospital of Pisa, Pisa, Italy
| | - F Santini
- Obesity Center at the Endocrine Unit, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
28
|
Kooijman S, Boon MR, Parlevliet ET, Geerling JJ, van de Pol V, Romijn JA, Havekes LM, Meurs I, Rensen PCN. Inhibition of the central melanocortin system decreases brown adipose tissue activity. J Lipid Res 2014; 55:2022-32. [PMID: 25016380 DOI: 10.1194/jlr.m045989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (-42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (-60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.
Collapse
Affiliation(s)
- Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin T Parlevliet
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Janine J Geerling
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Vera van de Pol
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes A Romijn
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Louis M Havekes
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Organization for Applied Scientific Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Illiana Meurs
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Zaki ME, Amr KS, Abdel-Hamid M. Evaluating the association of APOA2 polymorphism with insulin resistance in adolescents. Meta Gene 2014; 2:366-73. [PMID: 25606421 PMCID: PMC4287816 DOI: 10.1016/j.mgene.2014.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/26/2022] Open
Abstract
Background 265T>C SNP in the APOA-II gene promoter may be associated with obesity risk and insulin resistance (IR). This study aims to analyze the association between the APOA2 − 265T>C SNP and risk for obesity and IR in adolescents. Material and methods The study was conducted on 500 adolescents. They were 240 obese and 260 non-obese individuals, aged 16–21 years old. Their mean age was 18.25 ± 2.54 years. Variables examined body weight, height, waist circumference (WC), systolic and diastolic blood pressure (BP), body fat percentage (BF%), and abdominal visceral fat layer. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was used as a biomarker for IR. BF% was assessed by body composition analyzer and abdominal visceral fat thickness was determined by ultrasonography. The APOA2 − 265T>C polymorphism genotype was analyzed by PCR amplification of a 273-bp fragment. Results Genotype frequencies were in Hardy–Weinberg equilibrium. The frequency of the mutant C allele was significantly higher in obese cases than non-obese cases. After multivariate adjustment, waist, BF%, visceral adipose layer and HOMA-IR were significantly higher in homozygous allele CC carriers than TT + TC carriers. Homozygous individuals for the CC allele had statistically higher values of energy intake, total fat (g/day) and saturated fat (SATFAT) than carriers of the T allele. Conclusions Homozygous individuals for the C allele had higher obesity risk than carriers of the T allele and had elevated levels of visceral adipose tissue. Moreover, the present study shows that the CC polymorphism is associated with the development of IR [OR 1.89 (1.35–2.91), P = .012] and remains significant after adjusting for gender, age and body mass index.
Collapse
Affiliation(s)
- Moushira Erfan Zaki
- Biological Anthropology Department, Medical Research Division, National Research Centre, Egypt
| | - Khalda Sayed Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Egypt
| | - Mohamed Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Egypt
| |
Collapse
|
30
|
Murakami H, Iemitsu M, Fuku N, Sanada K, Gando Y, Kawakami R, Miyachi M. The Q223R polymorphism in the leptin receptor associates with objectively measured light physical activity in free-living Japanese. Physiol Behav 2014; 129:199-204. [PMID: 24631298 DOI: 10.1016/j.physbeh.2014.02.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 02/02/2023]
Abstract
Physical activity (PA) is associated with reductions in the risk of all-cause mortality and in the prevalence of cardiovascular disease and stroke. Nevertheless, a large proportion of the general population may not be sufficiently active. PA level has been reported to be influenced by genetic factors, and we investigated whether Q223R polymorphism in the leptin receptor (LEPR) gene was associated with PA level. A total of 556 Japanese adults aged 24-65years old participated in this cross-sectional study. The duration and intensity of PA were objectively evaluated by triaxial accelerometry. Q223R polymorphism was determined by the TaqMan method. The distribution of Q223R polymorphism was: QQ 0.7%, QR 22.6%, and RR 76.6%. The relation between the LEPR genotype and PA level was analyzed by ANCOVA with age and sex as covariates in the Q dominant genetic model. There were significant differences between LEPR genotypes and the time spent in light PA or inactive time. The subjects with RR genotype showed significantly shorter time spent in light PA (RR genotype: 559.4±102.9min/day, QQ/QR genotype: 579.9±103.1min/day) and longer inactive time (RR genotype: 815.5±107.5min/day, QQ/QR genotype: 792.3±107.7min/day) than the subjects with QQ/QR genotype (P<0.05). There were no such differences in the time spent in moderate or vigorous PA. These results suggest that the variety of PA level, especially spontaneous PA in humans, is partly caused by diversity in the LEPR gene.
Collapse
Affiliation(s)
- Haruka Murakami
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga, Japan
| | - Noriyuki Fuku
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Kiyoshi Sanada
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu-shi, Shiga, Japan
| | - Yuko Gando
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama, Japan
| | - Ryoko Kawakami
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan; Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama, Japan
| | - Motohiko Miyachi
- Department of Health Promotion and Exercise, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
31
|
Forcada Y, Holder A, Church DB, Catchpole B. A polymorphism in the melanocortin 4 receptor gene (MC4R:c.92C>T) is associated with diabetes mellitus in overweight domestic shorthaired cats. J Vet Intern Med 2013; 28:458-64. [PMID: 24372947 PMCID: PMC4857971 DOI: 10.1111/jvim.12275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/30/2013] [Accepted: 11/13/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Feline diabetes mellitus (DM) shares many pathophysiologic features with human type 2 DM. Human genome-wide association studies have identified genes associated with obesity and DM, including melanocortin 4 receptor (MC4R), which plays an important role in energy balance and appetite regulation. HYPOTHESIS/OBJECTIVES To identify single nucleotide polymorphisms (SNPs) in the feline MC4R gene and to determine whether any SNPs are associated with DM or overweight body condition in cats. ANIMALS Two-hundred forty domestic shorthaired (DSH) cats were recruited for the study. Of these, 120 diabetics were selected (60 overweight, 60 lean), along with 120 nondiabetic controls (60 overweight and 60 lean). Males and females were equally represented. METHODS A prospective case-control study was performed. Genomic DNA was extracted from blood samples and used as template for PCR amplification of the feline MC4R gene. The coding region of the gene was sequenced in 10 cats to identify polymorphisms. Subsequently, genotyping by restriction fragment length polymorphism (RFLP) analysis assessed MC4R:c.92C > T allele and genotype frequencies in each group of cats. RESULTS No significant differences in MC4R:c.92C>T allele or genotype frequencies were identified between nondiabetic overweight and lean cats. In the overweight diabetic group, 55% were homozygous for the MC4R:c.92C allele, compared to 33% of the lean diabetics and 30% of the nondiabetics. The differences between the overweight diabetic and the nondiabetics were significant (P < .01). CONCLUSIONS AND CLINICAL IMPORTANCE We identified a polymorphism in the coding sequence of feline MC4R that is associated with DM in overweight DSH cats, similar to the situation in humans.
Collapse
Affiliation(s)
- Y Forcada
- Department of Clinical Sciences and Services, Royal Veterinary College, North Mymms, UK
| | | | | | | |
Collapse
|
32
|
APOA2 Polymorphism in Relation to Obesity and Lipid Metabolism. CHOLESTEROL 2013; 2013:289481. [PMID: 24382995 PMCID: PMC3872025 DOI: 10.1155/2013/289481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/21/2013] [Indexed: 01/12/2023]
Abstract
Objectives. This study aims to analysis the relationship between c.-492T>C polymorphism in APOA2 gene and the risk for obesity in a sample of Egyptian adolescents and investigates its effect on body fat distribution and lipid metabolism. Material and Methods. A descriptive, cross-sectional study was conducted on 303 adolescents. They were 196 obese and 107 nonobese, aged 16–19 years old. Variables examined included body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR), systolic and diastolic blood pressure (BP), body fat percentage (BF%), abdominal visceral fat layer, and dietary intake. Abdominal visceral fat thickness was determined by ultrasonography. The polymorphism in the APOA2 c.-492T>C was analyzed by PCR amplification. Results. Genotype frequencies were in Hardy-Weinberg equilibrium. The frequency of the mutant C allele was significantly higher in obese cases compared to nonobese. After multivariate adjustment, waist, BF% and visceral adipose layer, food consumption, and HDL-C were significantly higher in homozygous allele CC carriers than TT+TC carriers. Conclusions. Homozygous individuals for the C allele had higher obesity risk than carriers of the T allele and had elevated levels of visceral adipose tissue and serum HDL-C. Moreover, the study shows association between the APOA2 c.-492T>C polymorphism and food consumption.
Collapse
|
33
|
Preliminary findings on the influence of FTO rs9939609 and MC4R rs17782313 polymorphisms on resting energy expenditure, leptin and thyrotropin levels in obese non-morbid premenopausal women. J Physiol Biochem 2013; 70:255-62. [PMID: 24307561 DOI: 10.1007/s13105-013-0300-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Given that leptin, ghrelin and thyrotropin play a major role in the regulation of resting energy expenditure (REE) and that the FTO rs9939609 and the MC4R rs17782313 polymorphisms have been proposed to affect energy homeostasis, we hypothesized that both polymorphisms are associated with REE and that these relationships can be mediated by leptin, ghrelin and thyrotropin in obesity. Therefore, the present study aimed to examine the relationships between FTO rs9939609 and the MC4R rs17782313 with REE, leptin, ghrelin and thyrotropin levels in obese women. The study comprised 77 obese (body mass index 34.0 ± 2.8 kg/m(2)) women (age 36.7 ± 7 years). We measured body composition by dual-energy X-ray absorptiometry and REE by indirect calorimetry. We analysed fasting leptin, ghrelin and thyrotropin levels and the ratio of leptin to fat mass was calculated. Genotype distributions of the polymorphisms did not deviate from Hardy-Weinberg expectations (P values >0.2). Women carrying the A allele of the FTO rs9939609 had lower REE (1,580 ± 22 vs. 1,739 ± 35 kcal/day, P < 0.001) and higher leptin to fat mass ratio (1.33 ± 0.05 vs. 1.13 ± 0.08 ng/ml kg, P < 0.05) and thyrotropin levels (1.93 ± 0.10 vs. 1.53 ± 0.16 μU/ml, P < 0.05) regardless of age and body mass index. We found no significant influence of the MC4R rs17782313 on energy metabolism or biochemical variables. Our findings confirm that the A allele of the FTO rs9939609 is associated with lower REE and increased plasma leptin levels. We also found an association between the FTO rs9939609 and thyrotropin, suggesting the possible influence of FTO in the hypothalamic-pituitary-thyroid axis as a potential mechanism of the increased adiposity.
Collapse
|
34
|
Hohenadel MG, Thearle MS, Grice BA, Huang H, Dai MH, Tao YX, Hunter LA, Palaguachi GI, Mou Z, Kim RC, Tsang MM, Haack K, Voruganti VS, Cole SA, Butte NF, Comuzzie AG, Muller YL, Baier LJ, Krakoff J, Knowler WC, Yanovski JA, Han JC. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants. Int J Obes (Lond) 2013; 38:1068-74. [PMID: 24276017 PMCID: PMC4033711 DOI: 10.1038/ijo.2013.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022]
Abstract
Background In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. Objective To compare BDNF concentrations of subjects with loss-of-function (LOF) and gain-of-function (GOF) MC4R variants to those of controls with common sequence MC4R. Methods Circulating BDNF was measured in two cohorts with known MC4R sequence: 148 subjects of Pima Indian heritage ([mean±SD]: age 15.7±6.5y, BMI-Z 1.63±1.03), and 69 subjects of Hispanic heritage (10.8±3.6y, BMI-Z 1.57±1.07). MC4R variants were characterized in vitro by cell surface expression, receptor binding, and cAMP response after agonist administration. BDNF single nucleotide polymorphisms (SNPs) rs12291186, rs6265, and rs7124442 were also genotyped. Results In the Pima cohort, no significant differences in serum BDNF was observed for 43 LOF-subjects versus 65 LOF-matched controls [age-, sex-, and BMI-matched] (P=0.29), or 20 GOF-subjects versus 20 GOF-matched controls (P=0.40). Serum BDNF was significantly associated with genotype for BDNF rs12291186 (P=0.006) and rs6265 (P=0.009), but not rs7124442 (P=0.99); BDNF SNPs did not interact with MC4R status to predict serum BDNF. In the Hispanic cohort, plasma BDNF was not significantly different among 21 LOF-subjects, 20 GOF-subjects, and 28 controls (P=0.79); plasma BDNF was not predicted by BDNF genotype or BDNF-x-MC4R genotype interaction. Conclusions Circulating BDNF concentrations were not significantly associated with MC4R functional status, suggesting that peripheral BDNF does not directly reflect hypothalamic BDNF secretion and/or that MC4R signaling is not a significant regulator of the bulk of BDNF expression in humans.
Collapse
Affiliation(s)
- M G Hohenadel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - M S Thearle
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - B A Grice
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - H Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - M-H Dai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - L A Hunter
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - G I Palaguachi
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Z Mou
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - R C Kim
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - M M Tsang
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - K Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - V S Voruganti
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - S A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - N F Butte
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - A G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y L Muller
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - L J Baier
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - J Krakoff
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - W C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Phoenix, AZ, USA
| | - J A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - J C Han
- 1] Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA [2] Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
35
|
Kostrzewa E, Kas MJ. The use of mouse models to unravel genetic architecture of physical activity: a review. GENES BRAIN AND BEHAVIOR 2013; 13:87-103. [DOI: 10.1111/gbb.12091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 10/01/2013] [Indexed: 12/26/2022]
Affiliation(s)
- E. Kostrzewa
- Department of Translational Neuroscience, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht the Netherlands
| | - M. J. Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht the Netherlands
| |
Collapse
|
36
|
Faith MS, Carnell S, Kral TVE. Genetics of food intake self-regulation in childhood: literature review and research opportunities. Hum Hered 2013; 75:80-9. [PMID: 24081223 DOI: 10.1159/000353879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pediatric obesity results from a daily energy imbalance between intake and expenditure, an imbalance potentially as slight as ~30-50 kcal/day (e.g., a few extra sips of cola or bites of a cookie). That an 'energy gap' so small may be so powerful suggests the importance of understanding mechanisms of food intake self-regulation (FISR). This review focuses on 4 behavioral indices of FISR in childhood: (1) eating in the absence of hunger; (2) eating rate; (3) caloric compensation and satiety responsiveness, and (4) food responsiveness. Evidence from pediatric samples around the world indicates that these traits are associated with body mass index, are heritable, and are linked to polymorphisms in the FTO gene. We review these data, also discussing their relevance to practical issues of parental feeding styles, portion sizes, and health literacy and numeracy. Research gaps and opportunities for future investigation are discussed. Multidisciplinary approaches and study designs that can address gene-environment interactions are needed to advance the science of FISR and stimulate new avenues for childhood obesity prevention.
Collapse
Affiliation(s)
- Myles S Faith
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, N.C., USA
| | | | | |
Collapse
|
37
|
Garver WS, Newman SB, Gonzales-Pacheco DM, Castillo JJ, Jelinek D, Heidenreich RA, Orlando RA. The genetics of childhood obesity and interaction with dietary macronutrients. GENES AND NUTRITION 2013; 8:271-87. [PMID: 23471855 DOI: 10.1007/s12263-013-0339-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Abstract
The genes contributing to childhood obesity are categorized into three different types based on distinct genetic and phenotypic characteristics. These types of childhood obesity are represented by rare monogenic forms of syndromic or non-syndromic childhood obesity, and common polygenic childhood obesity. In some cases, genetic susceptibility to these forms of childhood obesity may result from different variations of the same gene. Although the prevalence for rare monogenic forms of childhood obesity has not increased in recent times, the prevalence of common childhood obesity has increased in the United States and developing countries throughout the world during the past few decades. A number of recent genome-wide association studies and mouse model studies have established the identification of susceptibility genes contributing to common childhood obesity. Accumulating evidence suggests that this type of childhood obesity represents a complex metabolic disease resulting from an interaction with environmental factors, including dietary macronutrients. The objective of this article is to provide a review on the origins, mechanisms, and health consequences of obesity susceptibility genes and interaction with dietary macronutrients that predispose to childhood obesity. It is proposed that increased knowledge of these obesity susceptibility genes and interaction with dietary macronutrients will provide valuable insight for individual, family, and community preventative lifestyle intervention, and eventually targeted nutritional and medicinal therapies.
Collapse
Affiliation(s)
- William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA,
| | | | | | | | | | | | | |
Collapse
|
38
|
Melanocortin-4 Receptor in Energy Homeostasis and Obesity Pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:147-91. [DOI: 10.1016/b978-0-12-386933-3.00005-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Corella D, Ortega-Azorín C, Sorlí JV, Covas MI, Carrasco P, Salas-Salvadó J, Martínez-González MÁ, Arós F, Lapetra J, Serra-Majem L, Lamuela-Raventos R, Gómez-Gracia E, Fiol M, Pintó X, Ros E, Martí A, Coltell O, Ordovás JM, Estruch R. Statistical and biological gene-lifestyle interactions of MC4R and FTO with diet and physical activity on obesity: new effects on alcohol consumption. PLoS One 2012; 7:e52344. [PMID: 23284998 PMCID: PMC3528751 DOI: 10.1371/journal.pone.0052344] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Background Fat mass and obesity (FTO) and melanocortin-4 receptor (MC4R) and are relevant genes associated with obesity. This could be through food intake, but results are contradictory. Modulation by diet or other lifestyle factors is also not well understood. Objective To investigate whether MC4R and FTO associations with body-weight are modulated by diet and physical activity (PA), and to study their association with alcohol and food intake. Methods Adherence to Mediterranean diet (AdMedDiet) and physical activity (PA) were assessed by validated questionnaires in 7,052 high cardiovascular risk subjects. MC4R rs17782313 and FTO rs9939609 were determined. Independent and joint associations (aggregate genetic score) as well as statistical and biological gene-lifestyle interactions were analyzed. Results FTO rs9939609 was associated with higher body mass index (BMI), waist circumference (WC) and obesity (P<0.05 for all). A similar, but not significant trend was found for MC4R rs17782313. Their additive effects (aggregate score) were significant and we observed a 7% per-allele increase of being obese (OR = 1.07; 95%CI 1.01–1.13). We found relevant statistical interactions (P<0.05) with PA. So, in active individuals, the associations with higher BMI, WC or obesity were not detected. A biological (non-statistical) interaction between AdMedDiet and rs9939609 and the aggregate score was found. Greater AdMedDiet in individuals carrying 4 or 3-risk alleles counterbalanced their genetic predisposition, exhibiting similar BMI (P = 0.502) than individuals with no risk alleles and lower AdMedDiet. They also had lower BMI (P = 0.021) than their counterparts with low AdMedDiet. We did not find any consistent association with energy or macronutrients, but found a novel association between these polymorphisms and lower alcohol consumption in variant-allele carriers (B+/−SE: −0.57+/−0.16 g/d per-score-allele; P = 0.001). Conclusion Statistical and biological interactions with PA and diet modulate the effects of FTO and MC4R polymorphisms on obesity. The novel association with alcohol consumption seems independent of their effects on BMI.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, Butte NF. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 2012; 7:e51954. [PMID: 23251661 PMCID: PMC3522587 DOI: 10.1371/journal.pone.0051954] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022] Open
Abstract
Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity.
Collapse
Affiliation(s)
- Anthony G. Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sandra L. Laston
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - V. Saroja Voruganti
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nancy F. Butte
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Mul JD, Begg DP, Alsters SIM, van Haaften G, Duran KJ, D'Alessio DA, le Roux CW, Woods SC, Sandoval DA, Blakemore AIF, Cuppen E, van Haelst MM, Seeley RJ. Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats. Am J Physiol Endocrinol Metab 2012; 303:E103-10. [PMID: 22535749 PMCID: PMC3404562 DOI: 10.1152/ajpendo.00159.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 02/05/2023]
Abstract
Bariatric surgery is currently the most effective treatment for obesity. Vertical sleeve gastrectomy (VSG), a commonly applied bariatric procedure, involves surgically incising most of the volume of the stomach. In humans, partial loss of melanocortin receptor-4 (MC4R) activity is the most common monogenic correlate of obesity regardless of lifestyle. At present it is unclear whether genetic alteration of MC4R signaling modulates the beneficial effects of VSG. Following VSG, we analyzed body weight, food intake, glucose sensitivity, and macronutrient preference of wild-type and MC4R-deficient (Mc4r(+/-) and Mc4r(-/-)) rats compared with sham-operated controls. VSG reduced body weight and fat mass and improved glucose metabolism and also shifted preference toward carbohydrates and away from fat. All of this occurred independently of MC4R activity. In addition, MC4R was resequenced in 46 human subjects who underwent VSG. We observed common genetic variations in the coding sequence of MC4R in five subjects. However, none of those variations appeared to affect the outcome of VSG. Taken together, these data suggest that the beneficial effect of VSG on body weight and glucose metabolism is not mediated by alterations in MC4R activity.
Collapse
Affiliation(s)
- Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cecil J, Dalton M, Finlayson G, Blundell J, Hetherington M, Palmer C. Obesity and eating behaviour in children and adolescents: contribution of common gene polymorphisms. Int Rev Psychiatry 2012; 24:200-10. [PMID: 22724641 DOI: 10.3109/09540261.2012.685056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of childhood obesity is increasing in many countries and confers risks for early type 2 diabetes, cardiovascular disease and metabolic syndrome. In the presence of potent 'obesogenic' environments not all children become obese, indicating the presence of susceptibility and resistance. Taking an energy balance approach, susceptibility could be mediated through a failure of appetite regulation leading to increased energy intake or via diminished energy expenditure. Evidence shows that heritability estimates for BMI and body fat are paralleled by similar coefficients for energy intake and preferences for dietary fat. Twin studies implicate weak satiety and enhanced food responsiveness as factors determining an increase in BMI. Single gene mutations, for example in the leptin receptor gene, that lead to extreme obesity appear to operate through appetite regulating mechanisms and the phenotypic response involves overconsumption and a failure to inhibit eating. Investigations of robustly characterized common gene variants of fat mass and obesity associated (FTO), peroxisome proliferator-activated receptor (PPARG) and melanocortin 4 receptor (MC4R) which contribute to variance in BMI also influence the variance in appetite factors such as measured energy intake, satiety responsiveness and the intake of palatable energy-dense food. A review of the evidence suggests that susceptibility to childhood obesity involving specific allelic variants of certain genes is mediated primarily through food consumption (appetite regulation) rather than through a decrease in activity-related energy expenditure. This conclusion has implications for early detection of susceptibility, and for prevention and management of childhood obesity.
Collapse
Affiliation(s)
- Joanne Cecil
- School of Medicine, University of St Andrews, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Early determinants of obesity: genetic, epigenetic, and in utero influences. Int J Pediatr 2012; 2012:463850. [PMID: 22701495 PMCID: PMC3371343 DOI: 10.1155/2012/463850] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
There is an emerging body of work indicating that genes, epigenetics, and the in utero environment can impact whether or not a child is obese. While certain genes have been identified that increase one's risk for becoming obese, other factors such as excess gestational weight gain, gestational diabetes mellitus, and smoking can also influence this risk. Understanding these influences can help to inform which behaviors and exposures should be targeted if we are to decrease the prevalence of obesity. By helping parents and young children change certain behaviors and exposures during critical time periods, we may be able to alter or modify one's genetic predisposition. However, further research is needed to determine which efforts are effective at decreasing the incidence of obesity and to develop new methods of prevention. In this paper, we will discuss how genes, epigenetics, and in utero influences affect the development of obesity. We will then discuss current efforts to alter these influences and suggest future directions for this work.
Collapse
|
44
|
Genetics of Physical Activity and Physical Inactivity in Humans. Behav Genet 2012; 42:559-78. [DOI: 10.1007/s10519-012-9534-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023]
|
45
|
Davis EM, Stange KC, Horwitz RI. Childbearing, stress and obesity disparities in women: a public health perspective. Matern Child Health J 2012; 16:109-18. [PMID: 21088987 PMCID: PMC3253218 DOI: 10.1007/s10995-010-0712-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The perinatal period, from early in the first trimester to 1 year postpartum, provides opportunities for novel public health interventions to reduce obesity disparities. We present a unifying socio-biological framework to suggest opportunities for multidisciplinary research and public health approaches to elucidate and target the mechanisms for the development of maternal obesity and related disparities. The framework illustrates the interplay of the social, cultural and physical environment; stress appraisal and response; and coping behaviors on short-term outcomes (e.g. allostatic load and gestational weight gain), the intermediate outcomes of persistent insulin resistance and post-partum weight retention, and longer term outcomes of obesity and its disease consequences. Testing the proposed relationships may provide insights into how childbearing risk factors such as gestational weight gain, postpartum weight retention and parity contribute to obesity, which are needed to inform public health policies and clinical care guidelines aimed at reducing obesity and improving the health of women.
Collapse
Affiliation(s)
- Esa M Davis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
46
|
Genetic influences in childhood obesity: recent progress and recommendations for experimental designs. Int J Obes (Lond) 2011; 36:479-84. [PMID: 22158269 DOI: 10.1038/ijo.2011.236] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of pediatric obesity around the world has become an area of scientific interest because of public health concern. Although since early stages of the lifespan body weight might be heavily influenced by an individual's behavior, epidemiological research highlights the involvement of genetic influences contributing to variation in fat accumulation and thus body composition. Results from genome-wide association studies and candidate gene approaches have identified specific regions across the human genome influencing obesity-related phenotypes. Reviewing the scientific literature provides support to the belief that at the conceptual level scientists understand that genes and environments do not act independently, but rather synergistically, and that such interaction might be the responsible factor for differences within and among populations. However, there is still limited understanding of genetic and environmental factors influencing fat accumulation and deposition among different populations, which highlights the need for innovative experimental designs, improved body composition measures and appropriate statistical methodology.
Collapse
|
47
|
Garver WS. Gene-diet interactions in childhood obesity. Curr Genomics 2011; 12:180-9. [PMID: 22043166 PMCID: PMC3137003 DOI: 10.2174/138920211795677903] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022] Open
Abstract
Childhood overweight and obesity have reached epidemic proportions worldwide, and the increase in weight-associated co-morbidities including premature type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease will soon become major healthcare and economic problems. A number of studies now indicate that the childhood obesity epidemic which has emerged during the past 30 years is a complex multi-factorial disease resulting from interaction of susceptibility genes with an obesogenic environment. This review will focus on gene-diet interactions suspected of having a prominent role in promoting childhood obesity. In particular, the specific genes that will be presented (FTO, MC4R, and NPC1) have recently been associated with childhood obesity through a genome-wide association study (GWAS) and were shown to interact with nutritional components to increase weight gain. Although a fourth gene (APOA2) has not yet been associated with childhood obesity, this review will also present information on what now represents the best characterized gene-diet interaction in promoting weight gain.
Collapse
Affiliation(s)
- William S Garver
- Department of Biochemistry and Molecular Biology, The University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
48
|
Martin LJ, Lee SY, Couch SC, Morrison J, Woo JG. Shared genetic contributions of fruit and vegetable consumption with BMI in families 20 y after sharing a household. Am J Clin Nutr 2011; 94:1138-43. [PMID: 21831991 PMCID: PMC3173028 DOI: 10.3945/ajcn.111.015461] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Obesity has a strong genetic basis, but the identification of genetic variants has not resulted in improved clinical care. However, phenotypes that influence weight, such as diet, may have shared underpinnings with obesity. Interestingly, diet also has a genetic basis. Thus, we hypothesized that the genetic underpinnings of diet may partially overlap with the genetics of obesity. OBJECTIVE Our objective was to determine whether dietary intake and BMI share heritable components in adulthood. DESIGN We used a cross-sectional cohort of parents and adult offspring (n = 1410) from the Princeton Follow-up Study. Participants completed Block food-frequency questionnaires 15-27 y after sharing a household. Heritability of dietary intakes was estimated by using variance components analysis. Bivariate genetic analyses were used to estimate the shared effects between BMI and heritable dietary intakes. RESULTS Fruit, vegetable, and protein consumption exhibited moderate heritability [(mean ± SE) 0.26 ± 0.06, 0.32 ± 0.06, and 0.21 ± 0.06, respectively; P < 0.001], but other dietary intakes were modest (h(2) < 0.2). Only fruit and vegetable consumption exhibited genetic correlations with BMI (ρ(g) = -0.28 ± 0.13 and -0.30 ± 0.13, respectively; P < 0.05). Phenotypic correlations with BMI were not significant. CONCLUSIONS We showed that fruit, vegetable, and protein intakes are moderately heritable and that fruit and vegetable consumption shares underlying genetic effects with BMI in adulthood, which suggests that individuals genetically predisposed to low fruit and vegetable consumption may be predisposed to higher BMI. Thus, obese individuals who have low fruit and vegetable consumption may require targeted interventions that go beyond low-calorie, plant-based programs for weight management.
Collapse
Affiliation(s)
- Lisa J Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
49
|
Hlusko LJ, Sage RD, Mahaney MC. Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:21-49. [PMID: 20922775 DOI: 10.1002/jez.b.21378] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The concept of modularity provides a useful tool for exploring the relationship between genotype and phenotype. Here, we use quantitative genetics to identify modularity within the mammalian dentition, connecting the genetics of organogenesis to the genetics of population-level variation for a phenotype well represented in the fossil record. We estimated the correlations between dental traits owing to the shared additive effects of genes (pleiotropy) and compared the pleiotropic relationships among homologous traits in two evolutionary distant taxa-mice and baboons. We find that in both mice and baboons, who shared a common ancestor >65 Ma, incisor size variation is genetically independent of molar size variation. Furthermore, baboon premolars show independent genetic variation from incisors, suggesting that a modular genetic architecture separates incisors from these posterior teeth as well. Such genetic independence between modules provides an explanation for the extensive diversity of incisor size variation seen throughout mammalian evolution-variation uncorrelated with equivalent levels of postcanine tooth size variation. The modularity identified here is supported by the odontogenic homeobox code proposed for the patterning of the rodent dentition. The baboon postcanine pattern of incomplete pleiotropy is also consistent with predictions from the morphogenetic field model.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Human Evolution Research Center, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
50
|
Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity. Int J Obes (Lond) 2011; 36:130-6. [PMID: 21386805 DOI: 10.1038/ijo.2011.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The interaction between apolipoprotein A-II (APOA2) m265 genotype and saturated fat for obesity traits has been more extensively demonstrated than for any other locus, but behavioural and hormonal mechanisms underlying this relationship are unexplored. In this study, we evaluated relationships between APOA2 and obesity risk with particular focus on patterns of eating and ghrelin, a hormonal regulator of food intake. DESIGN Cross-sectional study. SUBJECTS Overweight and obese subjects (n=1225) were evaluated at baseline in five weight loss clinics in southeastern Spain. METHODS Behavioural data were assessed using a checklist of weight loss obstacles. Logistic regression models were fitted to estimate the risk of a specific behaviour associated with APOA2 genotype. Relationships between APOA2 genotype and saturated fat intakes for anthropometric traits and plasma ghrelin were evaluated by analysis of variance. To construct categorical variables to evaluate interactions, saturated fat intake was dichotomized into high and low according to the population median intake or as tertiles. RESULTS Homozygous minor (CC) subjects were more likely to exhibit behaviours that impede weight loss ('Do you skip meals', odds ratio (OR)=2.09, P=0.008) and less likely to exhibit the protective behaviour of 'Do you plan meals in advance' (OR=0.64, P=0.034). Plasma ghrelin for CC subjects consuming low saturated fat was lower compared with (1) CC subjects consuming high saturated fat, (2) TT+TC carriers consuming low saturated fat and (3) TT+TC carriers consuming high saturated fat (all P<0.05). CONCLUSIONS APOA2 m265 genotype may be associated with eating behaviours and dietary modulation of plasma ghrelin. Expansion of knowledge of APOA2 and obesity to include modulation of specific behaviours and hormonal mediators not only broadens understanding of gene-diet interactions, but also facilitates the pragmatic, future goal of developing dietary guidelines based on genotype.
Collapse
|