1
|
Pannakal ST, Eilstein J, Hubert J, Kotland A, Prasad A, Gueguiniat-Prevot A, Juchaux F, Beaumard F, Seru G, John S, Roy D. Rapid Chemical Profiling of Filipendula ulmaria Using CPC Fractionation, 2-D Mapping of 13C NMR Data, and High-Resolution LC-MS. Molecules 2023; 28:6349. [PMID: 37687176 PMCID: PMC10489126 DOI: 10.3390/molecules28176349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Filipendula ulmaria, commonly known as meadowsweet, is a wild herbaceous flowering plant that is widely distributed in Europe. A range of salicylic acid derivatives and flavonol glycosides have been previously associated with the antirheumatic and diuretic properties of F. ulmaria. In the present work, a hydroalcoholic extract from F. ulmaria aerial parts was extensively profiled using an efficient NMR-based dereplication strategy. The approach involves the fractionation of the crude extract by centrifugal partition chromatography (CPC), 13C NMR analysis of the fractions, 2D-cluster mapping of the entire NMR dataset, and, finally, structure elucidation using a natural metabolite database, validated by 2D NMR data interpretation and liquid chromatography coupled with mass spectrometry. The chemodiversity of the aerial parts was extensive, with 28 compounds unambiguously identified, spanning various biosynthetic classes. The F. ulmaria extract and CPC fractions were screened for their potential to enhance skin epidermal barrier function and skin renewal properties using in vitro assays performed on Normal Human Epidermal Keratinocytes. Fractions containing quercetin, kaempferol glycosides, ursolic acid, pomolic acid, naringenin, β-sitosterol, and Tellimagrandins I and II were found to upregulate genes related to skin barrier function, epidermal renewal, and stress responses. This research is significant as it could provide a natural solution for improving hydration and skin renewal properties.
Collapse
Affiliation(s)
- Steve Thomas Pannakal
- Advanced Research, L’Oréal Research and Innovation India, Bearys Global Research Triangle, Whitefield Ashram Road, Bangalore 560067, India
| | - Joan Eilstein
- Advanced Research, L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Jane Hubert
- NatExplore SAS, 25 La Chute des Eaux, 51140 Prouilly, France
| | - Alexis Kotland
- NatExplore SAS, 25 La Chute des Eaux, 51140 Prouilly, France
| | - Arpita Prasad
- Advanced Research, L’Oréal Research and Innovation India, Bearys Global Research Triangle, Whitefield Ashram Road, Bangalore 560067, India
| | - Amelie Gueguiniat-Prevot
- Advanced Research, L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Franck Juchaux
- Advanced Research, L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Floriane Beaumard
- Advanced Research, L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| | - Ganapaty Seru
- Pharmacognosy and Phytochemistry Division, Gitam Institute of Pharmacy, Gitam University, Visakhapatnam 530045, India
| | - Sherluck John
- Advanced Research, L’Oréal Research and Innovation India, Bearys Global Research Triangle, Whitefield Ashram Road, Bangalore 560067, India
| | - Dhimoy Roy
- L’Oréal India Pvt Ltd., Research & Innovation, 7th Floor, Universal Majestic, Ghatkopar—Mankhurd Link Road, Chembur, Mumbai 400071, India
| |
Collapse
|
2
|
Wang Q, Wang F, Li X, Ma Z, Jiang D. Quercetin inhibits the amphiregulin/EGFR signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in obstructive nephropathy. Phytother Res 2023; 37:111-123. [PMID: 36221860 DOI: 10.1002/ptr.7599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 01/19/2023]
Abstract
Quercetin is a widely distributed, bioactive flavonoid compound, which displays potential to inhibit fibrosis in several diseases. The purpose of our study was to determine the effect of quercetin treatment on renal fibrosis and investigate the mechanism. Human proximal tubular epithelial cells (HK-2) stimulated by transforming growth factor-β1 (TGF-β1) and a rat model of unilateral ureter obstruction (UUO) that contributes to fibrosis were used to investigate the role and molecular mechanism of quercetin. PD153035 (N-[3-Bromophenyl]-6,7-dimethoxyquinazolin-4-amine) was used to inactivate EGFR (epidermal growth factor receptor). The level of fibrosis, proliferation, apoptosis, and oxidative stress in HK-2 were measured. All data are presented as means ± standard deviation (SD). p-value < .05 was considered statistically significant. In UUO rats, quercetin reduced the area of fibrosis as well as inflammation, oxidative stress, and cell apoptosis. In cultured HK-2 cells, quercetin significantly ameliorated the EMT induced by TGF-β1, which was accompanied by increased amphiregulin (AREG) expression. Moreover, quercetin inhibited AREG binding to the EGFR receptor, thereby further affecting other downstream pathways. Quercetin may alleviate fibrosis in vitro and in vivo by inhibiting the activation of AREG/EGFR signaling indicating a potential therapeutic effect of quercetin in renal fibrosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqiang Wang
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Ma
- Department of Pediatric Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Guo X, Li Y, Wang W, Wang L, Hu S, Xiao X, Hu C, Dai Y, Zhang Y, Li Z, Li J, Ma X, Zeng J. The construction of preclinical evidence for the treatment of liver fibrosis with quercetin: A systematic review and meta-analysis. Phytother Res 2022; 36:3774-3791. [PMID: 35918855 DOI: 10.1002/ptr.7569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/09/2022]
Abstract
Quercetin (3,3',4',5,7-pentahydroxyflavone), a flavonoid, is widely found in fruits and vegetables and exerts broad-spectrum pharmacological effects in the liver. Many studies have explored the bioactivity of quercetin in the treatment of liver fibrosis. Hence, through a systematic review and biological mechanism evaluation, this study aimed to construct a body of preclinical evidence for the treatment of liver fibrosis using quercetin. The literature used in this study was mainly obtained from four databases, and the SYRCLE list (10 items) was used to evaluate the quality of the included literature. A meta-analysis of HA, LN, and other indicators was performed via STATA 15.0 software. Subgroup analyses based on animal species and model protocol were performed to further obtain detailed results. Moreover, the therapeutic mechanism of quercetin was summarized in a directed network form based on a comprehensive search of the literature. After screening, a total of 14 articles (comprising 15 studies) involving 254 animals were included. The results from the analysis showed that the corresponding liver function indexes, such as the levels of HA and LN, were significantly improved in the quercetin group compared with the model group, and liver function, such as the levels of AST and ALT, were also improved in the quercetin group. The species- and model-based subgroup analyses of AST and ALT revealed that quercetin exerts a significant effect. The therapeutic mechanism of quercetin was shown to be related to multiple pathways involving anti-inflammatory and antioxidant activities and lipid accumulation, including regulation of the TGF-β, α-SMA, ROS, and P-AMPK pathways. The results showed that quercetin exerts an obvious effect on liver fibrosis, and more prominent improvement effects on liver function and liver fibrosis indicators were obtained with a dose of 5-200 mg during a treatment course ranging from 4 to 8 weeks. Quercetin might be a promising therapeutic for liver fibrosis.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weizheng Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiheng Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junlin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Dong Y, Zheng Y, Zhu L, Li T, Guan Y, Zhao S, Wang Q, Wang J, Li L. Hua-Tan-Sheng-Jing Decoction Treats Obesity With Oligoasthenozoospermia by Up-Regulating the PI3K-AKT and Down-Regulating the JNK MAPK Signaling Pathways: At the Crossroad of Obesity and Oligoasthenozoospermia. Front Pharmacol 2022; 13:896434. [PMID: 35559247 PMCID: PMC9086321 DOI: 10.3389/fphar.2022.896434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oligoasthenozoospermia is the leading cause of male infertility, seriously affecting men's health and increasing the societal medical burden. In recent years, obesity-related oligoasthenozoospermia has attracted increased attention from researchers to find a cure. This study aimed to evaluate the efficacy of Hua-Tan-Sheng-Jing decoction (HTSJD) in treating obesity with oligoasthenozoospermia, determine its active ingredients and identify its mechanism of action. Methods: The ingredients of HTSJD were determined by combining the ultra-performance liquid chromatography with mass spectrometry (UPLC-MS/MS) and systems pharmacology approach. The common pathogenesis of obesity and oligoasthenozoospermia and the potential mechanism of HTSJD against obesity with oligoasthenozoospermia were obtained through target fishing, network construction, and enrichment analyses. Further, molecular docking of the key ingredients with the upstream receptors of the key signaling pathways of the potential mechanism was used to predict their affinity. Finally, high-fat-induced obesity with oligoasthenozoospermia rat model was constructed to determine the effects of HTSJD on semen concentration, sperm motility, body weight, and serum lipid metabolism. The key proteins were validated by immunohistochemistry (IHC). Results: A total of 70 effective components and 847 potential targets of HTSJD (H targets) were identified, of which 743 were common targets related to obesity and oligoasthenozoospermia (O-O targets) mainly enriched in the pathways related to inflammation, oxidative stress and hormone regulation. Finally, 143 common targets (H-O-O targets) for HTSJD against obesity with oligoasthenozoospermia were obtained. Combining the hub genes and the results of Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of H-O-O targets, PI3K-AKT and MAPK signaling pathways were identified as the key pathways. Molecular docking results showed that Diosgenin, Kaempferol, Quercetin, Hederagenin, Isorhamnetin may act on the related pathways by docking EGFR, IGF1R and INSR. The animal-based in vivo experiments confirmed that HTSJD improves the sperm quality of high-fat diet-fed rats by reducing their body weight and blood lipid levels, influencing the PI3K-AKT and MAPK signaling pathways and altering the corresponding protein expressions. Conclusion: HTSJD treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT signaling pathway and down-regulating the MAPK signaling pathway, which are at the crossroad of obesity and oligoasthenozoospermia.
Collapse
Affiliation(s)
- Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shipeng Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Shi XJ, Li JX, Wang LH, Xie CE, Wang YL. Chenodeoxycholic Acid Enhances the Effect of Sorafenib in Inhibiting HepG2 Cell Growth Through EGFR/Stat3 Pathway. Front Oncol 2022; 12:836333. [PMID: 35252007 PMCID: PMC8891169 DOI: 10.3389/fonc.2022.836333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a highly invasive disease with a high mortality rate. Our previous study found that Chenodeoxycholic acid (CDCA) as an endogenous metabolite can enhance the anti-tumor effect. Sorafenib has limited overall efficacy as a first-line agent in HCC, and combined with CDCA may improve its efficacy.MethodsHepG2 cells and Balb/c nude mice were used respectively for in vitro and in vivo experiments. Flow cytometry, Western blotting, HE and immunohistochemical staining and immunofluorescence were used to study the effects of CDCA combined with sorafenib on HepG2 cell growth and apoptosis-related proteins. Magnetic bead coupling, protein profiling and magnetic bead immunoprecipitation were used to find the targets of CDCA action. The effect of CDCA on EGFR/Stat3 signaling pathway was further verified by knocking down Stat3 and EGFR. Finally, fluorescence confocal, and molecular docking were used to study the binding site of CDCA to EGFR.ResultsIn this study, we found that CDCA enhanced the effect of sorafenib in inhibiting the proliferation, migration and invasion of HepG2 cells. Magnetic bead immunoprecipitation and protein profiling revealed that CDCA may enhance the effect of sorafenib by affecting the EGFR/Stat3 signaling pathway. Further results from in vitro and in vivo gene knockdown experiments, confocal experiments and molecular docking showed that CDCA enhances the efficacy of sorafenib by binding to the extracellular structural domain of EGFR.ConclusionThis study reveals the mechanism that CDCA enhances the inhibitory effect of sorafenib on HepG2 cell growth in vitro and in vivo, providing a potential new combination strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Jun Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun-Xiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Heng Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-E Xie
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun-Liang Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yun-Liang Wang,
| |
Collapse
|
7
|
Doustimotlagh AH, Taheri S, Mansourian M, Eftekhari M. Extraction and Identification of Two Flavonoids in Phlomoides hyoscyamoides as an Endemic Plant of Iran: The Role of Quercetin in the Activation of the Glutathione Peroxidase, the Improvement of the Hydroxyproline and Protein Oxidation in Bile Duct-Ligated Rats. Curr Comput Aided Drug Des 2021; 16:629-640. [PMID: 31481005 DOI: 10.2174/1573409915666190903163335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/22/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cholestatic liver disease, a serious chronic condition that develops progressive hepatic degeneration through free radicals. OBJECTIVE The present study was designed to extract and identify two flavonoids in Phlomoides hyoscyamoides plant, native to Iran and evaluate the role of quercetin identified on the liver injury among bile ductligated rats. METHODS This study was conducted on 25 male Wistar rats within three groups of sham control, mere bile duct-ligated, and bile duct-ligated with quercetin. The bile duct-ligated animals received quercetin at a dose of 50 mg/kg/day for 10 days, followed by biochemical tests, oxidative stress markers, activity of antioxidant enzymes and hematoxylin and eosin staining. Molecular docking was used to explore the interactive behavior of quercetin with glutathione peroxidase. RESULTS According to analyses of the obtained extract, two main active ingredients of P. hyoscyamoides were rutin and quercetin. Bile duct-ligated group showed a significant liver necrosis, a clear increase in plasma and tissue oxidative stress parameters, and a decrease in glutathione peroxidase activity as compared to sham control group. Quercetin injection in bile duct-ligated rats resulted in significant decrease in hydroxyproline, protein carbonyl and histopathologic indexes and significant increase in glutathione peroxidase activity (P-value≤0.05). Based on the molecular docking, the quercetin was able to regulate the glutathione peroxidase activity. CONCLUSION The quercetin acts as an enzyme inducer by renewing the glutathione peroxidase activity and inhibiting the oxidation of proteins and hence decreases the oxidative stress. These results could be a sign of confirming the positive role of quercetin in attenuating the liver damage and degeneration.
Collapse
Affiliation(s)
- Amir H Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Salman Taheri
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran,Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
The Preventive Effects of Quercetin on Preterm Birth Based on Network Pharmacology and Bioinformatics. Reprod Sci 2021; 29:193-202. [PMID: 34231170 DOI: 10.1007/s43032-021-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Our previous study has shown that quercetin prevented lipopolysaccharide-induced preterm birth. This study aims to clarify the potential targets and biological mechanisms of quercetin in preventing preterm birth. We used bioinformatics databases to collect the candidate targets for quercetin and preterm birth. The biological functions and enriched pathways of the intersecting targets were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We obtained 105 targets for quercetin in preventing preterm birth. The biological processes of the intersecting targets are mainly involved in steroid metabolic process, drug metabolic process, oxidation-reduction process, omega-hydroxylase P450 pathway, positive regulation of cell migration, negative regulation of apoptotic process, and positive regulation of cell proliferation. The highly enriched pathways were steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, proteoglycans in cancer, focal adhesion, and arachidonic acid metabolism. The ten hub targets for quercetin in preventing preterm birth were AKT serine/threonine kinase 1, mitogen-activated protein kinase 3, epidermal growth factor receptor, prostaglandin-endoperoxide synthase 2, mitogen-activated protein kinase 1, estrogen receptor 1, heat shock protein 90 alpha family class A member 1, mitogen-activated protein kinase 8, androgen receptor, and matrix metallopeptidase 9. Molecular docking analysis showed good bindings between these proteins and quercetin. In conclusion, these findings highlight the key targets and molecular mechanisms of quercetin in preventing preterm birth.
Collapse
|
9
|
Nakhaee S, Dastjerdi M, Roumi H, Mehrpour O, Farrokhfall K. N-acetylcysteine dose-dependently improves the analgesic effect of acetaminophen on the rat hot plate test. BMC Pharmacol Toxicol 2021; 22:4. [PMID: 33413696 PMCID: PMC7791802 DOI: 10.1186/s40360-020-00469-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) induced hepatotoxicity is a clinically important problem. Up to now, interventive therapy with n-acetylcysteine (NAC) has been considered as a gold-standard treatment for APAP overdose. However, no study has focused on the efficacy of these drugs' concurrent administration on probable enhancing therapeutic outcomes. Thus, this study was aimed to investigate the analgesic effect of co-administration of NAC and acetaminophen in male rats. The NAC-APAP drug formulation may demonstrate the stranger antinociceptive effect. METHODS Forty-eight male Sprague-Dawley rats (12-14 weeks) randomly divided into six equal groups; control, APAP (received 300 mg/kg APAP), NAC (received 600 mg/kg NAC) and APAP+ NAC groups that received simultaneously 300 mg/kg APAP with 200-600 mg/kg NAC (AN200, AN400, AN600). All administrations were done orally for once. The antinociceptive effect was recorded by measurement of latency period on a hot plate in 30, 60, and 90 min after administrations. RESULTS The results showed that NAC's concurrent administration with APAP, dose-dependently increased APAP analgesic effects (p< 0.0001). Moreover, NAC treatment exhibited an antinociceptive effect in 60 and 90 min, per se. The treatments had no adverse effect on liver enzymes and oxidative stress. CONCLUSION Co-administration of NAC with APAP can improve the antinociceptive effect of APAP. It is suggested that this compound can enhance analgesic effects of APAP and eventually lead to a reduction in acetaminophen dose. Further studies are needed to evaluate the molecular mechanism of this hyper analgesic effect.
Collapse
Affiliation(s)
- Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohammad Dastjerdi
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hesam Roumi
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Mel and Enid Zuckerman, College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Khadijeh Farrokhfall
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Kim B, Kim SH, Kim K, An YH, So KH, Kim BG, Hwang N. Enzyme-mediated one-pot synthesis of hydrogel with the polyphenol cross-linker for skin regeneration. Mater Today Bio 2020; 8:100079. [PMID: 33103105 PMCID: PMC7575804 DOI: 10.1016/j.mtbio.2020.100079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Polyphenols can trigger immunity that activates intracellular anti-inflammatory signaling and prevents external infections. In this study, we report the fabrication of chitosan-based hydrogels with epigallocatechin gallate (EGCG) using enzyme-mediated one-pot synthesis. The tyrosinase-mediated oxidative reaction of the phenolic rings of EGCG with the primary amines on chitosan results in stable EGCG-chitosan hydrogels. The EGCG concentrations contributed to the cross-linking density and physical properties of EGCG-chitosan hydrogels. Furthermore, EGCG-chitosan hydrogels maintained intrinsic properties such as antibacterial and antioxidant effects. When endotoxin-activated RAW 264.7 macrophage cells were cultured with EGCG-chitosan hydrogels, the hydrogels reduced the inflammatory response of the RAW 264.7 cells. Furthermore, subcutaneous implantation of EGCG-chitosan hydrogels reduced endogenous macrophage and monocyte activation. When the EGCG-chitosan hydrogels were applied to a full-skin defect wound, they facilitated skin regeneration. Our study demonstrates that the one-pot synthesized EGCG-chitosan hydrogels can be applied in broad tissue regeneration applications that require immune modulation.
Collapse
Affiliation(s)
- B.S. Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
| | - S.-H. Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K. Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
| | - Y.-H. An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - K.-H. So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
| | - B.-G. Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Republic of Korea
| | - N.S. Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Republic of Korea
| |
Collapse
|
11
|
Liu P, Lin H, Xu Y, Zhou F, Wang J, Liu J, Zhu X, Guo X, Tang Y, Yao P. Frataxin-Mediated PINK1-Parkin-Dependent Mitophagy in Hepatic Steatosis: The Protective Effects of Quercetin. Mol Nutr Food Res 2018; 62:e1800164. [PMID: 29935106 DOI: 10.1002/mnfr.201800164] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/20/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Naturally occurring quercetin has been found to induce mitophagy and prevent nonalcoholic fatty liver disease (NAFLD). However, it still remains elusive whether frataxin upregulation by quercetin contributes to the beneficial effect through mitophagy or not. METHODS AND RESULTS Adult male C57BL/J mice were fed a high-fat diet (HFD, 60% of energy from fat) with quercetin (100 mg kg-1 body weight) or not for 10 weeks. Quercetin alleviated HFD-induced histopathological changes, disorders of lipid metabolism, and mitochondrial damage. Moreover, quercetin blocked mitophagy suppression by HFD based on the increased LC3II, PTEN-induced putative kinase 1 (PINK1) and Beclin1 expressions, as well as decreased p62 levels. Quercetin also improved the Parkin translocation to mitochondria confirmed by immunofluorescence. Specifically, frataxin was lowered in the liver of HFD-fed mice or HepG2 cell incubated with oleate/palmitate but restored by quercetin, and quercetin's regulation of frataxin may depend on p53. Furthermore, lentivirus-mediated stable knockdown of frataxin in HepG2 inhibited PINK1-Parkin-associated mitophagy and resulted in lipid accumulation. Frataxin was further decreased by free fatty acids in knockdown cells concomitantly with depressed PINK1-Parkin-associated mitophagy, which was partially normalized by quercetin. CONCLUSION Quercetin alleviated hepatic steatosis by enhancing frataxin-mediated PINK1/Parkin-dependent mitophagy, highlighting a promising preventive strategy and mechanism for NAFLD by quercetin.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yanyan Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Feng Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xinhong Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| |
Collapse
|
12
|
Babiker F, Al-Kouh A, Kilarkaje N. Lead exposure induces oxidative stress, apoptosis, and attenuates protection of cardiac myocytes against ischemia-reperfusion injury. Drug Chem Toxicol 2018; 42:147-156. [PMID: 29400093 DOI: 10.1080/01480545.2018.1429460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disrupting role of lead toxicity in heart functions and prognosis of cardiovascular diseases is not well known. This study investigated the interference of lead in heart functions and pacing postconditioning-mediated protection to the heart from ischemia-reperfusion injury. Lead exposure decreased the body weight and increased the heart weight in male rats (p < 0.001). Long-term lead exposure (45 days exposure to lead) increased total oxidant levels (p < 0.001) in the heart. Furthermore, lead exposure abrogated the pacing postconditioning-mediated protection from ischemia-reperfusion injury. The latter effect showed an association with reduced total antioxidants levels (p < 0.001). In the short-term study (5 days exposure to lead), pacing postconditioning protected the heart from ischemia-reperfusion injury despite the reduced total antioxidant levels (p < 0.001). Lead toxicity caused a drastic increase in the heart weight in male rats and apoptosis. The induced oxidative stress showed association with the lack of pacing postconditioning-mediated protection of the heart. However, long-term lead exposure eliminated pacing postconditioning-mediated protection of the heart from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fawzi Babiker
- a Department of Physiology, Faculty of Medicine, Health Science Center , Kuwait University , Safat , Kuwait
| | - Aisha Al-Kouh
- a Department of Physiology, Faculty of Medicine, Health Science Center , Kuwait University , Safat , Kuwait
| | - Narayana Kilarkaje
- b Department of Anatomy, Faculty of Medicine, Health Science Center , Kuwait University , Safat , Kuwait
| |
Collapse
|
13
|
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF, Alavian SM, Nabavi SM. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108:365-374. [DOI: 10.1016/j.fct.2016.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
14
|
Dogan Z, Elbe H, Taslidere E, Soysal H, Cetin A, Demirtas S. Effects of ciprofloxacin on fetal rat liver during pregnancy and protective effects of quercetin. Biotech Histochem 2017; 92:481-486. [PMID: 28836867 DOI: 10.1080/10520295.2017.1356469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Urinary tract infections are common in pregnant women and ciprofloxacin frequently is used as a broad spectrum antibiotic. It has been suggested that ciprofloxacin causes liver damage in fetuses. Quercetin is a flavonoid with antioxidant properties. We investigated the efficacy of quercetin treatment for preventing fetal liver damage caused by ciprofloxacin. Pregnant rats were divided into four groups: untreated control group (C), 20 mg/kg quercetin for 21 days group (Q), 20 mg/kg twice/day ciprofloxacin for 10 days group (CP), and 20 mg/kg, ciprofloxacin + quercetin for 21 days group (CP + Q). Fetal livers were removed on day 21 of gestation to measure antioxidants and for histological observation. Malondialdehyde (MDA) and glutathione (GSH) levels, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in tissue samples. GSH-Px, SOD and CAT activities were significantly lower in the CP group compared to group C. A significant increase in MDA was observed in the CP group compared to group C. There was no significant difference in GSH levels in any group. MDA levels were lower and CAT, SOD and GSH-Px enzyme activities were higher in the CP + Q group compared to group CP. Liver samples of the CP group exhibited central vein dilation, portal vein congestion, pyknotic nuclei and cytoplasmic vacuolization in some hepatocytes. Histological changes were less prominent in the rats treated with quercetin. Use of ciprofloxacin during pregnancy caused oxidative damage in fetal liver tissue. Oxidative stress was ameliorated by quercetin. Quercetin supports the antioxidant defense mechanism and it is beneficial for treating fetal liver damage caused by ciprofloxacin.
Collapse
Affiliation(s)
- Z Dogan
- a Department of Anatomy, Faculty of Medicine , Adiyaman University , Adiyaman
| | - H Elbe
- b Department of Histology and Embryology, Faculty of Medicine , Mugla Sıtkı Kocman University , Mugla
| | - E Taslidere
- c Department of Histology and Embryology, Faculty of Medicine , Bezmialem Vakif University , Istanbul
| | - H Soysal
- d Department of Anatomy, Faculty of Medicine , Baskent University , Ankara
| | | | - S Demirtas
- f Biochemistry , Inonu University, Faculty of Medicine , Malatya , Turkey
| |
Collapse
|
15
|
Quercetin Reverses Rat Liver Preneoplastic Lesions Induced by Chemical Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4674918. [PMID: 28740570 PMCID: PMC5504959 DOI: 10.1155/2017/4674918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/16/2017] [Indexed: 12/27/2022]
Abstract
Quercetin is a flavonoid widely studied as a chemopreventive agent in different types of cancer. Previously, we reported that quercetin has a chemopreventive effect on the liver-induced preneoplastic lesions in rats. Here, we evaluated if quercetin was able not only to prevent but also to reverse rat liver preneoplastic lesions. We used the modified resistant hepatocyte model (MRHM) to evaluate this possibility. Treatment with quercetin was used 15 days after the induction of preneoplastic lesions. We found that quercetin reverses the number of preneoplastic lesions and their areas. Our results showed that quercetin downregulates the expression of EGFR and modulates this signaling pathway in spite of the activated status of EGFR as detected by the upregulation of this receptor, with respect to that observed in control rats. Besides, quercetin affects the phosphorylation status of Src-1, STAT5, and Sp-1. The better status of the liver after the treatment with quercetin could also be confirmed by the recovery in the expression of IGF-1. In conclusion, we suggest that quercetin reversed preneoplastic lesions by EGFR modulation and the activation state of Src, STAT5, and Sp1, so as the basal IGF-1.
Collapse
|
16
|
Feng Y, Ying HY, Qu Y, Cai XB, Xu MY, Lu LG. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells. Protein Cell 2016; 7:662-72. [PMID: 27342773 PMCID: PMC5003784 DOI: 10.1007/s13238-016-0285-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Yi Feng
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| | - Hai-Yan Ying
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Xiao-Bo Cai
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Ming-Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.
| |
Collapse
|
17
|
Salomone F, Godos J, Zelber-Sagi S. Natural antioxidants for non-alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver Int 2016; 36:5-20. [PMID: 26436447 DOI: 10.1111/liv.12975] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), is emerging as a main health problem in industrialized countries. Lifestyle modifications are effective in the treatment of NAFLD; however, the long-term compliance is low. Therefore, several pharmacological treatments have been proposed but none has shown significant efficacy or long-term safety. Natural polyphenols are a heterogeneous class of polyphenolic compounds contained in vegetables, which are being proposed for the treatment of different metabolic disorders. Although the beneficial effect of these compounds has traditionally related to their antioxidant properties, they also exert several beneficial effects on hepatic and extra-hepatic glucose and lipid homeostasis. Furthermore, natural polyphenols exert antifibrogenic and antitumoural effects in animal models, which appear relevant from a clinical point of view because of the association of NASH with cirrhosis and hepatocellular carcinoma. Several polyphenols, such anthocyanins, curcumin and resveratrol and those present in coffee, tea, soy are available in the diet and their consumption can be proposed as part of a healthy diet for the treatment of NAFLD. Other phenolic compounds, such as silymarin, are commonly consumed worldwide as nutraceuticals or food supplements. Natural antioxidants are reported to have beneficial effects in preclinical models of NAFLD and in pilot clinical trials, and thus need clinical evaluation. In this review, we summarize the existing evidence regarding the potential role of natural antioxidants in the treatment of NAFLD and examine possible future clinical applications.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Shira Zelber-Sagi
- The Liver Unit, Gastroenterology Department, Tel-Aviv Medical Center, Tel Aviv, Israel.,School of Public Health, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Taslidere E, Dogan Z, Elbe H, Vardi N, Cetin A, Turkoz Y. Quercetin protection against ciprofloxacin induced liver damage in rats. Biotech Histochem 2015; 91:116-21. [DOI: 10.3109/10520295.2015.1085093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
20
|
Badawy AAG, El-Hindawi A, Hammam O, Moussa M, Gabal S, Said N. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis. APMIS 2015; 123:823-31. [DOI: 10.1111/apm.12431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/10/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Olfat Hammam
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| | - Mona Moussa
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| | - Samia Gabal
- Faculty of Medicine; Cairo University; Giza Egypt
| | - Noha Said
- Department of Pathology; Theodor Bilharz Research Institute; Imbaba Egypt
| |
Collapse
|
21
|
Melatonin limits the expression of profibrogenic genes and ameliorates the progression of hepatic fibrosis in mice. Transl Res 2015; 165:346-57. [PMID: 25445210 DOI: 10.1016/j.trsl.2014.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/02/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
We investigated whether melatonin ameliorates fibrosis and limits the expression of fibrogenic genes in mice treated with carbon tetrachloride (CCl4). Mice in treatment groups received CCl4 5 μL/g body weight intraperitoneally twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg/kg/d intraperitoneally, beginning 2 weeks after the start of CCl4 administration. Treatment with CCl4 resulted in fibrosis evidenced by the staining of Van Gieson and α-smooth muscle actin (α-SMA) positive cells in the liver. At both 4 and 6 weeks, CCl4 induced an increase in the messenger RNA levels of collagens I and III, transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), amphiregulin, matrix metalloproteinase (MMP)-9, and tissue inhibitor of metalloproteinase (TIMP)-1. Protein concentrations of CTGF, amphiregulin, MMP-9, TIMP-1, and phospho-Smad3 were also significantly augmented in fibrotic mice. Melatonin successfully attenuated liver injury, as shown by histopathology and decreased levels of serum transaminases. Immunohistochemical staining of α-SMA indicated an abrogation of hepatic stellate cell activation by the indol. Furthermore, melatonin treatment resulted in significant inhibition of the expression of collagens I and III, TGF-β, PDGF, CTGF, amphiregulin, and phospho-Smad3. The MMP-9 activity decreased and the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) increased in mice receiving melatonin. Data obtained suggest that attenuation of multiple profibrogenic gene pathways contributes to the beneficial effects of melatonin in mice with CCl4-induced liver fibrosis.
Collapse
|
22
|
Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury. J Nutr Biochem 2014; 25:1183-1195. [PMID: 25108658 DOI: 10.1016/j.jnutbio.2014.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 12/15/2022]
Abstract
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Flavonoids have been shown to confer beneficial health effects, including hepatoprotection. However, the molecular mechanism of flavonoid-mediated hepatoprotection is incompletely understood. In this study, we report the protective effect of quercetin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily oral administration of quercetin was started 1 week before injury and lasted for 4 weeks. In comparison with the control group, the BDL group showed liver injury, as evidenced by histological changes, and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by daily quercetin supplementation. Quercetin alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), interleukin-1 beta, connective tissue growth factor and collagen expression. The antifibrotic effect of quercetin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. Quercetin also attenuated BDL-induced oxidative stress, leukocyte accumulation, nuclear factor (NF)-κB activation and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of quercetin on MyD88 and TGF-β-activated kinase-1 critical for linking toll-like receptor (TLR) and NF-κB. Taken together, the hepatoprotective, anti-inflammatory and antifibrotic effects of quercetin seem to be multifactorial. The beneficial effects of daily quercetin supplementation are associated with antioxidative and anti-inflammatory potential as well as down-regulation of NF-κB and TGF-β/Smad signaling, probably via interference with TLR signaling.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ya-Yu Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Han Chuang
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan; Center for General Education, Tunghai University, Taichung 407, Taiwan; Department of Nursing, HungKuang University, Taichung 433, Taiwan.
| |
Collapse
|
23
|
Wilasrusmee C, Marjareonrungrung M, Eamkong S, Attia J, Poprom N, Jirasisrithum S, Thakkinstian A. Maggot therapy for chronic ulcer: A retrospective cohort and a meta-analysis. Asian J Surg 2014; 37:138-47. [DOI: 10.1016/j.asjsur.2013.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 08/27/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
|
24
|
Ferrari RS, Tieppo M, Rosa DPD, Forgiarini LA, Dias AS, Marroni NP. Lung and liver changes due to the induction of cirrhosis in two experimental models. ARQUIVOS DE GASTROENTEROLOGIA 2014; 50:208-13. [PMID: 24322193 DOI: 10.1590/s0004-28032013000200037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/07/2013] [Indexed: 12/11/2022]
Abstract
CONTEXT To evaluate lung and liver changes in two experimental models using intraperitoneal carbon tetrachloride (CCl4) and bile duct ligation (BDL). methods: Twenty-four male Wistar rats were divided into a control group (CO) and an experimental group (EX). We evaluated the liver transaminases (AST, ALT, AP), arterial blood gases (PaO2, PCO2 and SpO2) and lipid peroxidation by TBARS (substances that react to thiobarbituric acid) and chemiluminescence. We also evaluated the antioxidant enzyme superoxide dismutase (SOD) and histology of lung tissue and liver. RESULTS There were significant differences in AST, ALT, ALP and PaO2 between CO group and EX group (P<0.05). The levels of TBARS, chemiluminescence and activity of enzyme superoxide dismutase were increased to different degrees in the CCl4 groups: CO and in the BDL -EX (P<0.05, respectively). In the lung histology, an increase in the wall thickness of the pulmonary artery and a diameter reduction in the CCl4 animal model were observed: comparing CO group with EX group, we observed a reduction in thickness and an increase in the diameter of the artery wall lung. CONCLUSION Both experimental models have caused liver damage and alterations in the artery wall that are associated with major changes in pulmonary gas exchange.
Collapse
|
25
|
The involvement of heme oxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Fitoterapia 2013; 87:20-6. [PMID: 23537890 DOI: 10.1016/j.fitote.2013.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate potential hepatoprotective capabilities of quercetin in relation to its modulation of the HO-1 and NOS-2 activities in an experimental model of fulminant liver failure. Liver insult was induced by in vivo administration of D-galactosamine (d-GalN, 400 mg/kg, i.p.) and lipopolysaccharide (LPS, 10 μg/kg, i.p.). The effects of quercetin (50 mg/kg, i.p) on D-GalN toxicity was evaluated by standard biochemical, RT-PCR and Western blot methods. Administration of d-GalN/LPS combination resulted in significantly higher plasma levels of aminotransferases, as well as increased mRNA and protein expressions of both HO-1 and NOS-2 enzymes. Quercetin exhibited cytoprotective effects on the liver, as evidenced by decreased aminotransferase plasma levels. Additionally, quercetin treatment in D-GalN/LPS treated rats significantly increased HO-1 mRNA and its protein expressions. On the contrary, quercetin did not exhibit any significant effects on the levels of nitrites, and NOS-2 mRNA and protein expressions in D-GalN/LPS treated rats. Quercetin when given alone did not have any significant changes on liver enzymes nor HO-1 and NOS-2 mRNA and protein expressions. It can be concluded that the quercetin's induction of HO-1 and its byproducts, without concomitant NOS-2 activity reduction, is among mechanisms contributing to the hepatoprotective effect in D-GalN/LPS hepatotoxicity.
Collapse
|
26
|
Marcolin E, San-Miguel B, Vallejo D, Tieppo J, Marroni N, González-Gallego J, Tuñón MJ. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J Nutr 2012; 142:1821-8. [PMID: 22915297 DOI: 10.3945/jn.112.165274] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated whether quercetin protects from steatosis and limits the expression of proinflammatory and fibrogenic genes in C57BL/6J mice with nonalcoholic steatohepatitis (NASH) induced by feeding a methionine-choline-deficient (MCD) diet. Quercetin (50 mg/kg) was given by oral route daily. Mice were randomly divided into 4 groups that received for 2 or 4 wk: the control diet plus vehicle, control diet plus quercetin, MCD diet plus vehicle, and MCD diet plus quercetin. At both 2 and 4 wk, feeding the MCD diet resulted in liver steatosis, inflammatory cell accumulation, oxidative stress evaluated by the concentration of TBARS, and fibrosis evidenced by the staining of α-smooth muscle actin-positive cells in the liver. At both 2 and 4 wk, the MCD diet induced an increase in the mRNA levels of Il6, Tnf, Ptgs2, and Hmgb1 and increased the protein concentrations of Toll-like receptor-4, c-Jun terminal kinase, and p65 NFκB subunit compared with control rats. Feeding the mice the MCD diet also triggered an increase of Col1a1, Col3a1, Plod3, Tgfb1, Smad3, Smad7, Pdgfb, Ctgf, Areg, Mmp9, and Timp1 mRNA levels. These effects were totally or partially prevented by treatment with quercetin. The data obtained suggest that attenuation of multiple profibrotic and proinflammatory gene pathways contributes to the beneficial effects of quercetin in mice with MCD diet-induced steatohepatitis.
Collapse
Affiliation(s)
- Eder Marcolin
- Laboratory of Experimental Hepatology and Physiology, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, and Universidade Luterana do Brasil Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Herbal products: benefits, limits, and applications in chronic liver disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:837939. [PMID: 22991573 PMCID: PMC3443820 DOI: 10.1155/2012/837939] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Complementary and alternative medicine soughts and encompasses a wide range of approaches; its use begun in ancient China at the time of Xia dynasty and in India during the Vedic period, but thanks to its long-lasting curative effect, easy availability, natural way of healing, and poor side-effects it is gaining importance throughout the world in clinical practice. We conducted a review describing the effects and the limits of using herbal products in chronic liver disease, focusing our attention on those most known, such as quercetin or curcumin. We tried to describe their pharmacokinetics, biological properties, and their beneficial effects (as antioxidant role) in metabolic, alcoholic, and viral hepatitis (considering that oxidative stress is the common pathway of chronic liver diseases of different etiology). The main limit of applicability of CAM comes from the lacking of randomized, placebo-controlled clinical trials giving a real proof of efficacy of those products, so that anecdotal success and personal experience are frequently the driving force for acceptance of CAM in the population.
Collapse
|
28
|
Yang T, Luo F, Shen Y, An J, Li X, Liu X, Ying B, Liao Z, Dong J, Guo L, Wang T, Xu D, Chen L, Wen F. Quercetin attenuates airway inflammation and mucus production induced by cigarette smoke in rats. Int Immunopharmacol 2012; 13:73-81. [PMID: 22465384 DOI: 10.1016/j.intimp.2012.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
Mucus hypersecretion is a feature of many chronic airway diseases induced by cigarette smoke (CS), and evidence suggests that the antioxidant and anti-inflammatory flavonoid quercetin may protect against CS-induced respiratory pathology. In this study, the ability of quercetin to protect against CS-induced mucin expression was examined in vivo and in vitro. Quercetin or 0.2% Tween aqueous solution was administered intraperitoneally to rats,which were then exposed to CS for 28 days. Cell counts and pro-inflammatory cytokine levels were measured in bronchoalveolar lavage fluid (BALF). Lung tissue was examined for total glutathione (GSH) and total antioxidant capacity (T-AOC), histopathological lesions, goblet cell hyperplasia, epidermal growth factor receptor (EGFR) phosphorylation and NF-κB pathway activation. To complement these in vitro studies, human airway epithelial NCI-H292 cells were pretreated with quercetin and then exposed to cigarette smoke extract (CSE). Cell lysates were examined for Muc5ac expression, EGFR phosphorylation and NF-κB pathway activation. In vivo, quercetin pretreatment suppressed CS-induced goblet cell hyperplasia, inflammation, oxidative stress, EGFR phosphorylation and NF-κB pathway activation in rat lung. In vitro, quercetin pretreatment attenuated the CSE-induced Muc5ac expression, NF-κB activation and EGFR phosphorylation. Our results suggest that quercetin attenuates CS-induced mucin protein synthesis in rat lung, possibly by inhibiting oxidative stress and inflammation via a mechanism involving NF-κB pathway activation and EGFR phosphorylation. These findings suggest that quercetin has a potential for treating chronic airway diseases.
Collapse
Affiliation(s)
- Ting Yang
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy and Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|