1
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Kaspar D, Hastreiter S, Irmler M, Hrabé de Angelis M, Beckers J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome 2020; 31:119-133. [PMID: 32350605 PMCID: PMC7368866 DOI: 10.1007/s00335-020-09839-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Nutritional constraints including not only caloric restriction or protein deficiency, but also energy-dense diets affect metabolic health and frequently lead to obesity and insulin resistance, as well as glucose intolerance and type 2 diabetes. The effects of these environmental factors are often mediated via epigenetic modifiers that target the expression of metabolic genes. More recently, it was discovered that such parentally acquired metabolic changes can alter the metabolic health of the filial and grand-filial generations. In mammals, this epigenetic inheritance can either follow an intergenerational or transgenerational mode of inheritance. In the case of intergenerational inheritance, epimutations established in gametes persist through the first round of epigenetic reprogramming occurring during preimplantation development. For transgenerational inheritance, epimutations persist additionally throughout the reprogramming that occurs during germ cell development later in embryogenesis. Differentially expressed transcripts, genomic cytosine methylations, and several chemical modifications of histones are prime candidates for tangible marks which may serve as epimutations in inter- and transgenerational inheritance and which are currently being investigated experimentally. We review, here, the current literature in support of epigenetic inheritance of metabolic traits caused by nutritional constraints and potential mechanisms in man and in rodent model systems.
Collapse
Affiliation(s)
- Daniela Kaspar
- Institute of Experimental Genetics, Helmholtz Zentrum MĂĽnchen GmbH, Neuherberg, Germany
| | - Sieglinde Hastreiter
- Institute of Experimental Genetics, Helmholtz Zentrum MĂĽnchen GmbH, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum MĂĽnchen GmbH, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum MĂĽnchen GmbH, Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, Weihenstephan, Germany
- Deutsches Zentrum fĂĽr Diabetesforschung E.V. (DZD), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum MĂĽnchen GmbH, Neuherberg, Germany.
- Chair of Experimental Genetics, Technische Universität München, Weihenstephan, Germany.
- Deutsches Zentrum fĂĽr Diabetesforschung E.V. (DZD), Neuherberg, Germany.
| |
Collapse
|
3
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
4
|
Crossland RF, Balasa A, Ramakrishnan R, Mahadevan SK, Fiorotto ML, Van den Veyver IB. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring. PLoS One 2017; 12:e0170127. [PMID: 28099477 PMCID: PMC5242516 DOI: 10.1371/journal.pone.0170127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/29/2016] [Indexed: 12/14/2022] Open
Abstract
Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP) or a control protein (20% protein, C) diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein) and single-housed until 8–12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration), depression (tail suspension and forced swim test), sociability (three-chamber), repetitive (marble burying), learning and memory (fear conditioning), and circadian behavior (wheel-running activity during light-dark and constant dark cycles). We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT). Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03), less energy expenditure (P = 0.004), less rearing activity (P = 0.04) and a greater number of night-time rest/sleep bouts (P = 0.03) compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01) but had no learning and memory deficit in fear-conditioning assay (P = 0.02). There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces food intake and energy expenditure, increases anxiety like behavior and disturbs sleep patterns but not circadian rhythm in adult male offspring.
Collapse
Affiliation(s)
- Randy F. Crossland
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Alfred Balasa
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Rajesh Ramakrishnan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
| | - Sangeetha K. Mahadevan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Houston, TX, United States of America
| | - Ignatia B. Van den Veyver
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States of America
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
Vansant G. Effect of Maternal and Paternal Nutrition on DNA Methylation in the Offspring: A Systematic Review of Human and Animal Studies. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/aowmc.2016.04.00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Fiorotto ML, Davis TA, Sosa HA, Villegas-Montoya C, Estrada I, Fleischmann R. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. J Physiol 2014; 592:5269-86. [PMID: 25239457 DOI: 10.1113/jphysiol.2014.279067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21Â days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18Â months (PÂ <Â 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (PÂ <Â 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (PÂ <Â 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (PÂ <Â 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (PÂ <Â 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth.
Collapse
Affiliation(s)
- Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Horacio A Sosa
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carolina Villegas-Montoya
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irma Estrada
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Abstract
Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator-activated receptor (PPAR) Îł via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPARÎł mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPARÎł, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPARÎł mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.
Collapse
|