1
|
Kobalter S, Wriessnegger T, Pichler H. Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 2025; 109:101. [PMID: 40263140 PMCID: PMC12014800 DOI: 10.1007/s00253-025-13487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The demand for sustainable and eco-friendly alternatives to fossil and plant oil-derived chemicals has spurred interest in microbial production of lipids, particularly triacylglycerols, fatty acids, and their derivatives. Yeasts are promising platforms for synthesizing these compounds due to their high lipid accumulation capabilities, robust growth, and generally recognized as safe (GRAS) status. There is vast interest in fatty acid and triacylglycerol products with tailored fatty acid chain lengths and compositions, such as polyunsaturated fatty acids and substitutes for cocoa butter and palm oil. However, microbes naturally produce a limited set of mostly long-chain fatty acids, necessitating the development of microbial cell factories with customized fatty acid profiles. This review explores the capabilities of key enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthases, desaturases, elongases, and acyltransferases. It discusses factors influencing fatty acid composition and presents engineering strategies to enhance fatty acid synthesis. Specifically, we highlight successful engineering approaches to modify fatty acid profiles in triacylglycerols and produce tailored fatty acids, and we offer recommendations for host selection to streamline engineering efforts. KEY POINTS: • Detailed overview on all basic aspects of fatty acid metabolism in yeast • Comprehensive description of fatty acid profile tailoring in yeast • Extensive summary of applying tailored fatty acid profiles in production processes.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
2
|
Amirjannati N, Asl MA, Hosseini E, Henkel R, Agharezaee N, Kafaeinezhad R, Rezadoost H, Gilany K. Analyzing free fatty acids in seminal plasma from asthenozoospermia patients undergoing antioxidant therapy. JBRA Assist Reprod 2025; 29:67-75. [PMID: 39873419 PMCID: PMC11867247 DOI: 10.5935/1518-0557.20240086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Different aspects of the functions of free fatty acid (FFA) in seminal plasma and their implications on male fertility are known. However, the profile of FFA in seminal plasma in asthenozoospermic patients following antioxidant therapy has not been studied. METHODS In this case-control study, the total antioxidant capacity (TAC) and FFA profile of the seminal plasma were determined in 80 patients (29 normozoospermic volunteers and 51 asthenozoospermic men) who were treated with antioxidants for three months. RESULTS The TAC level in normozoospermic men was significantly higher than in asthenozoospermic men before and after antioxidant therapy with even lower values after the treatment (p=0.0001). The most abundant identified FFAs in seminal plasma were palmitic acid, vaccenic acid, eicosatrienoic acid, stearic acid, and myristoleic acid. Palmitic acid was lower in asthenozoospermic patients (p=0.0001), and antioxidant treatment restored its level to near-control levels. Compared to normozoospermic controls, the level of eicosatrienoic acid is significantly lower in asthenozoospermia patients before (p=0.01) and after treatment (p=0.0001). Additionally, following oral antioxidant supplementation, the FFA pattern in asthenozoospermic patients changes to the pattern observed in normozoospermic men. However, these changes are not statistically significant. CONCLUSIONS The TAC level in asthenozoospermic patients after antioxidant treatment did not change to the levels in the control group; it even dropped to a lower level following three months of treatment. Antioxidant treatment can change the level of the FFA compositions of seminal plasma.
Collapse
Affiliation(s)
- Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology
Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdieh Aghabalazadeh Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research
Institute, Shahid Beheshti University, Tehran, Iran
| | - Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of
Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School
of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, United Kingdom
- Department of Medical Bioscience, University of the Western Cape,
Bellville, South Africa
- Department of Metabolism, Digestion and Reproduction, Imperial
College London, London, United Kingdom
| | - Niloofar Agharezaee
- Monoclonal Antibody Research Center, Avicenna Research Institute
(ACECR), Tehran, Iran
- Department of Bioinformatics, Kish International Campus University
of Tehran, Kish, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of
Maragheh, Maragheh, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research
Institute, Shahid Beheshti University, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Lu T, Liu F, Jiang C, Cao J, Ma X, Su E. Strategies for cultivation, enhancing lipid production, and recovery in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 416:131770. [PMID: 39528033 DOI: 10.1016/j.biortech.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As global consumption of oil increases and environmental pollution worsens, people are becoming more concerned with sustainable energy development and environmental protection. There is an urgent need to find a sustainable and environmentally friendly new source of lipids to produce biodiesel and other products. In recent years, oleaginous yeast has garnered widespread interest due to its high lipid content. Compared with traditional plant oil sources, oleaginous yeast offers several significant advantages. Firstly, its cultivation is not affected by seasonal and climatic conditions. Secondly, yeast cultivation does not require large amounts of arable land. Additionally, oleaginous yeast grows rapidly, has a short production cycle, and can efficiently accumulate lipids. This review introduces several prominent oleaginous yeasts, focusing on the impact of cultivation conditions on lipid production, strategies to enhance lipid yield, and the development of lipid recovery methods.
Collapse
Affiliation(s)
- Tingting Lu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Feixiang Liu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, PR China
| | - Chenan Jiang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, PR China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
4
|
Baker EJ, Calder PC, Kermack AJ, Brown JE, Mustapha M, Kitson-Reynolds E, Garvey JJ. Omega-3 LC-PUFA consumption is now recommended for women of childbearing age and during pregnancy to protect against preterm and early preterm birth: implementing this recommendation in a sustainable manner. Front Nutr 2024; 11:1502866. [PMID: 39677502 PMCID: PMC11639083 DOI: 10.3389/fnut.2024.1502866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Preterm birth (delivery prior to 37 weeks) appears to be rising globally, increasing the risk of a myriad of down-stream disorders which affect families, their offspring and society, including increased morbidity, mortality and economic costs. Strategies for prevention of preterm birth have therefore become a priority among healthcare providers. One proposed strategy is increased consumption of Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA) (from food or supplements) in women of childbearing age and during pregnancy. It is hypothesized that Omega-3 LC-PUFAs, through several different actions, reduce the risk of early onset labor or lengthen gestation. An expert group, acting on behalf of several relevant organizations, recently published guidance based on compelling trial evidence for increased Omega-3 LC-PUFA intake to protect women of childbearing age and during pregnancy from preterm birth (PTB) and early preterm birth (ePTB). Here, we consider how this guidance can be achieved in a sustainable manner. We present data on suitable, efficacious alternatives to fish as a source of Omega-3 LC-PUFAs, so that while aiming to protect families and society against PTB and ePTB there is no increased burden on other species on our vulnerable planet. Finally, how the guidance can be implemented in practice is discussed, with consideration for those most at risk and effective ways of communicating this important message.
Collapse
Affiliation(s)
- Ella J. Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Alex J. Kermack
- Department of Obstetrics and Gynaecology, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- School of Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan E. Brown
- Department of Nutrition, Food and Exercise, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Moriam Mustapha
- London Neonatal Operational Delivery Network, London, United Kingdom
| | - Ellen Kitson-Reynolds
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
5
|
Stanca E, Spedicato F, Giudetti AM, Giannotti L, Di Chiara Stanca B, Damiano F, Siculella L. EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2. Int J Mol Sci 2024; 25:9095. [PMID: 39201781 PMCID: PMC11354350 DOI: 10.3390/ijms25169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.
Collapse
Affiliation(s)
- Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | | | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| |
Collapse
|
6
|
Kemper TA, Woo H, Belz D, Fawzy A, Lorizio W, Eakin MN, Putcha N, McCormack MC, Brigham EP, Hanson C, Koch AL, Hansel NN. Higher Plasma Omega-3 Levels are Associated With Improved Exacerbation Risk and Respiratory-Specific Quality of Life in COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:293-302. [PMID: 38687147 PMCID: PMC11216231 DOI: 10.15326/jcopdf.2023.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Background Omega-3 polyunsaturated fatty acids (PUFAs) have been associated with systemic anti-inflammatory responses. Dietary intake of omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has also been associated with lower chronic obstructive pulmonary disease (COPD) morbidity using self-report food frequency questionnaires. Objective The objective of this study was to investigate the relationship between measured PUFA intake using plasma EPA+DHA levels and COPD morbidity. Methods Former smokers with moderate-to-severe COPD living in low-income communities were enrolled in a 6-month prospective cohort study. Participants completed standardized questionnaires, spirometry, and plasma samples at 3-month intervals. Total plasma PUFAs were analyzed using gas chromatography/mass spectrometry for DHA and EPA concentrations. Linear or logistic mixed model regression was used to evaluate EPA+DHA's and COPD morbidity's association, accounting for demographics, lung function, pack years, comorbidities, and neighborhood poverty. Results A total of 133 plasma EPA+DHA samples from 57 participants were available. Participants exhibited average plasma EPA and DHA levels of 14.7±7.3µg/mL and 40.2±17.2µg/mL, respectively, across the 3 clinic visits. Each standard deviation increase in EPA+DHA levels was associated with 2.7 points lower St George's Respiratory Questionnaire score (95% confidence interval [CI] -5.2, -0.2) and lower odds of moderate exacerbation (odds ratio 0.4; 95% CI 0.2, 0.9), but lacked significant association with the COPD Assessment Test score (95% CI -2.4, 0.8), modified Medical Research Council dyspnea scale (95% CI -02, 0.2), or severe exacerbations (95% CI 0.3, 1.4). Conclusion Plasma EPA+DHA levels are associated with better respiratory-specific quality of life and lower odds of moderate exacerbations in patients with moderate-to-severe COPD. Further research is warranted to investigate the efficacy of an omega-3 dietary intervention in the management of COPD morbidities.
Collapse
Affiliation(s)
- Tyus A Kemper
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, United States
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Belz
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Michelle N Eakin
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emily P Brigham
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corrine Hanson
- Medical Nutrition Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Abigail L Koch
- Section on Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Miami, Miami, Florida, United States
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Lopes PA, Alfaia CM, Pestana JM, Prates JAM. Structured Lipids Engineering for Health: Novel Formulations Enriched in n-3 Long-Chain Polyunsaturated Fatty Acids with Potential Nutritional Benefits. Metabolites 2023; 13:1060. [PMID: 37887385 PMCID: PMC10608893 DOI: 10.3390/metabo13101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Structured lipids (SLs) offer a promising avenue for designing novel formulations enriched in n-3 long-chain polyunsaturated fatty acids (LCPUFAs) with potential health benefits. Triacylglycerols (TAGs), the most common fats in the human diet, are both non-toxic and chemically stable. The metabolic efficiency and digestibility of TAGs are significantly influenced by the position of fatty acids (FAs) within the glycerol backbone, with FAs at the sn-2 position being readily absorbed. Over the past two decades, advancements in SL research have led to the development of modified TAGs, achieved either through chemical or enzymatic processes, resulting in SLs. The ideal structure of SLs involves medium-chain FAs at the sn-1,3 positions and long-chain n-3 LCPUFAs at the sn-2 position of the glycerol backbone, conferring specific physicochemical and nutritional attributes. These tailored SL formulations find wide-ranging applications in the food and nutraceutical industries, showing promise for dietary support in promoting health and mitigating various diseases. In particular, SLs can be harnessed as functional oils to augment TAG metabolism, thereby impeding the development of fatty liver, countering the onset of obesity, and preventing atherosclerosis and age-related chronic diseases. In scrutinising prevailing research trajectories, this review endeavours to provide an in-depth analysis of the multifaceted advantages and repercussions associated with the synthesis of SLs. It elucidates their burgeoning potential in enhancing health and well-being across a range of demographic cohorts. Specifically, the implications of SL utilisation are discussed in the context of healthcare environments and early childhood developmental support.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
9
|
Huang Y, Liu L, Zhao M, Zhang X, Chen J, Zhang Z, Cheng X, Ren C. Feeding regimens affecting carcass and quality attributes of sheep and goat meat - A comprehensive review. Anim Biosci 2023; 36:1314-1326. [PMID: 37402458 PMCID: PMC10472155 DOI: 10.5713/ab.23.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 07/06/2023] Open
Abstract
Sheep and goats can efficiently convert low quality forage into high-quality meat which contains specific nutrients and quality traits. Carcass traits and quality attributes of sheep and goat meat depend upon several factors and one of most effective strategies amongst these is feeding regimens. In this review, the major aspects of feeding regimens affecting growth rate, carcass traits and quality attributes of sheep and goat meat are thoroughly discussed, with a particular focus on physical-chemical composition, flavor profile, and fatty acid (FA) profile. Grazing lambs and kids receiving concentrate or under stall-feeding systems had greater average daily gain and carcass yield compared with animals reared on pasture only. However, growth rate was higher in lambs/kids grazing on pastures of improved quality. Moreover, the meat of grazing lambs receiving concentrate had more intense flavor, intramuscular fat (IMF) content, and unhealthy FA composition, but comparable color, tenderness, juiciness, and protein content compared to that of lambs grazed on grass only. In contrast, meat of concentrate-fed lambs had more intense color, greater tenderness and juiciness, IMF and protein contents, and lower flavor linked to meat. Additionally, the meat of kids grazed on concentrate supplementation had higher color coordinates, tenderness, IMF content and unhealthy FA composition, whereas juiciness and flavor protein content were similar. In contrast, kids with concentrate supplementation had superior color coordinates, juiciness, IMF content and unhealthy FA composition, but lower tenderness and flavor intensity compared to pasture-grazed kids. Thus, indoor-finished or supplemented grazing sheep/goats had higher growth rate and carcass quality, higher IMF content and unhealthy FA composition compared to animals grazed on grass only. Finally, supplementation with concentrate increased flavor intensity in lamb meat, and improved color and tenderness in kid meat, whereas indoor-fed sheep/goats had improved color and juiciness as well as reduced flavor compared to pasture-grazed animals.
Collapse
Affiliation(s)
- Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- National Agricultural Green Development Long-term Fixed Observation Yingshang Test Station, Yingshang 236200,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Lumeng Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Mengyu Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jiahong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| |
Collapse
|
10
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
11
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
12
|
Kamil M, Khan I, Rauf A, Bawazeer S, Bawazeer S, Rauf A, Irfan M. Chemical divergence of the Juglans Regia L. across districts Swat and Dir, Khyber Pakhtunkhwa, Pakistan. BRAZ J BIOL 2022; 84:e259731. [PMID: 35544794 DOI: 10.1590/1519-6984.259731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Juglans regia L. are nutritious fruit bearing plants mostly found in Northern areas of Pakistan. The population of walnuts was explored from district Dir and Swat Khyber Pakhtunkhwa, Pakistan for their geographical, climatic and chemical divergence. The geographical differences such as altitude, latitude and longitude whereas climatic differences viz. soil EC, soil pH, precipitations, intensity of light, temperature and soil temperature. In both districts TPC ranged from 211.2±0.6 to 227.8±0.4 mg/100g, RSA ranged from 43.32±1.5% to 52.18±0.4%, conductivity ranged from 296.43±0.6 to 312.22±0.3 S/m and elemental composition such as iron, copper, calcium, zinc and magnesium in Dir differs from 0.312±0.032, 0.209±0.13, 20.0±0.313, 0.406±0.10 and 10.2±0.030 mg/L to 0.543±0.65, 0.698±0.82, 28.7±0.234, 0.685±0.15 and 17.6±0.015 mg/L respectively. Altitude and temperature showed a correlation with total phenolics contents and radical scavenging activity while soil pH, precipitations, soil temperature, soil Ec and light intensity indicated a weak correlation with chemical traits of walnuts. Further studies of walnuts are needed to explore their therapeutically important phytochemicals to succeed naturally pharmaceutical nutrients of the maximum significance for the health of human beings.
Collapse
Affiliation(s)
- M Kamil
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan
| | - I Khan
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan
| | - A Rauf
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan
| | - S Bawazeer
- Umm Al-Qura University, Department of Pharmacognosy, Faculty of Pharmacy, Makkah, Kingdom of Saudi Arabia
| | - S Bawazeer
- Umm Al-Qura University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Makkah, Saudi Arabia
| | - A Rauf
- University of Swabi, Department of Chemistry, Swabi, Pakistan
| | - M Irfan
- Abdul Wali Khan University, Department of Botany, Mardan, Pakistan.,University of Swabi, Department of Botany, Swabi, Pakistan.,Missouri Botanical Garden, St. Louis, Missouri, U.S.A
| |
Collapse
|
13
|
Bai H, Wang Y, Wu P, Wang Z. Ambient particulate matter (PM10)-induced injury in feline lung cells and nutritional intervention. Heliyon 2022; 8:e09550. [PMID: 35663753 PMCID: PMC9156945 DOI: 10.1016/j.heliyon.2022.e09550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 10/31/2022] Open
Abstract
Ambient particulate matter (APM) is extremely harmful to life's health. In this study, we investigated cellular injury in cat (Felix catus) lung cells (FCA-L2) exposed to organic and water-soluble extracts from APM. As well, the protective effect of vitamin E (VE), lycopene and a mixture of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (molar concentration ratio of 2:1) against this damage was evaluated. Organic and water-soluble extracts induced oxidative stress in FCA-L2 cells, as evidenced by excess reactive oxygen species production and mitochondrial damage, while treatment with VE, lycopene and EPA: DHA remarkably alleviated these indices. It was further found that treatment with EPA: DHA decreased lactate dehydrogenase and malondialdehyde, as well as increased activities of superoxide dismutase, glutathione peroxidase and catalase. Our study confirmed that nutrients mediates APM-induced oxidative stress via antioxidant proteins. Also, these findings could provide new insights into reducing APM-induced cytotoxicity by nutritional supplementation based on antioxidant compounds for animals.
Collapse
|
14
|
Lai WD, Tung TH, Teng CY, Chang CH, Chen YC, Huang HY, Lee HC, Huang SY. Fish oil ameliorates neuropsychiatric behaviors and gut dysbiosis by elevating selected microbiota-derived metabolites and tissue tight junctions in rats under chronic sleep deprivation. Food Funct 2022; 13:2662-2680. [PMID: 35170619 DOI: 10.1039/d2fo00181k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric behaviors caused by sleep deprivation (SD) are severe public health problems in modern society worldwide. This study investigated the effect of fish oil on neuropsychiatric behaviors, barrier injury, microbiota dysbiosis, and microbiota-derived metabolites in SD rats. The rats subjected to SD had significantly elevated blood levels of corticosteroid and lipopolysaccharides and exhibited anxiety-like behavior in the open field test, depression-like behavior in the forced swim test, and cognitive impairment in the Morris water maize test. We observed that the upregulation of proinflammatory cytokines in the SD rats resulted in colonic epithelial barrier injury including a decreased number of goblet cells and increased expression of selected tight junction proteins in the gut and brain. The gut microbiome status revealed a significant decrease in the microbial diversity in the SD rats, especially in probiotics. By contrast, a fish oil-based diet reversed SD-induced behavioral changes and improved the epithelial barrier injury and dysbiosis of the microbiota in the colon. These findings could be attributable to the increase in probiotics and short-chain fatty acid (SCFAs) production, improvement in selected intestinal barrier proteins, increase in SCFA receptor expression, and decrease in blood circulation proinflammatory status due to fish oil supplementation.
Collapse
Affiliation(s)
- Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan.
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Department of Family Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei 110301, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
15
|
Ulu A, Velazquez JV, Burr A, Sveiven SN, Yang J, Bravo C, Hammock BD, Nordgren TM. Sex-Specific Differences in Resolution of Airway Inflammation in Fat-1 Transgenic Mice Following Repetitive Agricultural Dust Exposure. Front Pharmacol 2022; 12:785193. [PMID: 35095496 PMCID: PMC8793679 DOI: 10.3389/fphar.2021.785193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
In agriculture industries, workers are at increased risk for developing pulmonary diseases due to inhalation of agricultural dusts, particularly when working in enclosed confinement facilities. Agricultural dusts inhalation leads to unresolved airway inflammation that precedes the development and progression of lung disease. We have previously shown beneficial effects of the omega-3 polyunsaturated fatty acid (ω-3 PUFA) DHA in protecting against the negative inflammatory effects of repetitive dust exposure in the lung. Dietary manipulation of pulmonary disease risk is an attractive and timely approach given the contribution of an increased ω-6 to ω-3 PUFA ratio to low grade inflammation and chronic disease in the Western diet. To prevent any confounding factors that comes with dietary supplementation of ω-3 PUFA (different sources, purity, dose, and duration), we employed a Fat-1 transgenic mouse model that convert ω-6 PUFA to ω-3 PUFA, leading to a tissue ω-6 to ω-3 PUFA ratio of approximately 1:1. Building on our initial findings, we hypothesized that attaining elevated tissue levels of ω-3 PUFA would attenuate agricultural dust-induced lung inflammation and its resolution. To test this hypothesis, we compared wild-type (WT) and Fat-1 transgenic mice in their response to aqueous extracts of agricultural dust (DE). We also used a soluble epoxide hydrolase inhibitor (sEH) to potentiate the effects of ω-3 PUFA, since sEH inhibitors have been shown to stabilize the anti-inflammatory P450 metabolites derived from both ω-3 and ω-6 PUFA and promote generation of specialized pro-resolving lipid mediators from ω-3 PUFA. Over a three-week period, mice were exposed to a total of 15 intranasal instillations of DE obtained from swine confinement buildings in the Midwest. We observed genotype and sex-specific differences between the WT vs. Fat-1 transgenic mice in response to repetitive dust exposure, where three-way ANOVA revealed significant main effects of treatment, genotype, and sex. Also, Fat-1 transgenic mice displayed reduced lymphoid aggregates in the lung following DE exposure as compared to WT animals exposed to DE, suggesting improved resilience to the DE-induced inflammatory effects. Overall, our data implicate a protective role of ω-3 FA in the lung following repetitive dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab Eng 2021; 69:163-174. [PMID: 34864212 DOI: 10.1016/j.ymben.2021.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.
Collapse
|
17
|
Osburn SC, Roberson PA, Medler JA, Shake J, Arnold RD, Alamdari N, Bucci LR, Vance A, Sharafi M, Young KC, Roberts MD. Effects of 12-Week Multivitamin and Omega-3 Supplementation on Micronutrient Levels and Red Blood Cell Fatty Acids in Pre-menopausal Women. Front Nutr 2021; 8:610382. [PMID: 34327207 PMCID: PMC8313763 DOI: 10.3389/fnut.2021.610382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to validate the efficacy of a customized vitamin-mineral supplement on blood biomarkers in pre-menopausal females. Women (21-40 years old) who were apparently healthy were recruited from the local community (ClinicalTrials.gov trial registration NCT03828097). Pretesting (PRE) occurred in the morning 5 ± 2 days following each participant's menses and involved a fasted blood draw, body mass assessment, and blood pressure assessment. Participants were then randomly assigned in a double-blinded fashion to either the multivitamins (MV) (n = 43) or placebo group (n = 51). Participants consumed two capsules per day with breakfast for 12 weeks. Following the trial, participants reported to the laboratory for POST assessments, which replicated PRE procedures. Red blood cell fatty acid and serum micronutrient analyses were performed in a blinded fashion at hematology laboratories. A group × time interaction was observed for serum vitamin D levels (p < 0.001). MV increased levels from PRE to POST (+43.7%, p < 0.001), whereas no change occurred in the placebo group. Additionally, 78% of MV participants at PRE exhibited inadequate vitamin D levels (<40 ng/dl), whereas only 30% exhibited levels below this threshold at POST. An interaction was also observed for serum folate levels (p < 0.001). MV increased serum folate from PRE to POST (p < 0.001), whereas no change occurred in the placebo group. Red blood cell omega-3 fatty acid content increased from PRE to POST in the MV group (p < 0.001) and placebo group (p < 0.05), although POST values were greater in the MV group (p < 0.001). An interaction was observed for serum HDL cholesterol levels (p = 0.047), and a non-significant increase in this variable from PRE to POST occurred in the MV group (p = 0.060). Four-day food recalls indicated MV increased intake of omega-3 fatty acids, vitamin D, folate, and other micronutrients. In summary, MV supplementation increased serum vitamin D, serum folate, and red blood cell omega-3 fatty acid levels. However, these data are limited to healthy females, and more research is needed to examine if MV can affect metabolic disturbances in individuals with micronutrient deficiencies.
Collapse
Affiliation(s)
- Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Jessica A Medler
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Jacob Shake
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Robert D Arnold
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | | | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Cell Biology and Physiology, Edward via College of Osteopathic Medicine, Auburn, AL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Cell Biology and Physiology, Edward via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
18
|
Mhetras N, Mapare V, Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl Biochem Biotechnol 2021; 193:2245-2266. [PMID: 33544363 DOI: 10.1007/s12010-021-03516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lipases are enzymes that catalyze the ester bond hydrolysis in triglycerides with the release of fatty acids, mono- and diglycerides, and glycerol. The microbial lipases account for $400 million market size in 2017 and it is expected to reach $590 million by 2023. Many biotechnological processes are expedited at high temperatures and hence much research is dealt with thermostable enzymes. Cold active lipases are now gaining importance in the detergent, synthesis of chiral intermediates and frail/fragile compounds, and food and pharmaceutical industries. In addition, they consume less energy since they are active at low temperatures. These cold active lipases have not been commercially exploited so far compared to mesophilic and thermophilc lipases. Cold active lipases are distributed in microbes found at low temperatures. Only a few microbes were studied for the production of these enzymes. These cold-adapted enzymes show increased flexibility of their structures in response to freezing effect of the cold habitats. This review presents an update on cold-active lipases from microbial sources along with some structural features justifying high enzyme activity at low temperature. In addition, recent achievements on their use in various industries will also be discussed.
Collapse
Affiliation(s)
- Nutan Mhetras
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, India
| | - Vidhyashri Mapare
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Digambar Gokhale
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
19
|
Rico D, Gervais R, Schwebel L, Lebeuf Y, Chouinard P. Production performance and oxidative stability of milk enriched with n-3 fatty acids in Holstein cows fed flaxseed meal. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six Holstein cows were used in a replicated 3 × 3 Latin Square design to investigate the effect of flaxseed meal on production performance and oxidative stability of milk enriched with n-3 fatty acids. Flaxseed oil was abomasally infused to all cows at 243 g·d−1 which increased milk concentration of α-linolenic acid from 3.08 (pretrial) up to 53.0 mg·g−1 fat. On a dry matter basis, dietary treatments were canola meal (CM; 165 g·kg−1), flaxseed meal (FM; 165 g·kg−1), and CM (165 g·kg−1) + vitamin E (VE; 300 IU·kg−1). Pre-planned contrasts were CM vs. FM and VE vs. FM. No difference was observed on dry matter intake, milk production, and yield of milk protein, and lactose for any of the contrasts evaluated. However, fat yield tended to be lower with FM relative to CM but was not different from VE. Milk enterolactone concentration was 6.8-fold greater with FM than with CM, whereas milk tocopherol was increased by 3.4-fold with VE relative to FM. Increased concentrations of enterolactone or tocopherol were not efficient to significantly modify the time course of appearance of propanal, hexanal, hept-cis-4-enal, and 1-octen-3-one in milk during storage evaluated for 10 d at 4 °C.
Collapse
Affiliation(s)
- D.E. Rico
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - R. Gervais
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - L. Schwebel
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Y. Lebeuf
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - P.Y. Chouinard
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
- Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Cammisotto V, Nocella C, Bartimoccia S, Sanguigni V, Francomano D, Sciarretta S, Pastori D, Peruzzi M, Cavarretta E, D’Amico A, Castellani V, Frati G, Carnevale R, Group SM. The Role of Antioxidants Supplementation in Clinical Practice: Focus on Cardiovascular Risk Factors. Antioxidants (Basel) 2021; 10:146. [PMID: 33498338 PMCID: PMC7909411 DOI: 10.3390/antiox10020146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress may be defined as an imbalance between reactive oxygen species (ROS) and the antioxidant system to counteract or detoxify these potentially damaging molecules. This phenomenon is a common feature of many human disorders, such as cardiovascular disease. Many of the risk factors, including smoking, hypertension, hypercholesterolemia, diabetes, and obesity, are associated with an increased risk of developing cardiovascular disease, involving an elevated oxidative stress burden (either due to enhanced ROS production or decreased antioxidant protection). There are many therapeutic options to treat oxidative stress-associated cardiovascular diseases. Numerous studies have focused on the utility of antioxidant supplementation. However, whether antioxidant supplementation has any preventive and/or therapeutic value in cardiovascular pathology is still a matter of debate. In this review, we provide a detailed description of oxidative stress biomarkers in several cardiovascular risk factors. We also discuss the clinical implications of the supplementation with several classes of antioxidants, and their potential role for protecting against cardiovascular risk factors.
Collapse
Affiliation(s)
- Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Valerio Sanguigni
- Unit of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, Velletri, 00049 Rome, Italy; (V.S.); (D.F.)
- Department of Internal Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Francomano
- Unit of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, Velletri, 00049 Rome, Italy; (V.S.); (D.F.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Valentina Castellani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - SMiLe Group
- Faculty of Medicine and Surgery, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
21
|
Estimation of Fatty Acids in Intramuscular Fat of Beef by FT-MIR Spectroscopy. Foods 2021; 10:foods10010155. [PMID: 33451004 PMCID: PMC7828561 DOI: 10.3390/foods10010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this research was to estimate the fatty acid (FA) content of intramuscular fat from beef by Fourier transform mid-infrared (FT-MIR) spectroscopy. Four diets were supplemented in 10% linseed (LS) and/or 2% conjugated linoleic acid (CLA): CON (without L or CLA), LS, CLA, and LS+CLA. For each diet, 12 young Holstein bulls were allocated. The spectral response of the beef samples was analyzed applying FT-MIR spectroscopy (from 400 to 4000 cm−1) and predictive models were developed using partial least square regression with cross-validation. The obtained coefficients (R2) for some FA, such as α-linolenic acid with a R2 = 0.96 or n-3 polyunsaturated fatty acids (n-3 PUFA) with R2 = 0.93, demonstrate that FT-MIR spectroscopy is a valid technique to estimate the content of FA. In addition, samples were correctly classified according to the animal diet using discriminant analysis in the region 3000–1000 cm−1. The obtained results suggest that the FT-MIR spectroscopy could be a viable technique for routine use in quality control because it provides fast and sustainable analysis of FA content. Furthermore, this technique allows the rapid estimation of the FA composition, specifically n-3 PUFA and CLA, of nutritional interest in meat. It also allows the classification of meat samples by the animal diet.
Collapse
|
22
|
Inapurapu SP, Ibrahim A, Kona SR, Pawar SC, Bodiga S, Bodiga VL. Development and characterization of ω-3 fatty acid nanoemulsions with improved physicochemical stability and bioaccessibility. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Man KY, Chan CO, Tang HH, Dong NP, Capozzi F, Wong KH, Kwok KWH, Chan HM, Mok DKW. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chem 2020; 338:127847. [PMID: 32947119 DOI: 10.1016/j.foodchem.2020.127847] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Beef is a common staple food in many countries, and there is a growing concern over misinformation of beef products, such as false claims of origin, species and production methods. In this study, we used a mass spectrometry-based metabolomics approach to study the metabolite profiles of beef samples purchased from local retailers in Hong Kong. Using multivariate analysis, beef samples from different a) geographical origins, namely the United States (US), Japan and Australia, and b) feeding regimes could be differentiated. We identified twenty-four metabolites to distinguish beef samples from different countries, ten metabolites to identify Angus beef samples from others and seven metabolites to discriminate Australian beef produced by the organic farming from that produced using other farming modes. Based on results of this study, it is concluded that metabolomics provides an efficient strategy for tracing and authenticating beef products to ensure their quality and to protect consumer rights.
Collapse
Affiliation(s)
- Ka-Yi Man
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hok-Him Tang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Nai-Ping Dong
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Piazza Goidanich 60, 47521 Cesena FC, Italy.
| | - Ka-Hing Wong
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kevin Wing Hin Kwok
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hing Man Chan
- Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa K1N 6N5, Canada.
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, China; Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Rosario D, Boren J, Uhlen M, Proctor G, Aarsland D, Mardinoglu A, Shoaie S. Systems Biology Approaches to Understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci 2020; 14:716. [PMID: 32733199 PMCID: PMC7360858 DOI: 10.3389/fnins.2020.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) comprise a broad range of progressive neurological disorders with multifactorial etiology contributing to disease pathophysiology. Evidence of the microbiome involvement in the gut-brain axis urges the interest in understanding metabolic interactions between the microbiota and host physiology in NDDs. Systems Biology offers a holistic integrative approach to study the interplay between the different biologic systems as part of a whole, and may elucidate the host–microbiome interactions in NDDs. We reviewed direct and indirect pathways through which the microbiota can modulate the bidirectional communication of the gut-brain axis, and explored the evidence of microbial dysbiosis in Alzheimer’s and Parkinson’s diseases. As the gut microbiota being strongly affected by diet, the potential approaches to targeting the human microbiota through diet for the stimulation of neuroprotective microbial-metabolites secretion were described. We explored the potential of Genome-scale metabolic models (GEMs) to infer microbe-microbe and host-microbe interactions and to identify the microbiome contribution to disease development or prevention. Finally, a systemic approach based on GEMs and ‘omics integration, that would allow the design of sustainable personalized anti-inflammatory diets in NDDs prevention, through the modulation of gut microbiota was described.
Collapse
Affiliation(s)
- Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
25
|
Gupta J, Gupta R. Nutraceutical Status and Scientific Strategies for Enhancing Production of Omega-3 Fatty Acids from Microalgae and their Role in Healthcare. Curr Pharm Biotechnol 2020; 21:1616-1631. [PMID: 32619166 DOI: 10.2174/1389201021666200703201014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
Adherence to Omega-3 fatty acids (O3FAs) as Nutraceuticals for medicinal applications provides health improvement. The prevention and treatment of diseases with O3FAs hold promise in clinical therapy and significantly reduces the risk of chronic disorders. Polyunsaturated fatty acids (PUFA) O3FAs have beneficial effects in the treatment of cardiovascular disorders, diabetic disease, foetal development, Alzheimer's disease, retinal problem, growth and brain development of infants and antitumor effects. Association to current analysis promotes the application of algal biomass for production of O3FAs, mode of action, fate, weight management, immune functions, pharmaceutical and therapeutic applications serving potent sources in healthcare management. A search of the literature was conducted in the databases of WHO website, Sci.org, PubMed, academics and Google. The authors performed search strategies and current scenario of O3FAs in health associated disorders. Promising outcomes and future strategies towards O3FAs may play a pivotal role in Nutraceutical industries in the cure of human health in the future.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
26
|
Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr 2020; 61:1725-1737. [PMID: 32431176 DOI: 10.1080/10408398.2020.1765137] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) like eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are known to be potent biological regulators with therapeutic and preventive effects on human health. Many global health organizations have recommended consuming marine based omega-3 sources for neonatal brain development and reducing the risk of various chronic diseases. However, due to concerns regarding the origin, sustainable supply and safety of the marine sources, alternative n-3 PUFA sources are being explored. Recently, plant-based omega-3 sources are gaining much importance because of their sustainable supply and dietary acceptance. α-linolenic acid (ALA, 18:3n-3) rich seed oils are the major omega-3 fatty acid source available for human consumption. But, efficiency of conversion of ALA to n-3 LC-PUFAs in humans is limited due to a rate-limiting step in the n-3 pathway catalyzed by Δ6-desaturase. Botanical stearidonic acid (SDA, 18:4n-3) rich oils are emerging as a sustainable omega-3 source with efficient conversion rate to n-3 LC-PUFA especially to EPA, as it bypasses the Δ6-desaturase rate limiting step. Several recent studies have identified the major plant sources of SDA and explored its potential health benefits and preventive roles in inflammation, cardiovascular disease (CVD) and cancer. This systematic review summarizes the current state of knowledge on the sources, nutraceutical roles, food-based applications and the future perspectives of botanical SDA.
Collapse
Affiliation(s)
- P Prasad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Anjali
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - R V Sreedhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, Batley J, Jiang J, Wang Y. Targeted Knockout of BnTT2 Homologues for Yellow-Seeded Brassica napus with Reduced Flavonoids and Improved Fatty Acid Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5676-5690. [PMID: 32394708 DOI: 10.1021/acs.jafc.0c01126] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brassica napus is one of the important oil crops grown worldwide, and oil quality improvement is a major goal in rapeseed breeding. Yellow seed is an excellent trait, which has great potential in improving seed quality and economic value. In this study, we created stable yellow seed mutants using a CRISPR/Cas9 system and obtained the yellow seed phenotype only when the four alleles of two BnTT2 homologues were knocked out, indicating that the two BnTT2 homologues had conserved but redundant functions in regulating seed color. Histochemical staining and flavonoid metabolic analysis proved that the BnTT2 mutation hindered the synthesis and accumulation of proanthocyanidins. Transcriptome analysis also showed that the BnTT2 mutation inhibited the expression of genes in the phenylpropanoid and flavonoid biosynthetic pathway, which might be regulated by the complex of BnTT2, BnTT8 and BnTTG1. In addition, the homozygous mutants of BnTT2 homologues increased oil content and improved fatty acid composition with higher linoleic acid (C18:2) and linolenic acid (C18:3), which could be used for the genetic improvement of rapeseed. Overall, this research showed that the BnTT2 mutation can be used for yellow seed breeding and oil improvement, which is of great significance in improving the economic value of rapeseeds.
Collapse
Affiliation(s)
- Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tuli Guo
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qinfu Sun
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
28
|
Savoire R, Subra-Paternault P, Bardeau T, Morvan E, Grélard A, Cansell M. Selective extraction of phospholipids from food by-products by supercritical carbon dioxide and ethanol and formulating ability of extracts. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Nayeri T, Sarvi S, Moosazadeh M, Hosseininejad Z, Amouei A, Daryani A. Toxoplasma gondii infection and risk of attention-deficit hyperactivity disorder: a systematic review and meta-analysis. Pathog Glob Health 2020; 114:117-126. [PMID: 32186992 DOI: 10.1080/20477724.2020.1738153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toxoplasma gondii (T. gondii), as an opportunistic neurotropic parasite of the Apicomplexa family, was firstly described in 1908. As attention-deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents and often persists into adulthood, the purpose of this systematic review and meta-analysis was to investigate the relationship between T. gondii infection and ADHD.The data were systematically collected from seven electronic databases up to May 1st 2019 with no language restriction. This study was registered at the International Prospective Register of Systematic Reviews (PROSPERO; code: CRD42020149353). Odds ratios (ORs) and 95% confidence intervals (CI) were estimated using a random effects model. Seven studies involving five cross-sectional and two case-control studies were included in this meta-analysis.Results indicated that there was a statistically non-significant association between exposure to T. gondii infection and increased risk of ADHD based on the detection of immunoglobulin G (IgG) antibody (2.02 [95% CI: 0.97-4.20]; I2=58.7%). However, obtained results of Egger's tests for anti-T. gondii IgG antibody showed publication bias (P=0.014).Sensitivity analysis revealed stable results for the association between anti-T. gondii IgG antibody with ADHD.Given the small number of studies in this field and the obtained results, it cannot be conclusively stated that T. gondii is a risk factor for ADHD.It is important to have reliable information about the relationship between T. gondii and ADHD around the world; as it may lead to better insight to elucidate the possible association of toxoplasmosis and the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afsaneh Amouei
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Chunda-Liyoka C, Lubeya MK, Imakando M, Kisling S, Majid S, Willis MS, Wood C, Kankasa C, DiRusso CC. Healthy pregnancies and essential fats: focus group discussions with Zambian women on dietary need and acceptability of a novel RUSF containing fish oil DHA. BMC Pregnancy Childbirth 2020; 20:93. [PMID: 32041569 PMCID: PMC7011535 DOI: 10.1186/s12884-020-2783-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nut butter-based Ready to Use Supplemental Foods (RUSF) are an effective way to add nutrients and calories to diets of malnourished and food insecure populations. The RUSF formulations have been further modified to add micronutrients including iron and folic acid needed during pregnancy and lactation. Because docosahexaenoic acid (DHA, C22:6 n-3) enhances fetal development and birth outcomes, it has been suggested that perhaps RUSF formulations for pregnancy should also include this Omega 3 fatty acid. The goal of the present study was to gain an understanding of Zambian women's knowledge of nutritional needs in pregnancy through structured focus group discussions, and to formulate and determine the acceptability of a RUSF with DHA. METHODS Structured focus group sessions were conducted among women attending an antenatal clinic at the University Teaching Hospitals in Lusaka, Zambia. Dietary and nutrition knowledge was surveyed through structured dialogue that was recorded by audio and transcribed verbatim. An RUSF containing 400 mg DHA from fish oil in 50 g RUSF was designed and assessed for fatty acid content and product stability. Participants then sampled the RUSF-DHA, provided feedback on taste, and were surveyed about willingness to consume the novel formula using a standardized hedonic instrument. RESULTS The participants' knowledge of foods recommended for use in pregnancy included fruits, vegetables, meat, and fish. Most women reported eating fish at least once per week, although the specific type of fish varied. Most did not have prior knowledge of the importance of consuming fish during pregnancy or that some fish types were more nutritional than others as they included omega 3 fatty acids. The participants were uniformly accepting of the RUSF-DHA for the purpose of enhancing birth and developmental outcomes, but were critical of the aroma in hedonic testing. CONCLUSIONS Women were committed to consuming a healthy diet that would impact the outcome of pregnancy, and were receptive to advice on the importance of consuming foods such as fish as a source of DHA. The RUSF-DHA formulation was acceptable due to the potential benefits for the developing infant, however, the fishy odor may be limiting for long-term daily use.
Collapse
Affiliation(s)
- Catherine Chunda-Liyoka
- University Teaching Hospitals, Lusaka Children's Hospital, University of Zambia, School of Medicine, Lusaka, Zambia
| | - Mwansa Ketty Lubeya
- University Teaching Hospitals, Women and Newborn Hospital, University of Zambia, School of Medicine, Lusaka, Zambia
| | - Mercy Imakando
- University Teaching Hospitals, Women and Newborn Hospital, University of Zambia, School of Medicine, Lusaka, Zambia
| | - Sophia Kisling
- Nebraska Center for Integrated Biomolecular Communications, Department of Biochemistry, N241 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sonoor Majid
- Nebraska Center for Integrated Biomolecular Communications, Department of Biochemistry, N241 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mary S Willis
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chipepo Kankasa
- University Teaching Hospitals, Lusaka Children's Hospital, University of Zambia, School of Medicine, Lusaka, Zambia
| | - Concetta C DiRusso
- Nebraska Center for Integrated Biomolecular Communications, Department of Biochemistry, N241 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
31
|
Collodel G, Castellini C, Lee JCY, Signorini C. Relevance of Fatty Acids to Sperm Maturation and Quality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7038124. [PMID: 32089776 PMCID: PMC7025069 DOI: 10.1155/2020/7038124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Almost 50% of infertility cases are associated with human male infertility. The sperm membrane is a key structure influencing sperm morphology and function in normal and pathological conditions. The fatty acid profile determines the performance not only of sperm motility but also of acrosomal reaction and sperm-oocyte fusion. This review presents available knowledge on the role of fatty acid composition in human sperm and spermatogenesis and discusses the influence of dietary fatty acids on the sperm fatty acid profile. Recent studies in biological sciences and clinical researches in this field are also reported. The topic object of this review has potential application in medicine by identifying potential causes of infertility.
Collapse
Affiliation(s)
- Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | | | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy
| |
Collapse
|
32
|
Pires MA, Barros JC, Rodrigues I, Sichetti Munekata PE, Trindade MA. Improving the lipid profile of bologna type sausages with Echium (Echium plantagineum L.) oil and chia (Salvia hispanica L) flour. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Fast capillary electrophoresis method for determination of docosahexaenoic and eicosapentaenoic acids in marine oils omega-3 supplements. J Chromatogr A 2020; 1613:460641. [DOI: 10.1016/j.chroma.2019.460641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/24/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
|
34
|
Kwasek K, Thorne-Lyman AL, Phillips M. Can human nutrition be improved through better fish feeding practices? a review paper. Crit Rev Food Sci Nutr 2020; 60:3822-3835. [PMID: 31983214 DOI: 10.1080/10408398.2019.1708698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Achieving Sustainable Development Goal 2 of zero hunger and malnutrition by 2030 will require dietary shifts that include increasing the consumption of nutrient dense foods by populations in low- and middle-income countries. Animal source foods are known to be rich in a number of highly bioavailable nutrients that otherwise are not often consumed in the staple-food based diets of poorer populations throughout the world. Fish is the dominant animal source food in many low- and middle-income countries in the global south and is available from both fisheries and aquaculture. Consumers often perceive that wild caught fish have higher nutritional value than fish produced through aquaculture, and this may be true for some nutrients, for example omega-3 fatty acid content. However, there is potential to modify the nutritional value of farmed fish through feeds and through production systems, illustrated by the common practice of supplementing omega-3 fatty acids in fish diets to optimize their fatty acid profile. This manuscript reviews the evidence related to fish feeds and the nutritional composition of fish with respect to a number of nutrients of interest to human health, including iron, zinc, vitamins A and D, selenium, calcium, and omega-3 fatty acids, with low- and middle-income country populations in mind. In general, we find that the research on fortification of fish diet particularly with vitamins and minerals has not been directed toward human health but rather toward improvement of fish growth and health performance. We were unable to identify any studies directly exploring the impact of fish feed modification on the health of human consumers of fish, but as nutrition and health rises in the development agenda and consumer attention, the topic requires more urgent attention in future feed formulations.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, USA.,WorldFish Bayan Lepas, Penang, Malaysia
| | - Andrew L Thorne-Lyman
- WorldFish Bayan Lepas, Penang, Malaysia.,Center for Human Nutrition, Department of International Health, John Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Johns Hopkins Center for a Livable Future, Baltimore, Maryland, USA
| | | |
Collapse
|
35
|
Teeli AS, Sheikh PA, Patra MK, Singh D, Kumar B, Kumar H, Singh SK, Verma MR, Krishnaswamy N. Effect of dietary n-3 polyunsaturated rich fish oil supplementation on ovarian function and interferon stimulated genes in the repeat breeding cow. Anim Reprod Sci 2019; 211:106230. [PMID: 31785633 DOI: 10.1016/j.anireprosci.2019.106230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (n-3 PUFA) improve utero-ovarian functions and embryonic survival in postpartum dairy cows. Because early embryonic mortality is the major cause of repeat breeding (RB) in cows, there was investigation of the effect of dietary supplementation of n-3 PUFA [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] rich fish oil (FO) from -2 to +2 weeks of artificial insemination on the size of preovulatory follicle (POF), serum progesterone (P4) and relative abundance of the mRNA of interferon stimulated genes (ISG) that encode for these proteins in the peripheral blood leukocytes (PBL) in the RB cow (n = 12). The diet of control group was supplemented with palm oil (PO). The results indicated serum concentrations of EPA and DHA were greater by 4.6- and 3.5-fold, respectively at the end of feeding study in the RB cows of the FO group. The diameter of POF was larger by 2.2 mm in FO group; however, serum P4 did not vary from day 14-20 post-artificial insemination. Greater abundance of ISG mRNA transcripts such as ISG15, RTP4, Mx2 and OAS1 in the PBL of pregnant cows of FO group indicates day 20 conceptuses produced more IFN-τ. It is concluded that supplementation of FO during the breeding period increased the size of POF and enhanced the abundance of ISG mRNA transcripts in RB cows that became pregnant.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India.
| | - Parveez Ahmad Sheikh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Degpal Singh
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Brijesh Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Sanjay Kumar Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., India
| | | |
Collapse
|
36
|
Lee HC, Lo YC, Yu SC, Tung TH, Lin IH, Huang SY. Degree of lipid saturation affects depressive-like behaviour and gut microbiota in mice. Int J Food Sci Nutr 2019; 71:440-452. [PMID: 31645150 DOI: 10.1080/09637486.2019.1681380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study explored the effects of the degree of lipid saturation on depressive behaviour and gut microbiota in mice. Thirty-two mice were divided into normal (N), Prozac (NP), lard (L) and fish oil (F) groups. After a 12-week dietary intervention, the open field test (OFT) and the forced swim test (FST) were conducted before sacrifice. The mice in the L group exhibited anxiety-like behaviours in the OFT and depressive-like behaviours in the FST. A significant difference was observed in β-diversity indices between the L group and the F group. The abundance of Allobaculum and Bifidobacterium was significantly higher in the F group than in the L and N groups. The prefrontal cortex fatty acid composition was altered in various lipid-treated groups and was highly correlated with depressive-like behaviours. In conclusion, the degree of lipid saturation affects depressive-like behaviour, gut microbiota composition, and the prefrontal cortex fatty acid profile in mice.
Collapse
Affiliation(s)
- Hsiu-Chuan Lee
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yun-Chun Lo
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shao-Chuan Yu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - I-Hsuan Lin
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, ROC.,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan, ROC.,Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
37
|
Horigome A, Okubo R, Hamazaki K, Kinoshita T, Katsumata N, Uezono Y, Xiao JZ, Matsuoka YJ. Association between blood omega-3 polyunsaturated fatty acids and the gut microbiota among breast cancer survivors. Benef Microbes 2019; 10:751-758. [PMID: 31965846 DOI: 10.3920/bm2019.0034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients demonstrated to have health benefits, such as decreasing the risk of coronary heart disease, improving parameters associated with metabolic syndrome, and decreasing anxiety symptoms and depression risk. Previous intervention studies indicated the association between blood or tissue PUFA levels and the gut microbiota; however, the details remain incompletely elucidated. We conducted a cross-sectional study to examine the association between PUFAs and the gut microbiota among breast cancer survivors. Adults who had been diagnosed with invasive breast cancer more than one year ago and were not currently undergoing chemotherapy were enrolled. Capillary blood and faecal samples were obtained to assess the blood PUFA levels and gut microbiota compositions. The mean age (n=124) was 58.7 years, and 46% of the participants had a history of chemotherapy. Multiple regression analysis controlling for possible confounders indicated that an increased relative abundance of Actinobacteria was significantly associated with increased levels of docosahexaenoic acid (DHA, beta=0.304, q<0.01). At the genus level, the abundance of Bifidobacterium was positively associated with the level of DHA (beta=0.307, q<0.01). No significant association between omega-6 PUFAs and the relative abundances of gut microbiota members was observed. In addition, analyses stratified by the history of chemotherapy indicated significant associations of PUFA levels with the abundance of some bacterial taxa, including the phylum Actinobacteria (DHA, beta=0.365, q<0.01) and Bacteroidetes (EPA, beta=-0.339, q<0.01) and the genus Bifidobacterium (DHA, beta=0.368, q<0.01) only among participants without a history of chemotherapy. These findings provide the first evidence of positive associations between the abundances of Bifidobacterium among the gut microbiota and the levels of omega-3 PUFAs in the blood. Further studies are required to gain additional insight into these associations in healthy subjects as well as into the causality of the relationship.
Collapse
Affiliation(s)
- A Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - R Okubo
- Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - K Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan
| | - T Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - N Katsumata
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - J Z Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83 Higashihara, Zama City, Kanagawa 252-8583, Japan
| | - Y J Matsuoka
- Division of Health Care Research, Center for Public Health Sciences, National Cancer Center Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
38
|
|
39
|
Lemoine S CM, Brigham EP, Woo H, Hanson CK, McCormack MC, Koch A, Putcha N, Hansel NN. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm Med 2019; 19:97. [PMID: 31122230 PMCID: PMC6533751 DOI: 10.1186/s12890-019-0852-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Omega-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and derivatives, play a key role in the resolution of inflammation. Higher intake has been linked to decreased morbidity in several diseases, though effects on respiratory diseases like COPD are understudied. Methods The National Health and Nutrition Examination Survey (NHANES), with a focus on dietary assessment, provides a unique opportunity to explore relationships between omega-3 intake and morbidity in respiratory diseases marked by inflammation in the United States (US) population. We investigated relationships between ALA or EPA + DHA intake and respiratory symptoms among US adults with COPD, as well as variation in relationships based on personal characteristics or exposures. Results Of 878 participants, mean age was 60.6 years, 48% were current smokers, and 68% completed high school. Omega-3 intake was, 1.71 ± 0.89 g (ALA), and 0.11 ± 0.21 g (EPA + DHA). Logistic regression models, adjusting for age, gender, race, body mass index, FEV1, education, smoking status, pack-years, total caloric intake, and omega-6 (linoleic acid, LA) intake demonstrated no primary associations between omega-3 intake and respiratory symptoms. Interaction terms were used to determine potential modification of relationships by personal characteristics (race, gender, education) or exposures (LA intake, smoking status), demonstrating that at lower levels of LA intake, increasing ALA intake was associated with reduced odds of chronic cough (pint = 0.015) and wheeze (pint = 0.037). EPA + DHA, but not ALA, was associated with reduced symptoms only among current smokers who did not complete high school. Conclusions Individual factors should be taken into consideration when studying the association of fatty acid intake on respiratory diseases, as differential responses may reveal susceptible subgroups. Electronic supplementary material The online version of this article (10.1186/s12890-019-0852-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Emily P Brigham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Woo
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Meredith C McCormack
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abigail Koch
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirupama Putcha
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
40
|
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:108. [PMID: 31157220 PMCID: PMC6530250 DOI: 10.3389/fbioe.2019.00108] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
41
|
Hong L, Zahradka P, Cordero-Monroy L, Wright B, Taylor CG. Dietary Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA) Operate by Different Mechanisms to Modulate Hepatic Steatosis and Hyperinsulemia in fa/fa Zucker Rats. Nutrients 2019; 11:nu11040917. [PMID: 31022865 PMCID: PMC6521162 DOI: 10.3390/nu11040917] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/28/2023] Open
Abstract
Hepatic steatosis, an early stage of non-alcoholic fatty liver disease, is commonly present in obesity and type 2 diabetes, and is associated with reduced hepatic omega-3 polyunsaturated fatty acid (n3-PUFA) status that impacts on the anti-inflammatory and insulin sensitizing functions of n3-PUFA. Our objective was to directly compare plant- and marine-based n3-PUFA (α-linoleic acid (ALA)), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) for their effects on hepatic steatosis, markers of hepatic inflammation and fibrosis, and insulinemia in obese rats. Fa/fa Zucker rats were provided diets containing ALA, EPA, DHA, or linoleic acid (LA, n6-PUFA) for eight weeks and compared to baseline fa/fa rats and lean Zucker rats fed LA-rich diet for eight weeks. Both DHA and EPA groups had liver lipid similar to baseline, however, DHA was more effective than EPA for reducing hepatic fatty acid synthase (FAS), increasing the proportion of smaller lipid droplets, reversing early fibrotic damage, and reducing fasting hyperinsulinemia. EPA was more effective for reducing FoxO1. Dietary ALA did not attenuate hepatic steatosis, most inflammatory markers or FAS. In summary, amongst the n3-PUFA, DHA was the most effective for elevating hepatic DHA levels, and preventing progression of hepatic steatosis via reductions in FAS and a marker of fibrosis.
Collapse
Affiliation(s)
- Lena Hong
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Luis Cordero-Monroy
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Brenda Wright
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
42
|
Omega-3 Fatty Acid Supplementation, Pro-Resolving Mediators, and Clinical Outcomes in Maternal-Infant Pairs. Nutrients 2019; 11:nu11010098. [PMID: 30621269 PMCID: PMC6356980 DOI: 10.3390/nu11010098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
Omega (n)-3 fatty acids are vital to neonatal maturation, and recent investigations reveal n-3 fatty acids serve as substrates for the biosynthesis of specialized pro-resolving lipid mediators (SPM) that have anti-inflammatory and immune-stimulating effects. The role SPM play in the protection against negative maternal-fetal health outcomes is unclear, and there are no current biomarkers of n-3 fatty acid sufficiency. We sought to ascertain the relationships between n-3 fatty acid intake, SPM levels, and maternal-fetal health outcomes. We obtained n-3 fatty acid intake information from 136 mothers admitted for delivery using a food frequency questionnaire and measured docosahexaenoic acid (DHA)-derived SPMs resolvin D1 (RvD1) and RvD2 in maternal and cord plasma. We found significantly elevated SPM in maternal versus cord plasma, and increased SPM levels were associated with at-risk outcomes. We also identified that increased DHA intake was associated with elevated maternal plasma RvD1 (p = 0.03; R² = 0.18) and RvD2 (p = 0.04; R² = 0.20) in the setting of neonatal intensive care unit (NICU) admission. These findings indicate that increased n-3 fatty acid intake may provide increased substrate for the production of SPM during high-risk pregnancy/delivery conditions, and that increased maternal plasma SPM could serve as a biomarker for negative neonatal outcomes.
Collapse
|
43
|
Dillon GP, Yiannikouris A, Brandl W, Cardinall C, Yuan W, Moran CA. Matrix Extension with Fitness for Purpose and Stability Assessment of DHA and Additional Fatty Acids in Individual Whole Chicken Eggs. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/fns.2019.105038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Lee HC, Yu SC, Lo YC, Lin IH, Tung TH, Huang SY. A high linoleic acid diet exacerbates metabolic responses and gut microbiota dysbiosis in obese rats with diabetes mellitus. Food Funct 2019; 10:786-798. [DOI: 10.1039/c8fo02423e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary polyunsaturated fatty acid (PUFA) levels may affect inflammatory responses and lipid metabolism.
Collapse
Affiliation(s)
- Hsiu-Chuan Lee
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Shao-Chuan Yu
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Yun-Chun Lo
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - I-Hsuan Lin
- Research Center of Cancer Translational Medicine
- Taipei Medical University
- Taipei
- Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences
- Taipei Medical University
- Taipei
- Taiwan
- Graduate Institute of Metabolism and Obesity Sciences
| |
Collapse
|
45
|
Li Z, Ling X, Zhou H, Meng T, Zeng J, Hang W, Shi Y, He N. Screening chemical modulators of benzoic acid derivatives to improve lipid accumulation in Schizochytrium limacinum SR21 with metabolomics analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:209. [PMID: 31508148 PMCID: PMC6724347 DOI: 10.1186/s13068-019-1552-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/27/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Schizochytrium sp. is a marine fungus with great potential as an alternative commercial source of lipids rich in polyunsaturated fatty acids (PUFAs). To further increase lipid accumulation in Schizochytrium sp., the effect of exogenous additives has become one of the hotspots of current research. Although benzoic acid derivatives showed positive effects on lipid accumulation in Schizochytrium, the biochemical mechanism needs further investigation. RESULTS Four benzoic acid derivatives (sodium benzoate, p-aminobenzoic acid, p-methyl benzoic acid and folic acid) were screened and evaluated for their effect on lipid accumulation in Schizochytrium limacinum SR21. The lipid yield was increased by 56.84% with p-aminobenzoic acid (p-ABA) at a concentration of 200 mg/L among the four tested chemical modulators. The metabolomics analysis showed that 200 mg/L p-ABA was optimal for promoting glucose catabolism in glycolysis with an increase in the mevalonate pathway and a weakening of the tricarboxylic acid (TCA) cycle. Moreover, p-ABA increased NADPH generation by enhancing the pentose phosphate pathway (PPP), ultimately redirecting the metabolic flux to lipid synthesis. Fed-batch fermentation further proved that p-ABA could significantly increase the yield of lipid by 30.01%, reaching 99.67 g/L, and the lipid content was increased by 35.03%, reaching 71.12%. More importantly, the yields of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were increased by 33.28% and 42.0%, respectively. CONCLUSION The addition of p-ABA could promote the synthesis of tetrahydrofolate, enhancing NADPH, which ultimately promoted the flow of carbon flux to lipid synthesis. These findings provide a valuable strategy for improving the lipid accumulation in Schizochytrium by additives.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
- Present Address: College of Food and Biological Engineering, Jimei University, Xiamen, 361021 People’s Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Hao Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Jinjin Zeng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Wei Hang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 People’s Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
46
|
Nguyen DV, Malau-Aduli BS, Cavalieri J, Nichols PD, Malau-Aduli AE. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet Anim Sci 2018; 6:29-40. [PMID: 32734050 PMCID: PMC7386694 DOI: 10.1016/j.vas.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/01/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022] Open
Abstract
In this report, an overview of the health benefits of omega-3 long-chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) and recent progress in using alpha linolenic acid (ALA) rich sources derived from oilseeds to enhance productive performance, n-3 PUFA profiles and sensory properties of lamb for human consumption is reviewed. Omega-3 LC-PUFA can prevent mental health issues and chronic human disorders including cancer, cardiovascular and inflammatory diseases. The median amount of n-3 LC-PUFA consumption is generally lacking in Western diets. More attention is now being paid to the use of innovative nutritional strategies to improve PUFA content in ruminants, which could subsequently increase the content of health-benefitting n-3 LC-PUFA for human consumption. The richest sources of dietary n-3 LC-PUFA are derived from marine products, while forage and oilseeds such as flaxseed, canola, and their oils are abundant in ALA. Numerous studies have shown that dietary ALA increases n-3 LC-PUFA levels of edible tissues. However, other studies concluded that ALA rich supplementation led to no differences in tissue FA profiles because of extensive biohydrogenation of dietary ALA, limited conversion from ALA to n-3 LC-PUFA and low incorporation of n-3 LC-PUFA into edible tissues. Generally, the inclusion of ALA rich sources in lamb diets potentially increases ALA content in lamb. It is proposed that supplementing ruminants with ALA-rich sources at or below 6% can promote n-3 PUFA profiles in lamb and is unlikely to have negative effects on feed intake, growth, carcass and sensory properties.
Collapse
Affiliation(s)
- Don V. Nguyen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- National Institute of Animal Science, Hanoi 129909, Viet Nam
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - John Cavalieri
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Peter D. Nichols
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- CSIRO Oceans & Atmosphere, PO Box 1538, Hobart, TAS 7001, Australia
| | - Aduli E.O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
47
|
Wang X, Wu T, Yan S, Shi B, Zhang Y, Guo X. Influence of pasture or total mixed ration on fatty acid composition and expression of lipogenic genes of longissimus thoracis and subcutaneous adipose tissues in Albas White Cashmere Goats. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1490632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xue Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Tiemei Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ying Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| |
Collapse
|
48
|
Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol 2018; 16:40. [PMID: 29699561 PMCID: PMC5918968 DOI: 10.1186/s12958-018-0357-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.
Collapse
Affiliation(s)
- Virginie Maillard
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
- 0000 0004 0385 4036grid.464126.3INRA Centre Val de Loire, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alice Desmarchais
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Maeva Durcin
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Sebastien Elis
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
49
|
Deng Q, Yu X, Ma F, Xu J, Huang F, Huang Q, Sheng F. Comparative analysis of the in-vitro antioxidant activity and bioactive compounds of flaxseed in China according to variety and geographical origin. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1402029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Xiao Yu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry and Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Fangli Ma
- Functional Oil Laboratory Associated by Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co., LTD, Guangzhou, China
| | - Jiqu Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Qingde Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Feng Sheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
50
|
Fernandes MF, Tache MC, Klingel SL, Leri F, Mutch DM. Safflower (n-6) and flaxseed (n-3) high-fat diets differentially regulate hypothalamic fatty acid profiles, gene expression, and insulin signalling. Prostaglandins Leukot Essent Fatty Acids 2018; 128:67-73. [PMID: 29413363 DOI: 10.1016/j.plefa.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acids (PUFA) have important signalling roles in the hypothalamus, a region of the brain that regulates whole-body energy homeostasis. While evidence suggests that high PUFA intake can impact hypothalamic activity, the underlying molecular mechanisms regulated by essential dietary n-6 and n-3 PUFA (i.e., linoleic acid and α-linolenic acid, respectively) remain poorly described in this brain region. To differentiate the roles of essential dietary PUFA on hypothalamic function, we fed male rats high-fat diets (35% kcal/d) containing either safflower (linoleic acid) or flaxseed (α-linolenic acid) oil for 2 months. Control rats were fed a low-fat (16% kcal/d) diet containing soybean oil. Hypothalamic fatty acids and gene expression were investigated by gas chromatography and microarray, respectively. Safflower-fed rats had higher total n-6 PUFA content due to increases in linoleic acid, arachidonic acid, and osbond acid compared to the other diet groups, while flaxseed-fed rats had higher total n-3 content due to increases in α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. Safflower-fed rats showed augmented expression of genes related to hypothalamic insulin signalling compared to controls. This was mirrored by significant increases in phosphorylated AKTthr308 and AKTser473 levels; indicative of increased PI(3)K/AKT pathway activity. These changes were not observed in the hypothalamus of flaxseed-fed rats. Our findings provide new molecular insights into how essential fatty acids influence the hypothalamus and, potentially, whole-body energy homeostasis. This work also provides new knowledge to better understand the impact of essential fatty acids on metabolic and behavioral phenotypes.
Collapse
Affiliation(s)
- Maria Fernanda Fernandes
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1; Department of Psychology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Maria Cristina Tache
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|