1
|
Bélanger Nzakimuena C, Masís Solano M, Marcotte-Collard R, Lesk MR, Costantino S. Spatial and Temporal Changes in Choroid Morphology Associated With Long-Duration Spaceflight. Invest Ophthalmol Vis Sci 2025; 66:17. [PMID: 40332907 PMCID: PMC12061066 DOI: 10.1167/iovs.66.5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Amid efforts to understand spaceflight associated neuro-ocular syndrome (SANS), uncovering the role of the choroid in its etiology is challenged by the accuracy of image segmentation. The present study extended deep learning-based choroid quantification from optical coherence tomography (OCT) to the characterization of pulsatile and topological changes in the macular plane and investigated changes in response to prolonged microgravity exposure. Methods We analyzed OCT macular videos and volumes acquired from astronauts before, during, and after long-duration spaceflight. Deep learning models were fine-tuned for choroid segmentation and combined with further image processing toward vascularity quantification. Statistical analysis was performed to determine changes in time-dependent and spatially averaged variables from preflight baseline. Results For 12 astronauts with a mean age of 47 ± 9 years, there were significant increases in choroid thickness and luminal area (LA) averaged over OCT macular video segments. There was also a significant increase in pulsatile LA. For a subgroup of six astronauts for whom inflight imaging was available, choroid volume, luminal volume, and the choroidal vascularity index over the macular region all increased significantly during spaceflight. Conclusions The findings suggest that localized choroid pulsatile changes occur following prolonged microgravity exposure. They show that the choroid vessels expand in a manner similar to the choroid layer across the macular region during spaceflight, with a relative increase in the space they occupy. The methods developed provide new tools and avenues for studying and establishing effective countermeasures to risks associated with long-duration spaceflight.
Collapse
Affiliation(s)
| | - Marissé Masís Solano
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département d'ophtalmologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Mark Richard Lesk
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département d'ophtalmologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Santiago Costantino
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département d'ophtalmologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Nguyen T, Ong J, Brunstetter T, Gibson CR, Macias BR, Laurie S, Mader T, Hargens A, Buckey JC, Lan M, Wostyn P, Kadipasaoglu C, Smith SM, Zwart SR, Frankfort BJ, Aman S, Scott JM, Waisberg E, Masalkhi M, Lee AG. Spaceflight Associated Neuro-ocular Syndrome (SANS) and its countermeasures. Prog Retin Eye Res 2025; 106:101340. [PMID: 39971096 PMCID: PMC12103276 DOI: 10.1016/j.preteyeres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Astronauts can develop a distinct collection of neuro-ophthalmic findings during long duration spaceflight, collectively known as Spaceflight Associated Neuro-ocular Syndrome (SANS). These clinical characteristics include optic disc edema, hyperopic refractive shifts, globe flattening, and chorioretinal folds, which may pose a health risk for future space exploration. Obtaining knowledge of SANS and countermeasures for its prevention is crucial for upcoming crewed space missions and warrants a multidisciplinary approach. This review examines the potential causes and countermeasures of SANS, including space anticipation glasses, lower body negative pressure, venoconstrictive thigh cuffs, impedance threshold devices, translaminar pressure gradient modulation, centrifugation, artificial gravity, pharmaceuticals, and precision nutritional supplementation. This paper highlights future research directions for understanding the genetic, anthropometric, behavioral, and environmental susceptibilities to SANS as well as how to use terrestrial analogs for testing future mitigation strategies.
Collapse
Affiliation(s)
- Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York City, New York, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA; South Shore Eye Center, League City, TX, USA
| | | | - Steven Laurie
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA
| | | | - Alan Hargens
- Department of Orthopaedic Surgery, University of California, Altman Clinical and Translational Research Institute, La Jolla, CA, San Diego, USA
| | - Jay C Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Mimi Lan
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin J Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Aman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Andrew G Lee
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA; University of Texas MD Anderson Cancer Center, Houston, TX, USA; Texas A&M College of Medicine, Bryan, TX, USA; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Lee R, Ong J, Waisberg E, Mader T, Berdahl J, Suh A, Panzo N, Memon H, Sampige R, Katsev B, Kadipasaoglu CM, Mason CE, Beheshti A, Zwart SR, Smith SM, Lee AG. Potential Risks of Ocular Molecular and Cellular Changes in Spaceflight. Semin Ophthalmol 2025:1-11. [PMID: 40094398 DOI: 10.1080/08820538.2025.2471443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Many fundamental cellular and molecular changes are known to occur in biological systems during spaceflight, including oxidative stress, DNA damage, mitochondrial damage, epigenetic factors, telomere lengthening, and microbial shifts. We can apply the consequences of these molecular changes in ocular cells, such as the retinal ganglion cells and corneal epithelium, to identify ophthalmologic risks during spaceflight. This review aims to discuss the potential molecular changes in greater detail and apply the principles to ocular cells and ophthalmic disease risk in astronauts. METHODS A targeted, relevant search of the literature on the topic and related topics of ocular surface and spaceflight was conducted with scholarly databases PubMed, Web of Science, and Embase from inception to July2024 with search terms "oxidative stress"; "DNA damage"; "Mitochondrial Dysfunction"; "Epigenetics"; "Telomeres"; "Microbiome"; "ocular cells"; "spaceflight"; "microgravity"; "radiation." RESULTS A total of 115 articles were included following screening and eligibility assessment. Key findings include molecular changes and their contributions to ophthalmic diseases like cataracts, spaceflight-associated neuro-ocular syndrome, and dry eye syndrome. CONCLUSION This review provides a comprehensive overview of risks to vision associated with long-duration spaceflight missions beyond low Earth orbit (LEO). Further investigation into targeted countermeasures is imperative to mitigate vision-threatening sequelae in astronauts undertaking deep-space exploration.
Collapse
Affiliation(s)
- Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, USA
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John Berdahl
- Vance Thompson Vision, Sioux Falls, South Dakota, USA
| | - Alex Suh
- Tulane School of Medicine, New Orleans, Louisiana, USA
| | | | - Hamza Memon
- Texas A&M School of Medicine, Bryan, TX, USA
| | - Ritu Sampige
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Blake Katsev
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Afshin Beheshti
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara R Zwart
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Galdamez LA, Mader TH, Ong J, Kadipasaoglu CM, Lee AG. A multifactorial, evidence-based analysis of pathophysiology in Spaceflight Associated Neuro-Ocular Syndrome (SANS). Eye (Lond) 2025; 39:700-709. [PMID: 39827235 PMCID: PMC11885454 DOI: 10.1038/s41433-025-03618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The National Aeronautics and Space Administration (NASA) in the United States has been studying a fascinating and unique constellation of neuro-ophthalmic findings collectively known as Spaceflight Associated Neuro-Ocular Syndrome (SANS). SANS is unique to the space environment of microgravity and produces novel physiological and pathological findings that have no direct terrestrial equivalent. The neuro-ophthalmic phenomenon is a major physiologic barrier to future planetary spaceflight. The underlying pathophysiology of SANS remains ill-defined, but since its initial report in 2011, several hypotheses have been proposed including increased intracranial pressure, cerebral venous congestion and glymphatic stasis, compartmentalization of CSF within the orbital nerve sheath sub-arachnoid space (SAS), upward brain shift, inflammation, disrupted axoplasmic transport, and radiation exposure. These aetiologies may not be mutually exclusive and may be interconnected, leading to an integrative, multifactorial aetiology of SANS. This paper critically analyses the various hypotheses of this neuro-ophthalmic phenomenon and the connections between the physiologic and anatomical evidence-based changes observed in spaceflight and terrestrial analogues. Continued prospective, longitudinal study and development of practical countermeasures for SANS will be necessary for future human spaceflight missions including the mission to Mars.
Collapse
Affiliation(s)
- Laura A Galdamez
- Department of Emergency Medicine, Memorial Hermann The Woodlands, The Woodlands, TX, USA
| | | | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - Andrew G Lee
- Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, USA.
- Baylor College of Medicine and the Baylor Center for Space Medicine, Houston, TX, USA.
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine New York, New York, NY, USA.
- Department of Ophthalmology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- The UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Ali N, Beheshti A, Hampikian G. Space exploration and risk of Parkinson's disease: a perspective review. NPJ Microgravity 2025; 11:1. [PMID: 39753605 PMCID: PMC11698718 DOI: 10.1038/s41526-024-00457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.
Collapse
Affiliation(s)
- Nilufar Ali
- Department of Biological Science, Boise State University, Boise, ID, 83725, USA.
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Greg Hampikian
- Department of Biological Science, Boise State University, Boise, ID, 83725, USA
| |
Collapse
|
6
|
Kermorgant M, Varenne F, Pavy-Le Traon A, Geeraerts T, Barioulet L, Fournié P, Billette de Villemeur R, Bareille MP, Beck A, Golemis A, Antunes I, Gauquelin-Koch G, Soler V, Quintyn JC. The Effects of Antioxidant Cocktail on Ophthalmological Changes Induced by a 60-Day Head-Down Bed Rest in a Randomized Trial. Life (Basel) 2024; 14:1598. [PMID: 39768306 PMCID: PMC11678270 DOI: 10.3390/life14121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Neuro-ophthalmological changes have been reported after prolonged exposure to microgravity; however, the pathophysiology remains unclear. Furthermore, several countermeasures have been suggested to counteract the side effects of microgravity. The objectives of the present study were twofold: (1) to assess the neuro-ophthalmological impact of 60 days of head-down bed rest (HDBR) and (2) to determine the potential effects of an antioxidant cocktail. In this case, 20 healthy male subjects completed a 60-day HDBR and were randomly allocated into two groups: a control condition without an antioxidant cocktail (CON) and a condition with an antioxidant cocktail (NUT). The retinal nerve fibre layer thickness (RNFLT) and central retinal thickness (CRT) were assessed with spectral domain optical coherence tomography. The optic nerve sheath diameter (ONSD) was measured by ocular ultrasonography and used to assess indirect changes in the intracranial pressure (ICP). The intraocular pressure (IOP) was assessed by Goldmann applanation tonometry. The CRT tended to be reduced after HDBR. The ONSD was increased at the end and after HDBR. The IOP tended to decrease after HDBR. Finally, the antioxidant cocktail had minor impacts on the ophthalmological changes induced by HDBR. It is worth noting that two participants presented peripapillary edema.
Collapse
Affiliation(s)
- Marc Kermorgant
- UMR INSERM U1297, Institute of Cardiovascular and Metabolic Diseases (I2MC), 31432 Toulouse, France;
| | - Fanny Varenne
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France
| | - Anne Pavy-Le Traon
- Department of Neurology, University Hospital of Toulouse, 31059 Toulouse, France
| | - Thomas Geeraerts
- Department of Anaesthesiology and Critical Care, University Hospital of Toulouse, 31059 Toulouse, France
| | - Lisa Barioulet
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France
| | - Pierre Fournié
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France
| | | | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), 31405 Toulouse, France
| | - Adrianos Golemis
- Institute for Space Medicine and Physiology (MEDES), 31405 Toulouse, France
| | - Inês Antunes
- Telespazio Belgium S.R.L. for the European Space Agency, NL-2200 AG Noordwijk, The Netherlands
| | | | - Vincent Soler
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France
| | - Jean-Claude Quintyn
- Department of Ophthalmology, Unicaen, University Hospital of Caen, 14033 Caen, France
| |
Collapse
|
7
|
Brunstetter TJ, Zwart SR, Brandt K, Brown DM, Clemett SJ, Douglas GL, Gibson CR, Laurie SS, Lee AG, Macias BR, Mader TH, Mason SS, Meir JU, Morgan AR, Nelman M, Patel N, Sams C, Suresh R, Tarver W, Tsung A, Van Baalen MG, Smith SM. Severe Spaceflight-Associated Neuro-Ocular Syndrome in an Astronaut With 2 Predisposing Factors. JAMA Ophthalmol 2024; 142:808-817. [PMID: 39052244 PMCID: PMC11273286 DOI: 10.1001/jamaophthalmol.2024.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/09/2024] [Indexed: 07/27/2024]
Abstract
Importance Understanding potential predisposing factors associated with spaceflight-associated neuro-ocular syndrome (SANS) may influence its management. Objective To describe a severe case of SANS associated with 2 potentially predisposing factors. Design, Setting, and Participants Ocular testing of and blood collections from a female astronaut were completed preflight, inflight, and postflight in the setting of the International Space Station (ISS). Exposure Weightlessness throughout an approximately 6-month ISS mission. Mean carbon dioxide (CO2) partial pressure decreased from 2.6 to 1.3 mm Hg weeks before the astronaut's flight day (FD) 154 optical coherence tomography (OCT) session. In response to SANS, 4 B-vitamin supplements (vitamin B6, 100 mg; L-methylfolate, 5 mg; vitamin B12, 1000 μg; and riboflavin, 400 mg) were deployed, unpacked on FD153, consumed daily through FD169, and then discontinued due to gastrointestinal discomfort. Main Outcomes and Measures Refraction, distance visual acuity (DVA), optic nerve, and macular assessment on OCT. Results Cycloplegic refraction was -1.00 diopter in both eyes preflight and +0.50 - 0.25 × 015 in the right eye and +1.00 diopter in the left eye 3 days postflight. Uncorrected DVA was 20/30 OU preflight, 20/16 or better by FD90, and 20/15 OU 3 days postflight. Inflight peripapillary total retinal thickness (TRT) peaked between FD84 and FD126 (right eye, 401 μm preflight, 613 μm on FD84; left eye, 404 μm preflight, 636 μm on FD126), then decreased. Peripapillary choroidal folds, quantified by surface roughness, peaked at 12.7 μm in the right eye on FD154 and 15.0 μm in the left eye on FD126, then decreased. Mean choroidal thickness increased throughout the mission. Genetic analyses revealed 2 minor alleles for MTRR 66 and 2 major alleles for SHMT1 1420 (ie, 4 of 4 SANS risk alleles). One-week postflight, lumbar puncture opening pressure was normal, at 19.4 cm H2O. Conclusions and Relevance To the authors' knowledge, no other report of SANS documented as large of a change in peripapillary TRT or hyperopic shift during a mission as in this astronaut, and this was only 1 of 4 astronauts to experience chorioretinal folds approaching the fovea. This case showed substantial inflight improvement greater than the sensitivity of the measure, possibly associated with B-vitamin supplementation and/or reduction in cabin CO2. However, as a single report, such improvement could be coincidental to these interventions, warranting further evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrew G. Lee
- Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Iftime A, Tofolean IT, Pintilie V, Călinescu O, Busnatu S, Papacocea IR. Differential Functional Changes in Visual Performance during Acute Exposure to Microgravity Analogue and Their Potential Links with Spaceflight-Associated Neuro-Ocular Syndrome. Diagnostics (Basel) 2024; 14:1918. [PMID: 39272703 PMCID: PMC11394298 DOI: 10.3390/diagnostics14171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Spaceflight-Associated Neuro-Ocular Syndrome (SANS) is a complex pathology threatening the health of astronauts, with incompletely understood causes and no current specific functional diagnostic or screening test. We investigated the use of the differential performance of the visual system (central vs. perimacular visual function) as a candidate marker of SANS-related pathology in a ground-based microgravity analogue. METHODS We used a simple reaction time (SRT) task to visual stimuli, presented in the central and perimacular field of view, as a measure of the overall performance of the visual function, during acute settings (first 10 min) of vertical, bed rest (BR), -6°, and -15° head-down tilt (HDT) presentations in healthy participants (n = 8). We built dose-response models linking the gravitational component to SRT distribution parameters in the central vs. perimacular areas. RESULTS Acute exposure to microgravity induces detectable changes between SRT distributions in the perimacular vs. central retina (increased mean, standard deviation, and tau component of the ex-Gaussian function) in HDT compared with vertical presentation. CONCLUSIONS Functional testing of the perimacular retina might be beneficial for the earlier detection of SANS-related ailments in addition to regular testing of the central vision. Future diagnostic tests should consider the investigation of the extra-macular areas, particularly towards the optic disc.
Collapse
Affiliation(s)
- Adrian Iftime
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Teodora Tofolean
- Ophthalmology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Emergency Eye Hospital, 010464 Bucharest, Romania
| | - Victor Pintilie
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Stefan Busnatu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", Emergency Hospital "Bagdasar-Arseni", 050474 Bucharest, Romania
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
| | - Ioana Raluca Papacocea
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
- Physiology III Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Richmond SB, Seidler RD, Iliff JJ, Schwartz DL, Luther M, Silbert LC, Wood SJ, Bloomberg JJ, Mulder E, Lee JK, De Luca A, Piantino J. Dynamic changes in perivascular space morphology predict signs of spaceflight-associated neuro-ocular syndrome in bed rest. NPJ Microgravity 2024; 10:24. [PMID: 38429289 PMCID: PMC10907584 DOI: 10.1038/s41526-024-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
During long-duration spaceflight, astronauts experience headward fluid shifts and expansion of the cerebral perivascular spaces (PVS). A major limitation to our understanding of the changes in brain structure and physiology induced by spaceflight stems from the logistical difficulties of studying astronauts. The current study aimed to determine whether PVS changes also occur on Earth with the spaceflight analog head-down tilt bed rest (HDBR). We examined how the number and morphology of magnetic resonance imaging-visible PVS (MV-PVS) are affected by HDBR with and without elevated carbon dioxide (CO2). These environments mimic the headward fluid shifts, body unloading, and elevated CO2 observed aboard the International Space Station. Additionally, we sought to understand how changes in MV-PVS are associated with signs of Spaceflight Associated Neuro-ocular Syndrome (SANS), ocular structural alterations that can occur with spaceflight. Participants were separated into two bed rest campaigns: HDBR (60 days) and HDBR + CO2 (30 days with elevated ambient CO2). Both groups completed multiple magnetic resonance image acquisitions before, during, and post-bed rest. We found that at the group level, neither spaceflight analog affected MV-PVS quantity or morphology. However, when taking into account SANS status, persons exhibiting signs of SANS showed little or no MV-PVS changes, whereas their No-SANS counterparts showed MV-PVS morphological changes during the HDBR + CO2 campaign. These findings highlight spaceflight analogs as models for inducing changes in MV-PVS and implicate MV-PVS dynamic compliance as a mechanism underlying SANS. These findings may lead to countermeasures to mitigate health risks associated with human spaceflight.
Collapse
Affiliation(s)
- Sutton B Richmond
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Daniel L Schwartz
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Madison Luther
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA
| | - Lisa C Silbert
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Veteran's Affairs Portland Health Care System, Neurology, Portland, OR, USA
| | | | | | | | - Jessica K Lee
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- German Aerospace Center (DLR), Cologne, Germany
| | - Alberto De Luca
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Gonzalez Viejo C, Harris N, Fuentes S. Assessment of changes in sensory perception, biometrics and emotional response for spaceexploration by simulating microgravity positions. Food Res Int 2024; 175:113827. [PMID: 38129014 DOI: 10.1016/j.foodres.2023.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Long-term space exploration endeavors, encompassing journeys from the Earth to the Moon by 2030 and subsequent voyages from the Moon to Mars by 2040, necessitate the utilization of plant-based materials not solely for sustenance and refreshments but also the production of pharmaceuticals and repair compounds, such as plastics, among others. Nevertheless, the vital aspects of research in this domain pertain to the nutritional value and sensory perception associated with plant-based food. Prior investigations have shown altered sensory perception in space, manifested as diminished olfactory sensations and heightened taste perception (saltiness and sweetness). Nonetheless, studies concerning changes in aroma, basic tastes, and mouthfeel have been limited due to the logistical challenges associated with conducting experiments in the unique environment of space. To address this limitation, the present study employed sensory trials and biometrics from video using simulated microgravity chairs to simulate alterations in sensory perception akin to those encountered in space conditions. The findings of this study align with previous reports of changes in aroma and taste perception and contribute to the understanding of changes in the mouthfeel, heart rate, blood pressure, and emotional response that could be experienced in space environments. These experimental endeavors are critical to facilitate the advancement and development of novel plants and food materials tailored to the requirements of long-term space exploration.
Collapse
Affiliation(s)
- Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia; ARC Centre of Excellence for Plants in Space, The University of Melbourne, Australia
| | - Natalie Harris
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia; ARC Centre of Excellence for Plants in Space, The University of Melbourne, Australia; Tecnologico de Monterrey, School of Engineering and Science, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
12
|
Waisberg E, Ong J, Masalkhi M, Lee AG. Optic neuropathy in spaceflight-associated neuro-ocular syndrome (SANS). Ir J Med Sci 2023; 192:3143-3145. [PMID: 37004665 DOI: 10.1007/s11845-023-03353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Affiliation(s)
- Ethan Waisberg
- University College Dublin School of Medicine, Belfield, Dublin 4, Ireland.
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, USA
| | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin 4, Ireland
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Zwart SR, Macias BR, Laurie SS, Ferguson C, Stern C, Suh A, Melin MM, Young M, Bershad E, Smith SM. Optic disc edema during strict 6° head-down tilt bed rest is related to one-carbon metabolism pathway genetics and optic cup volume. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1279831. [PMID: 38983014 PMCID: PMC11182205 DOI: 10.3389/fopht.2023.1279831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/16/2023] [Indexed: 07/11/2024]
Abstract
Some astronauts on International Space Station missions experience neuroophthalmological pathologies as part of spaceflight associated neuro-ocular syndrome (SANS). Strict head-down tilt bed rest (HDTBR) is a spaceflight analog that replicates SANS findings and those who had 3-4 risk alleles (G and C alleles from the methionine synthase reductase [MTRR] A66G and serine hydroxymethyltransferase [SHMT1] C1420T, respectively) as compared to 1-2 risk alleles, had a greater increase in total retinal thickness (TRT). The objective of this study was to identify factors that contribute to the individual variability of the development of SANS in a 60 d HDTBR at the German Aerospace Center's:envihab facility, Cologne Germany. 22 of 24 subjects who participated in the HDTBR study provided blood samples for genetic analysis. Total retinal thickness and optic cup volume were measured before and after bed rest. Subjects with 3-4 versus 0-2 risk alleles had greater ΔTRT during and after bed rest, and the model improved with the addition of baseline optic cup volume. This bed rest study confirms that variants of MTRR and SHMT1 are associated with ocular pathologies. Subjects with more risk alleles had the greatest HDTBR-induced ΔTRT, reaffirming that genetics predispose some individuals to developing SANS. Preflight optic cup volume and genetics better predict ΔTRT than either one alone. Whether nutritional supplements can override the genetic influences on biochemistry, physiology, and pathophysiology remains to be tested. These findings have significant implications for both aerospace and terrestrial medicine.
Collapse
Affiliation(s)
- Sara R. Zwart
- Human Health and Performance Directorate, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Brandon R. Macias
- National Aeronautics and Space Administration (NASA), Johnson Space Center, Human Health and Performance Directorate, Houston, TX, United States
| | - Steven S. Laurie
- Human Health and Performance Directorate, KBR, Houston, TX, United States
| | - Connor Ferguson
- Human Health and Performance Directorate, Aegis Corp, Houston, TX, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Alex Suh
- Tulane University School of Medicine, New Orleans, LA, United States
| | - M. Mark Melin
- Gonda Vascular Center, Mayo Clinic, Rochester, MN, United States
| | - Millennia Young
- National Aeronautics and Space Administration (NASA), Johnson Space Center, Human Health and Performance Directorate, Houston, TX, United States
| | - Eric Bershad
- Neurology Department, Baylor College of Medicine, Houston, TX, United States
| | - Scott M. Smith
- National Aeronautics and Space Administration (NASA), Johnson Space Center, Human Health and Performance Directorate, Houston, TX, United States
| |
Collapse
|
14
|
Ong J, Mader TH, Gibson CR, Mason SS, Lee AG. Spaceflight associated neuro-ocular syndrome (SANS): an update on potential microgravity-based pathophysiology and mitigation development. Eye (Lond) 2023; 37:2409-2415. [PMID: 37072472 PMCID: PMC10397180 DOI: 10.1038/s41433-023-02522-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Long-duration spaceflight is associated with neurologic and ophthalmic clinical and imaging findings in astronauts termed spaceflight associated neuro-ocular syndrome (SANS). These microgravity-induced findings have been well documented by the National Aeronautics and Space Administration (NASA) and are clearly a potential risk for future human space exploration. The underlying pathogenesis of SANS is not well understood, although multiple hypotheses have emerged. Terrestrial analogues and potential countermeasures have also been studied to further understand and potentially mitigate SANS. In this manuscript, we review the current understanding of SANS, discuss the prevailing hypotheses for pathogenesis, and describe current developments in terrestrial analogues and potential countermeasures for SANS.
Collapse
Affiliation(s)
- Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - C Robert Gibson
- KBR, NASA Johnson Space Center, Houston, TX, USA
- South Shore Eye Center, League City, TX, USA
| | | | - Andrew G Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA.
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA.
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Texas A&M College of Medicine, Bryan, TX, USA.
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
15
|
Ong J, Tarver W, Brunstetter T, Mader TH, Gibson CR, Mason SS, Lee A. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br J Ophthalmol 2023; 107:895-900. [PMID: 36690421 PMCID: PMC10359702 DOI: 10.1136/bjo-2022-322892] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 01/25/2023]
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) refers to a distinct constellation of ocular, neurological and neuroimaging findings observed in astronauts during and following long duration spaceflight. These ocular findings, to include optic disc oedema, posterior globe flattening, chorioretinal folds and hyperopic shifts, were first described by NASA in 2011. SANS is a potential risk to astronaut health and will likely require mitigation prior to planetary travel with prolonged exposures to microgravity. While the exact pathogenesis of SANS is not completely understood, several hypotheses have been proposed to explain this neuro-ocular phenomenon. In this paper, we briefly discuss the current hypotheses and contributing factors underlying SANS pathophysiology as well as analogues used to study SANS on Earth. We also review emerging potential countermeasures for SANS including lower body negative pressure, nutritional supplementation and translaminar pressure gradient modulation. Ongoing investigation within these fields will likely be instrumental in preparing and protecting astronaut vision for future spaceflight missions including deep space exploration.
Collapse
Affiliation(s)
- Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, Texas, USA
- South Shore Eye Center, League City, Texas, USA
| | | | - Andrew Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, USA
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas A&M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
17
|
Cheng Y, Ren T, Wang N. Biomechanical homeostasis in ocular diseases: A mini-review. Front Public Health 2023; 11:1106728. [PMID: 36733902 PMCID: PMC9886686 DOI: 10.3389/fpubh.2023.1106728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus-induced hyperglycemia is responsible for multiple pathological ocular alternations from vasculopathy to biomechanical dyshomeostasis. Biomechanical homeostasis is crucial to maintain the normal physiological condition of the eyes. Biomechanical features vary in eye tissues regarding different anatomical positions, tissue components, and cellular functions. The disturbance in biomechanical homeostasis may result in different ocular diseases. In this review, we provide a preliminary sketch of the latest evidence on the mechano-environment of the eyeball and its possible influencing factors, thereby underscoring the relationship between the dyshomeostasis of ocular biomechanics and common eye diseases (e.g., diabetic retinopathy, keratoconus, glaucoma, spaceflight-associated neuro-ocular syndrome, retinal vein occlusion and myopia, etc.). Together with the reported evidence, we further discuss and postulate the potential role of biomechanical homeostasis in ophthalmic pathology. Some latest strategies to investigate the biomechanical properties in ocular diseases help unveil the pathological changes at multiple scales, offering references for making new diagnostic and treatment strategies targeting mechanobiology.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tianmin Ren
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China,*Correspondence: Ningli Wang ✉
| |
Collapse
|
18
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
19
|
Puscas M, Martineau G, Bhella G, Bonnen PE, Carr P, Lim R, Mitchell J, Osmond M, Urquieta E, Flamenbaum J, Iaria G, Joly Y, Richer É, Saary J, Saint-Jacques D, Buckley N, Low-Decarie E. Rare diseases and space health: optimizing synergies from scientific questions to care. NPJ Microgravity 2022; 8:58. [PMID: 36550172 PMCID: PMC9780351 DOI: 10.1038/s41526-022-00224-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Knowledge transfer among research disciplines can lead to substantial research progress. At first glance, astronaut health and rare diseases may be seen as having little common ground for such an exchange. However, deleterious health conditions linked to human space exploration may well be considered as a narrow sub-category of rare diseases. Here, we compare and contrast research and healthcare in the contexts of rare diseases and space health and identify common barriers and avenues of improvement. The prevalent genetic basis of most rare disorders contrasts sharply with the occupational considerations required to sustain human health in space. Nevertheless small sample sizes and large knowledge gaps in natural history are examples of the parallel challenges for research and clinical care in the context of both rare diseases and space health. The two areas also face the simultaneous challenges of evidence scarcity and the pressure to deliver therapeutic solutions, mandating expeditious translation of research knowledge into clinical care. Sharing best practices between these fields, including increasing participant involvement in all stages of research and ethical sharing of standardized data, has the potential to contribute to humankind's efforts to explore ever further into space while caring for people on Earth in a more inclusive fashion.
Collapse
Affiliation(s)
- Maria Puscas
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- The School of Health Sciences, University of Western Ontario, London, Canada
| | - Gabrielle Martineau
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Hawaii Institute of Marine Biology (HIMB), Kaneohe, HI, USA
| | - Gurjot Bhella
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- University of Waterloo, Waterloo, Canada
| | - Penelope E Bonnen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Phil Carr
- The Strategic Review Group Inc., Ottawa, Canada
| | - Robyn Lim
- Legislative and Regulatory Modernization, Health Canada, Ottawa, Canada
| | - John Mitchell
- Pediatric Endocrinology and Biochemical Genetics, Montreal Children's Hospital-McGill University, Human Genetics and Pediatrics, McGill University, Montreal, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Urquieta
- Translational Research Institute for Space Health (TRISH) and Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Flamenbaum
- Canadian Institutes of Health Research Ethics Office, Ottawa, Canada
| | - Giuseppe Iaria
- Department of Psychology, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Yann Joly
- Centre of Genomics and Policy, Faculty of Medicine, Human Genetics, McGill University, Montreal, Canada
| | - Étienne Richer
- Canadian Institutes of Health Research Institute of Genetics, Ottawa, Canada
| | - Joan Saary
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, Canada
| | - David Saint-Jacques
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada
| | - Nicole Buckley
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Directorate of Human Spaceflight and Robotic Exploration, European Space Agency, Noordwijk, Holland.
| | - Etienne Low-Decarie
- Astronauts, Life Sciences and Space Medicine Canadian Space Agency, Government of Canada, Longueil, Canada.
- Agriculture and Agri-Food Canada, Government of Canada, Montreal, Canada.
| |
Collapse
|
20
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
21
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
22
|
Grover Y, Bhasin J, Dhingra B, Nandi S, Hansda M, Sharma R, Paul V, Idrishi R, Tripathi AD, Agarwal A. Developments and Scope of Space Food. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210809113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Humans have conducted numerous space missions in past decades and its success depends
upon many factors, including astronaut health as the major factor. Health and nutrition are
two vital components of life derived from food which helps in keeping one’s body alive, nourished
as well as energetic, including the astronauts during their long-duration manned missions. With the
advancement in research and technology, it became possible to include a wide variety of dishes in
the space menu, with most of them being similar to those eaten on the earth. This review highlights
the evolution of space food starting from mission Mercury to the current International Space Station.
Furthermore, it also enlightens and focuses on types of space food, its packaging considerations,
and vitamin A-rich energy balls as potential space food. Many deleterious effects of outer
space explorations have been observed on the human body, such as loss of body mass, visionrelated
changes, loss in bone density, and even anemia. To overcome these issues, various considerations
must be followed while designing space food. The nutritional requirement plays an important
role in a space mission. Various foods have the potential to overcome the limitations caused by a
space mission. Thus, while developing space food, various parameters should be taken into consideration,
such as deficiencies and illness. The food should be compact, bite-sized, easily digestible,
and shelf-stable. Further research is required to better gain insight into the technological advancements
while considering the nutritional status and requirements of astronauts in a space mission.
Collapse
Affiliation(s)
- Yashmita Grover
- Department of Food Technology, Lady Irwin College, University of Delhi, New Delhi, India
| | - Jagriti Bhasin
- Department of Dairy
Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bhavika Dhingra
- Department of Dairy
Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sonali Nandi
- Department of Biotechnology, D.Y. Patil Deemed to be University, Mumbai, India
| | - Mamta Hansda
- Department of Dairy
Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | - Veena Paul
- Department of Dairy
Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rubeka Idrishi
- Centre
for Rural Technology, Indian Institute of Technology, Guwahati, India
| | - Abhishek Dutt Tripathi
- Department of Dairy
Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Aparna Agarwal
- Department of Food Technology, Lady Irwin College, University of Delhi, New Delhi, India
| |
Collapse
|
23
|
Özelbaykal B, Öğretmenoğlu G, Gedik Ş. The Effects of Space Radiation and Microgravity on Ocular Structures. Turk J Ophthalmol 2022; 52:57-63. [PMID: 35196841 PMCID: PMC8876783 DOI: 10.4274/tjo.galenos.2021.29566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Long-term exposure to microgravity and space radiation leads to physiological and pathological changes in human biology. Pathological neuro-ocular changes are collected under the name spaceflight-associated neuro-ocular syndrome. This review examines studies on the effects of microgravity and space radiation on the ocular structures and their results. In addition, we discuss treatment methods and hypotheses to reduce the effects of microgravity and space radiation on biological structures.
Collapse
Affiliation(s)
| | - Gökhan Öğretmenoğlu
- Adana City Training and Research Hospital, Clinic of Ophthalmology, Adana, Turkey
| | - Şansal Gedik
- Selçuk University Faculty of Medicine, Department of Ophthalmology, Konya, Turkey
| |
Collapse
|
24
|
Tang H, Rising HH, Majji M, Brown RD. Long-Term Space Nutrition: A Scoping Review. Nutrients 2021; 14:194. [PMID: 35011072 PMCID: PMC8747021 DOI: 10.3390/nu14010194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
This scoping review aimed to identify current evidence and gaps in the field of long-term space nutrition. Specifically, the review targeted critical nutritional needs during long-term manned missions in outer space in addition to the essential components of a sustainable space nutrition system for meeting these needs. The search phrase "space food and the survival of astronauts in long-term missions" was used to collect the initial 5432 articles from seven Chinese and seven English databases. From these articles, two independent reviewers screened titles and abstracts to identify 218 articles for full-text reviews based on three themes and 18 keyword combinations as eligibility criteria. The results suggest that it is possible to address short-term adverse environmental factors and nutritional deficiencies by adopting effective dietary measures, selecting the right types of foods and supplements, and engaging in specific sustainable food production and eating practices. However, to support self-sufficiency during long-term space exploration, the most optimal and sustainable space nutrition systems are likely to be supported primarily by fresh food production, natural unprocessed foods as diets, nutrient recycling of food scraps and cultivation systems, and the establishment of closed-loop biospheres or landscape-based space habitats as long-term life support systems.
Collapse
Affiliation(s)
- Hong Tang
- College of Landscape and Tourism, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hope Hui Rising
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA;
| | - Manoranjan Majji
- Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Robert D. Brown
- Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
25
|
Abstract
History books are rife with examples of the role of nutrition in determining either the success or the failure of human exploration on Earth. With planetary exploration in our future, it is imperative that we understand the role of nutrition in optimizing health before humans can safely take the next giant leaps in space exploration.
Collapse
Affiliation(s)
- Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, Texas
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
26
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
27
|
Kermorgant M, Hammoud S, Mahieu L, Geeraerts T, Beck A, Bareille MP, Soler V, Pavy-Le Traon A, Quintyn JC. Effects of Resistance Exercise with or without Whey Protein Supplementation on Ocular Changes after a 21-Day Head-Down Bed Rest. Life (Basel) 2021; 11:life11080741. [PMID: 34440485 PMCID: PMC8401897 DOI: 10.3390/life11080741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Neuro-ophthalmological changes have been reported after prolonged exposure to microgravity; however, the pathophysiology remains unclear. The objectives of the present study were twofold: (1) to assess the neuro-ophthalmological impact of 21 days of head-down bed rest (HDBR) and (2) to determine the effects of resistance vibration exercise (RVE) alone or combined with nutritional supplementation (NeX). In this case, 12 healthy male subjects completed three interventions of a 21-day HDBR: a control condition without countermeasure (CON), a condition with resistance vibration exercise (RVE) comprising of squats, single leg heel and bilateral heel raises and a condition using also RVE associated with nutritional supplementation (NeX). Intraocular pressure (IOP) was assessed by applanation tonometry. Retinal nerve fiber layer thickness (RNFLT) was assessed with spectral-domain optical coherence tomography, before HDBR and between Day 2 and Day 4 after each session of HDBR. In CON condition, IOP was preserved; while in RVE and NeX conditions, IOP was increased. In CON condition, RNFLT was preserved after HDBR. RVE and NeX conditions did not have significant effects on RNFLT. This study showed that a 3-week HDBR did not induce significant ophthalmological changes. However, RVE induced an elevation in IOP after HDBR. Nutritional supplementation did not reduce or exacerbate the side effects of RVE.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, 31432 Toulouse, France;
- Department of Neurology, University Hospital of Toulouse, 31059 Toulouse, France
| | - Sirine Hammoud
- Department of Ophthalmology, Glaucoma Institute, Saint Joseph Hospital, 75014 Paris, France;
| | - Laurence Mahieu
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France; (L.M.); (V.S.)
| | - Thomas Geeraerts
- Department of Anesthesiology and Intensive Care, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), 31405 Toulouse, France; (A.B.); (M.-P.B.)
| | - Marie-Pierre Bareille
- Institute for Space Medicine and Physiology (MEDES), 31405 Toulouse, France; (A.B.); (M.-P.B.)
| | - Vincent Soler
- Department of Ophthalmology, University Hospital of Toulouse, 31059 Toulouse, France; (L.M.); (V.S.)
| | - Anne Pavy-Le Traon
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, 31432 Toulouse, France;
- Department of Neurology, University Hospital of Toulouse, 31059 Toulouse, France
- Correspondence: (A.P.-L.T.); (J.-C.Q.)
| | - Jean-Claude Quintyn
- Department of Ophthalmology, Unicaen, University Hospital of Caen, 14033 Caen, France
- Correspondence: (A.P.-L.T.); (J.-C.Q.)
| |
Collapse
|
28
|
Kermorgant M, Sadegh A, Geeraerts T, Varenne F, Liberto J, Roubelat FP, Bataille N, Bareille MP, Beck A, Godard B, Golemis A, Nasr N, Arvanitis DN, Hélissen O, Senard JM, Pavy-Le Traon A, Soler V. Effects of Venoconstrictive Thigh Cuffs on Dry Immersion-Induced Ophthalmological Changes. Front Physiol 2021; 12:692361. [PMID: 34335300 PMCID: PMC8317025 DOI: 10.3389/fphys.2021.692361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuro-ophthalmological changes named spaceflight associated neuro-ocular syndrome (SANS) reported after spaceflights are important medical issues. Dry immersion (DI), an analog to microgravity, rapidly induces a centralization of body fluids, immobilization, and hypokinesia similar to that observed during spaceflight. The main objectives of the present study were 2-fold: (1) to assess the neuro-ophthalmological impact during 5 days of DI and (2) to determine the effects of venoconstrictive thigh cuffs (VTC), used as a countermeasure to limit headward fluid shift, on DI-induced ophthalmological adaptations. Eighteen healthy male subjects underwent 5 days of DI with or without VTC countermeasures. The subjects were randomly assigned into two groups of 9: a control and cuffs group. Retinal and optic nerve thickness were assessed with spectral-domain optical coherence tomography (OCT). Optic nerve sheath diameter (ONSD) was measured by ocular ultrasonography and used to assess indirect changes in intracranial pressure (ICP). Intraocular pressure (IOP) was assessed by applanation tonometry. A higher thickness of the retinal nerve fiber layer (RNFL) in the temporal quadrant was observed after DI. ONSD increased significantly during DI and remained higher during the recovery phase. IOP did not significantly change during and after DI. VTC tended to limit the ONSD enlargement but not the higher thickness of an RNFL induced by DI. These findings suggest that 5 days of DI induced significant ophthalmological changes. VTC were found to dampen the ONSD enlargement induced by DI.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Ayria Sadegh
- Department of Ophthalmology, University Hospital of Toulouse, Toulouse, France
| | - Thomas Geeraerts
- Department of Anaesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Fanny Varenne
- Department of Ophthalmology, University Hospital of Toulouse, Toulouse, France
| | - Jérémy Liberto
- Department of Ophthalmology, University Hospital of Toulouse, Toulouse, France
| | | | - Noémie Bataille
- Department of Ophthalmology, University Hospital of Toulouse, Toulouse, France
| | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Brigitte Godard
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Adrianos Golemis
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Nathalie Nasr
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Dina N Arvanitis
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Ophélie Hélissen
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Senard
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France.,Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Vincent Soler
- Department of Ophthalmology, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
29
|
Limper U, Tank J, Ahnert T, Maegele M, Grottke O, Hein M, Jordan J. The thrombotic risk of spaceflight: has a serious problem been overlooked for more than half of a century? Eur Heart J 2021; 42:97-100. [PMID: 32428936 DOI: 10.1093/eurheartj/ehaa359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
The first ever venous thrombotic condition associated with spaceflight, an internal jugular vein thrombus requiring anticoagulation, has recently been reported. Systematic investigation of space travel-associated thrombotic risk has not been conducted. Cellular, animal, and human studies performed in ground-based models and in actual weightlessness revealed influences of weightlessness and gravity on the blood coagulation system. However, human study populations were small and limited to highly selected participants. Evidence in individuals with medical conditions and older persons is lacking. Evidence for thrombotic risk in spaceflight is unsatisfactory. This issue deserves further study in heterogeneous, high risk populations to find prevention strategies and to enable safe governmental and touristic human spaceflight.
Collapse
Affiliation(s)
- Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Jens Tank
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Tobias Ahnert
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Marc Maegele
- Department of Orthopedic Surgery Traumatology and Sports Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| | - Oliver Grottke
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc Hein
- Department of Anaesthesiology, Medical Faculty, University Hospital RWTH Aachen, Aachen, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Chair of Aerospace Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Zhang Y, Zhao J, Jing J, Zhang R, Zhou X, Gao J, Wang J, Li Y, Liu X, Wang Q. Effects of Simulated Weightlessness on Metabolizing Enzymes and Pharmacokinetics of Folic Acid in SD Rats. Biol Pharm Bull 2021; 44:162-168. [PMID: 33518670 DOI: 10.1248/bpb.b20-00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folic acid (FA) affect human physiology and drug metabolism. Up to now, the effect of microgravity on the pharmacokinetics of FA remains unclear. The pharmacokinetics of FA in Sprague-Dawley (SD) rats are laying a foundation for safe medicine administration of astronauts. Proteins expression of such FA metabolic enzymes as Methyltetrahydrofolate reductase (MTHFR), Cystathionine beta synthase (CBS) and Methionine synthase (MS) in a variety of organs was analyzed with Western-Blot, and mRNA expression was detected by RT-PCR. The plasma concentration-time profile of FA in normal or tail-suspended SD rats was acquired by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after oral administration of FA. Area under curve (AUC) and Cmax of FA in SD rats decreased significantly with extending period of tail-suspension. In terms of expressed level of metabolic enzymes over four suspension terms, as well as the level of the corresponding mRNAs, the following regularities were found: an obvious sharp decline of MTHFR tissue in kidney, a time-dependent increase of CBS in liver tissue and duodenum tissues, the resemblance of MS fluctuation to that of CBS in tested tissues. A four-week simulated microgravity of SD rats exhibits an unequivocal diminish of bioavailability of FA, and simulated microgravity shows a varying effect on the expression of FA-metabolizing enzyme in a variety of tissues.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Air Force Medical University
| | - Jun Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Air Force Medical University
| | - Juan Jing
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University
| | - Ruitao Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Air Force Medical University
| | | | - Jianyi Gao
- China Astronaut Research and Training Center
| | | | - Yongzhi Li
- China Astronaut Research and Training Center
| | - Xueying Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University
| | - Qingwei Wang
- Department of Pharmacy, The Second Affiliated Hospital, Air Force Medical University
| |
Collapse
|
31
|
Eye changes in space : New insights into clinical aspects, pathogenesis, and prevention. Ophthalmologe 2021; 118:96-101. [PMID: 33258060 DOI: 10.1007/s00347-020-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND More than ever research into changes in the eye caused by long-term space flight is becoming the focus of the international and national space agencies National Aeronautics and Space Administration (NASA), European Space Agency (ESA) and German Aerospace Center (DLR). In addition to space radiation-induced cataract formation considerable eye changes, summarized under space flight-associated neuro-ocular syndrome (SANS), can occur. OBJECTIVE This article gives an overview of the current state of research and future directions in the field of research concerned with ocular alterations in SANS and presents the relevance for terrestrial ophthalmological research. MATERIAL AND METHODS An analysis of existing publications on SANS in PubMed and reports on the risk of SANS published by the NASA of the USA was carried out. RESULTS The reasons for the development of the eye changes in space have not been clarified. Factors such as the increase in intracranial pressure, fluid shifts, hypercapnia and genetic factors are the subject of intensive research efforts. A terrestrial model for the induction of papilledema could be established (bed rest studies with -6° head-down tilt as a space analogue). Countermeasures for the development of eye changes, such as intermittent artificial gravity, are the subject of current research studies. CONCLUSION Research into SANS as part of bed rest studies will provide further important insights in the future for space research and also for terrestrial research. Clinical research projects can be derived from space research.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Several decades of long duration space flight missions by the National Aeronautics and Space Administration has revealed an interesting and unique constellation of neuro-ophthalmic findings now called spaceflight associated neuro-ocular syndrome (SANS). The unique space environment of microgravity produces novel physiological changes and derangements that present a challenge to astronauts in current and future long duration space missions. Although the precise mechanism of SANS is not fully understood, in this review, we examine recent developments that may to help explain possible causes and potential countermeasures. RECENT FINDINGS The cause of SANS is still largely unknown. A growing body of evidence implicates multiple factors that contribute to the development of SANS including cephalad fluid shifts, increased intracranial pressure, venous/lymphatic stasis, inflammation, metabolism, axoplasmic stasis and radiation exposure. SUMMARY The pathologic mechanism behind SANS may be multifactorial and may be amenable to different countermeasures for prevention and management of SANS.
Collapse
|
33
|
Hupfeld KE, McGregor HR, Reuter-Lorenz PA, Seidler RD. Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neurosci Biobehav Rev 2021; 122:176-189. [PMID: 33454290 DOI: 10.1016/j.neubiorev.2020.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Emerging plans for travel to Mars and other deep space destinations make it critical for us to understand how spaceflight affects the human brain and behavior. Research over the past decade has demonstrated two co-occurring patterns of spaceflight effects on the brain and behavior: dysfunction and adaptive plasticity. Evidence indicates the spaceflight environment induces adverse effects on the brain, including intracranial fluid shifts, gray matter changes, and white matter declines. Past work also suggests that the spaceflight environment induces adaptive neural effects such as sensory reweighting and neural compensation. Here, we introduce a new conceptual framework to synthesize spaceflight effects on the brain, Spaceflight Perturbation Adaptation Coupled with Dysfunction (SPACeD). We review the literature implicating neurobehavioral dysfunction and adaptation in response to spaceflight and microgravity analogues, and we consider pre-, during-, and post-flight factors that may interact with these processes. We draw several instructive parallels with the aging literature which also suggests co-occurring neurobehavioral dysfunction and adaptive processes. We close with recommendations for future spaceflight research, including: 1) increased efforts to distinguish between dysfunctional versus adaptive effects by testing brain-behavioral correlations, and 2) greater focus on tracking recovery time courses.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - P A Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
34
|
Rutter L, Barker R, Bezdan D, Cope H, Costes SV, Degoricija L, Fisch KM, Gabitto MI, Gebre S, Giacomello S, Gilroy S, Green SJ, Mason CE, Reinsch SS, Szewczyk NJ, Taylor DM, Galazka JM, Herranz R, Muratani M. A New Era for Space Life Science: International Standards for Space Omics Processing. PATTERNS (NEW YORK, N.Y.) 2020; 1:100148. [PMID: 33336201 PMCID: PMC7733874 DOI: 10.1016/j.patter.2020.100148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.
Collapse
Affiliation(s)
- Lindsay Rutter
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Daniela Bezdan
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Henry Cope
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mariano I. Gabitto
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Samrawit Gebre
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Stefan J. Green
- Genome Research Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sigrid S. Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Masafumi Muratani
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
35
|
Banker LA, Salazar AP, Lee JK, Beltran NE, Kofman IS, De Dios YE, Mulder E, Bloomberg JJ, Mulavara AP, Seidler RD. The effects of a spaceflight analog with elevated CO 2 on sensorimotor adaptation. J Neurophysiol 2020; 125:426-436. [PMID: 33296611 DOI: 10.1152/jn.00306.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aboard the International Space Station (ISS), astronauts must adapt to altered vestibular and somatosensory inputs due to microgravity. Sensorimotor adaptation on Earth is often studied with a task that introduces visuomotor conflict. Retention of the adaptation process, known as savings, can be measured when subjects are exposed to the same adaptive task multiple times. It is unclear how adaptation demands found on the ISS might interfere with the ability to adapt to other sensory conflict at the same time. In the present study, we investigated the impact of 30 days' head-down tilt bed rest combined with elevated carbon dioxide (HDBR + CO2) as a spaceflight analog on sensorimotor adaptation. Eleven subjects used a joystick to move a cursor to targets presented on a computer screen under veridical cursor feedback and 45° rotated feedback. During this NASA campaign, five individuals presented with optic disk edema, a sign of spaceflight-associated neuro-ocular syndrome (SANS). Thus, we also performed post hoc exploratory analyses between subgroups who did and did not show signs of SANS. HDBR + CO2 had some impact on sensorimotor adaptation, with a lack of savings across the whole group. SANS individuals showed larger, more persistent after-effects, suggesting a shift from relying on cognitive to more implicit processing of adaptive behaviors. Overall, these findings suggest that HDBR + CO2 alters the way in which individuals engage in sensorimotor processing. These findings have important implications for missions and mission training, which require individuals to adapt to altered sensory inputs over long periods in space.NEW & NOTEWORTHY This is the first bed rest campaign examining sensorimotor adaptation and savings in response to the combined effect of HDBR + CO2 and to observe signs of spaceflight-associated neuro-ocular syndrome (SANS) in HDBR participants. Our findings suggest that HDBR + CO2 alters the way that individuals engage in sensorimotor processing. Individuals who developed signs of SANS seem to rely more on implicit rather than cognitive processing of adaptive behaviors than subjects who did not present signs of SANS.
Collapse
Affiliation(s)
- Lauren A Banker
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ana Paula Salazar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Jessica K Lee
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | | | | | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | | | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida.,Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
36
|
Laurie SS, Lee SMC, Macias BR, Patel N, Stern C, Young M, Stenger MB. Optic Disc Edema and Choroidal Engorgement in Astronauts During Spaceflight and Individuals Exposed to Bed Rest. JAMA Ophthalmol 2020; 138:165-172. [PMID: 31876939 DOI: 10.1001/jamaophthalmol.2019.5261] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Importance Optic disc edema develops in astronauts during long-duration spaceflight and is a risk for all future astronauts during spaceflight. Having a ground-based analogue of weightlessness that reproduces critical features of spaceflight-associated neuro-ocular syndrome will facilitate understanding, preventing, and/or treating this syndrome. Objective To determine whether the ocular changes in individuals exposed to an analogue of weightlessness are similar to the ocular changes in astronauts exposed to a duration of spaceflight comparable to this analogue of weightlessness. Design, Setting, and Participants This cohort study, conducted from 2012 to 2018, investigated 11 healthy test participants before, during, and after 30 days of strict 6° head-down tilt bed rest as well as 20 astronauts before and during approximately 30 days of spaceflight. Data were collected at NASA Johnson Space Center, the German Aerospace Center, and on board the International Space Station. Statistical analysis was performed from February 13 to April 24, 2019. Main Outcomes and Measures Peripapillary total retinal thickness and peripapillary choroid thickness quantified from optical coherence tomography images. Results Peripapillary total retinal thickness increased to a greater degree among 11 individuals (6 men and 5 women; mean [SD] age, 33.4 [8.0 years]) exposed to bed rest than among 20 astronauts (17 men and 3 women; mean [SD] age, 46.0 [6.0] years), with a mean difference between groups of 37 μm (95% CI, 13-61 μm; P = .005). Conversely, choroid thickness did not increase among the individuals exposed to bed rest but increased among the astronauts, resulting in a mean difference between groups of 27 μm (95% CI, 14-41 μm; P < .001). Conclusions and Relevance These findings suggest that strict head-down tilt bed rest produces a different magnitude of edema than occurs after a similar duration of spaceflight, and no change in choroid thickness. It is possible that a mild, long-term elevation in intracranial pressure experienced by individuals exposed to bed rest is greater than the intracranial pressure experienced by astronauts during spaceflight, which may explain the different severity of optic disc edema between the cohorts. Gravitational gradients that remain present during bed rest may explain the lack of increase in choroid thickness during bed rest, which differs from the lack of gravitational gradients during spaceflight. Despite the possibility that different mechanisms may underlie optic disc edema development in modeled and real spaceflight, use of this terrestrial model of spaceflight-associated neuro-ocular syndrome will be assistive in the development of effective countermeasures that will protect the eyes of astronauts during future space missions.
Collapse
Affiliation(s)
| | | | | | - Nimesh Patel
- College of Optometry, University of Houston, Houston, Texas
| | | | | | | |
Collapse
|
37
|
Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020; 6:33. [PMID: 33298950 PMCID: PMC7645687 DOI: 10.1038/s41526-020-00124-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
NASA's plans for space exploration include a return to the Moon to stay-boots back on the lunar surface with an orbital outpost. This station will be a launch point for voyages to destinations further away in our solar system, including journeys to the red planet Mars. To ensure success of these missions, health and performance risks associated with the unique hazards of spaceflight must be adequately controlled. These hazards-space radiation, altered gravity fields, isolation and confinement, closed environments, and distance from Earth-are linked with over 30 human health risks as documented by NASA's Human Research Program. The programmatic goal is to develop the tools and technologies to adequately mitigate, control, or accept these risks. The risks ranked as "red" have the highest priority based on both the likelihood of occurrence and the severity of their impact on human health, performance in mission, and long-term quality of life. These include: (1) space radiation health effects of cancer, cardiovascular disease, and cognitive decrements (2) Spaceflight-Associated Neuro-ocular Syndrome (3) behavioral health and performance decrements, and (4) inadequate food and nutrition. Evaluation of the hazards and risks in terms of the space exposome-the total sum of spaceflight and lifetime exposures and how they relate to genetics and determine the whole-body outcome-will provide a comprehensive picture of risk profiles for individual astronauts. In this review, we provide a primer on these "red" risks for the research community. The aim is to inform the development of studies and projects with high potential for generating both new knowledge and technologies to assist with mitigating multisystem risks to crew health during exploratory missions.
Collapse
Affiliation(s)
- Zarana S Patel
- KBR, Houston, TX, USA.
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA.
| | | | | | | | - Sara R Zwart
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Scott M Smith
- NASA Lyndon B. Johnson Space Center, Houston, TX, USA
| | | |
Collapse
|
38
|
Wojcik P, Batliwala S, Rowsey T, Galdamez LA, Lee AG. Spaceflight-Associated Neuro-ocular Syndrome (SANS): a review of proposed mechanisms and analogs. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1787155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Peter Wojcik
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Shehzad Batliwala
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Tyler Rowsey
- College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Laura A. Galdamez
- Department of Emergency Medicine, Memorial Hermann The Woodlands, Shenandoah, TX, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A and M College of Medicine, Bryan, TX, USA
| |
Collapse
|
39
|
Händel A, Stern C, Jordan J, Dietlein T, Enders P, Cursiefen C. [Eye changes in space : New insights into clinical aspects, pathogenesis and prevention]. Ophthalmologe 2020; 117:721-729. [PMID: 32347333 DOI: 10.1007/s00347-020-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND More than ever research into changes in the eye caused by long-term space flight is becoming the focus of the international and national space agencies National Aeronautics and Space Administration (NASA), European Space Agency (ESA) and German Aerospace Center (DLR). In addition to space radiation-induced cataract formation considerable eye changes, summarized under space flight-associated neuro-ocular syndrome (SANS), can occur. OBJECTIVE This article gives an overview of the current state of research and future directions in the field of research concerned with ocular alterations in SANS and presents the relevance for terrestrial ophthalmological research. MATERIAL AND METHODS An analysis of existing publications on SANS in PubMed and reports on the risk of SANS published by the NASA of the USA was carried out. RESULTS The reasons for the development of the eye changes in space have not been clarified. Factors such as the increase in intracranial pressure, fluid shifts, hypercapnia and genetic factors are the subject of intensive research efforts. A terrestrial model for the induction of papilledema could be established (bed rest studies with -6° head-down tilt as a space analogue). Countermeasures for the development of eye changes, such as intermittent artificial gravity, are the subject of current research studies. CONCLUSION Research into SANS as part of bed rest studies will provide further important insights in the future for space research and also for terrestrial research. Clinical research projects can be derived from space research.
Collapse
Affiliation(s)
- A Händel
- Zentrum für Augenheilkunde, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| | - C Stern
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, Deutschland
| | - J Jordan
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, Deutschland.,Lehrstuhl für Luft- und Raumfahrtmedizin, Universitätsklinik Köln, Köln, Deutschland
| | - T Dietlein
- Zentrum für Augenheilkunde, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - P Enders
- Zentrum für Augenheilkunde, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - C Cursiefen
- Zentrum für Augenheilkunde, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| |
Collapse
|
40
|
Affiliation(s)
- T. Cahill
- Faculty of Medicine, Health and Life Sciences School of Biological Sciences Institute for Global Food Security (IGFS) Belfast UK
| | - G. Hardiman
- Faculty of Medicine, Health and Life Sciences School of Biological Sciences Institute for Global Food Security (IGFS) Belfast UK
- Department of Medicine Medical University of South Carolina Charleston SC USA
| |
Collapse
|
41
|
Andraos S, Goy M, Albert BB, Kussmann M, Thorstensen EB, O'Sullivan JM. Robotic automation of a UHPLC/MS-MS method profiling one-carbon metabolites, amino acids, and precursors in plasma. Anal Biochem 2020; 592:113558. [DOI: 10.1016/j.ab.2019.113558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
|
42
|
Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update. NPJ Microgravity 2020; 6:7. [PMID: 32047839 PMCID: PMC7005826 DOI: 10.1038/s41526-020-0097-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022] Open
Abstract
Prolonged microgravity exposure during long-duration spaceflight (LDSF) produces unusual physiologic and pathologic neuro-ophthalmic findings in astronauts. These microgravity associated findings collectively define the “Spaceflight Associated Neuro-ocular Syndrome” (SANS). We compare and contrast prior published work on SANS by the National Aeronautics and Space Administration’s (NASA) Space Medicine Operations Division with retrospective and prospective studies from other research groups. In this manuscript, we update and review the clinical manifestations of SANS including: unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and focal areas of ischemic retina (i.e., cotton wool spots). We also discuss the knowledge gaps for in-flight and terrestrial human research including potential countermeasures for future study. We recommend that NASA and its research partners continue to study SANS in preparation for future longer duration manned space missions.
Collapse
|
43
|
From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization. Int Ophthalmol 2019; 40:775-786. [PMID: 31722052 DOI: 10.1007/s10792-019-01212-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To report the ophthalmological risks of space travel. METHODS The literature about the effect of microgravity and cosmic radiation on the human eye has been reviewed, focusing on the so-called "spaceflight related neuro-ocular syndrome (SANS)", and possible remedies. RESULTS The eye is the major candidate to suffer from the adverse space conditions, so much so that SANS is the main concern of the National Aeronautics and Space Administration (NASA). SANS, that affects astronauts engaged in long-duration spaceflights, is characterized by optic nerve head swelling, flattening of the posterior region of the scleral shell, choroidal folds, retinal cotton wool spots, and hyperopic shift. Even if it seems related to an increased volume of the cerebrospinal fluid in the brain and the optic nerve sheaths, its pathogenesis is still unclear. In addition, cataract is related to the effect of galactic cosmic rays on the lens. Centrifuges, pressurizing chambers, and mechanical counter-pressure suits have been advanced to counteract the upward fluid shift responsible for the SANS syndrome. Shields with a high content of hydrogen, magnetic shielding systems, and wearable radiation shielding devices are under study to mitigate the exposure to galactic cosmic rays. CONCLUSIONS Since 1961, the year of the first manned mission outside the Earth, history has shown that the human being may venture in space. Yet, visual impairment is the top health risk for long-duration spaceflight. Effective remediation is mandatory in anticipation of long space missions and Moon and Mars colonization.
Collapse
|
44
|
Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019; 364:364/6436/eaau8650. [PMID: 30975860 DOI: 10.1126/science.aau8650] [Citation(s) in RCA: 523] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.
Collapse
Affiliation(s)
- Francine E Garrett-Bakelman
- Weill Cornell Medicine, New York, NY, USA.,University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Ruben C Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ling Lin
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Jad Nasrini
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Lynn Taylor
- Colorado State University, Fort Collins, CO, USA
| | | | | | - Ebrahim Afshinnekoo
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | - Sara Ahadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aditya Ambati
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Daniela Bezdan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Songjie Chen
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Marisa Covington
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Brian E Crucian
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | - David F Dinges
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | - Ryan P Hillary
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Peng Jiang
- Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | - Tyler M Moore
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Hemal H Patel
- University of California, San Diego, La Jolla, CA, USA
| | | | - Varsha Rao
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rintaro Saito
- University of California, San Diego, La Jolla, CA, USA
| | - Denis N Salins
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Michael B Stenger
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | | | | | | | - Jing Zhang
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - John B Charles
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | - Craig E Kundrot
- Space Life and Physical Sciences Division, NASA Headquarters, Washington, DC, USA.
| | - Graham B I Scott
- National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | | | - Mathias Basner
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | - Christopher E Mason
- Weill Cornell Medicine, New York, NY, USA. .,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA.,The Feil Family Brain and Mind Research Institute, New York, NY, USA.,The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | | | - Brinda K Rana
- University of California, San Diego, La Jolla, CA, USA.
| | - Scott M Smith
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | | | | |
Collapse
|
45
|
Legato MJ. Personalized Medicine and the Icarus Project: Ethical and Moral Issues in Sending Humans into Space. GENDER AND THE GENOME 2019. [DOI: 10.1177/2470289719838401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Marianne J. Legato
- Emeritus Professor of Clinical Medicine, Columbia University, New York, NY, USA
- Adjunct Professor of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Smith SM, Zwart SR. Spaceflight-related ocular changes: the potential role of genetics, and the potential of B vitamins as a countermeasure. Curr Opin Clin Nutr Metab Care 2018; 21:481-488. [PMID: 30169456 DOI: 10.1097/mco.0000000000000510] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Within the last decade, it was realized that during and after long-duration spaceflight, some astronauts experience ophthalmic abnormalities including refractive changes, optic disc edema, globe flattening, choroidal folds, and cotton wool spots. Much research has been initiated and conducted, but little evidence is available to differentiate affected crewmembers. RECENT FINDINGS The first published data to distinguish between affected and nonaffected crewmembers identified biochemical differences in affected astronauts: one-carbon pathway metabolite concentrations were higher in these individuals than in nonaffected astronauts, even before flight. These data led to findings that genetics and B-vitamin status were predictors of the incidence of the ophthalmic abnormalities. A multihit hypothesis was developed, with genetics and B-vitamin status as two of several important elements that all contribute to endothelial dysfunction and ultimately to ophthalmic changes after flight. One of these contributing factors - response to carbon dioxide exposure - was recently documented to be affected by the same one-carbon pathway genetics. SUMMARY This line of research may help identify which astronauts are at risk of these ophthalmic changes, and allow targeted treatment. This research may have implications for clinical populations, including patients with polycystic ovary syndrome, that have similar biochemical, endocrine, and genetic characteristics, and it may shed light on why links between cardiovascular disease and the metabolites homocysteine and folate have been elusive and confounded.
Collapse
Affiliation(s)
- Scott M Smith
- NASA Lyndon B. Johnson Space Center, Houston, Texas, USA
| | | |
Collapse
|
47
|
Giummarra L, Crewther SG, Riddell N, Murphy MJ, Crewther DP. Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia. PeerJ 2018; 6:e5048. [PMID: 29967729 PMCID: PMC6026464 DOI: 10.7717/peerj.5048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose RNA sequencing analysis has demonstrated bidirectional changes in metabolism, structural and immune pathways during early induction of defocus induced myopia. Thus, the aim of this study was to investigate whether similar gene pathways are also related to the more excessive axial growth, ultrastructural and elemental microanalytic changes seen during the induction and recovery from form-deprivation myopia (FDM) in chicks and predicted by the RIDE model of myopia. Methods Archived genomic transcriptome data from the first three days of induction of monocularly occluded form deprived myopia (FDMI) in chicks was obtained from the GEO database (accession # GSE6543) while data from chicks monocularly occluded for 10 days and then given up to 24 h of normal visual recovery (FDMR) were collected. Gene set enrichment analysis (GSEA) software was used to determine enriched pathways during the induction (FDMI) and recovery (FDMR) from FD. Curated gene-sets were obtained from open access sources. Results Clusters of significant changes in mitochondrial energy metabolism, neurotransmission, ion channel transport, G protein coupled receptor signalling, complement cascades and neuron structure and growth were identified during the 10 days of induction of profound myopia and were found to correlate well with change in axial dimensions. Bile acid and bile salt metabolism pathways (cholesterol/lipid metabolism and sodium channel activation) were significantly upregulated during the first 24 h of recovery from 10 days of FDM. Conclusions The gene pathways altered during induction of FDM are similar to those reported in defocus induced myopia and are established indicators of oxidative stress, osmoregulatory and associated structural changes. These findings are also consistent with the choroidal thinning, axial elongation and hyperosmotic ion distribution patterns across the retina and choroid previously reported in FDM and predicted by RIDE.
Collapse
Affiliation(s)
- Loretta Giummarra
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Sheila G Crewther
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Nina Riddell
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Melanie J Murphy
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David P Crewther
- Centre for Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
48
|
Anderson AP, Butterfield JS, Subramanian PS, Clark TK. Intraocular pressure and cardiovascular alterations investigated in artificial gravity as a countermeasure to spaceflight associated neuro-ocular syndrome. J Appl Physiol (1985) 2018; 125:567-576. [PMID: 29745798 DOI: 10.1152/japplphysiol.00082.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Artificial gravity (AG) has been proposed as a countermeasure to spaceflight-associated neuro-ocular syndrome (SANS). The etiology of SANS is unknown but mimicking gravitational loading through AG may mitigate these negative adaptations. Seventeen subjects (nine men, eight women; 18-32 yr) were analyzed in four experimental conditions: 1) standing, 2) supine, 3) AG with the center of rotation at the eye (AGEC), and 4) AG with 2 Gs at the feet (AG2G). In both AG conditions, subjects were spun to produce 1 G at their center of mass. Data included self-administered intraocular pressure (IOP, Tono-pen AVIA, Depew, NY), heart rate (HR), and mean arterial blood pressure (MAP, Omron Series 10, Omron Healthcare, Kyoto, Japan). Data were analyzed with repeated measures ANOVAs with Tukey-Kramer corrections for multiple pairwise comparisons. IOP was 15.7 ± 1.4 mmHg (mean ± 95% confidence interval) standing, 18.8 ± 1.3 mmHg supine, 18.5 ± 1.7 mmHg in AGEC, and 17.5 ± 1.5 mmHg in AG2G. Postures showed a main effect [F(3,48) = 11.0, P < 0.0005], with standing significantly lower than supine ( P = 0.0009), AGEC ( P = 0.002), and AG2G (0.036). Supine, AGEC, and AG2G were not statistically different. HR and MAP were lower in supine compared with all other postures ( P = 0.002 to P < 0.0005), but there were no differences between standing, AGEC, and AG2G. IOP in supine and standing was consistent with previous studies, but contrary to our hypothesis, remained elevated in both AG conditions. Cardiovascular parameters and hydrostatic gradients determine IOP, which remain unchanged compared with standing. These results suggest additional influence on IOP from previously unconsidered factors. NEW & NOTEWORTHY This is the first study, to the authors' knowledge, to measure intraocular pressure in short-radius centrifuge artificial gravity (AG), which has been proposed as a countermeasure to the spaceflight-associated neuro-ocular syndrome (SANS). If the etiology of SANS is related to intraocular pressure, these results have implications for whether or not short-radius AG can be used to prevent ocular changes relevant to it. Our results indicate this proposed countermeasure merits further investigation.
Collapse
Affiliation(s)
- Allison P Anderson
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado
| | - Joseph S Butterfield
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado.,Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | | | - Torin K Clark
- Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado
| |
Collapse
|
49
|
Zhang LF, Hargens AR. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiol Rev 2017; 98:59-87. [PMID: 29167331 DOI: 10.1152/physrev.00017.2016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight.
Collapse
Affiliation(s)
- Li-Fan Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China; and Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Alan R Hargens
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China; and Department of Orthopaedic Surgery, University of California, San Diego, California
| |
Collapse
|
50
|
Zwart SR, Gibson CR, Gregory JF, Mader TH, Stover PJ, Zeisel SH, Smith SM. Astronaut ophthalmic syndrome. FASEB J 2017; 31:3746-3756. [DOI: 10.1096/fj.201700294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sara R. Zwart
- Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonTexasUSA
| | | | - Jesse F. Gregory
- Food Science and Human Nutrition DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | | | - Patrick J. Stover
- Division of Nutritional SciencesCornell University, IthacaNew YorkUSA
| | - Steven H. Zeisel
- Nutrition Research InstituteUniversity of North Carolina at Chapel HillKannapolisNorth CarolinaUSA
| | - Scott M. Smith
- Human Health and Performance DirectorateNational Aeronautics and Space Administration Lyndon B. Johnson Space CenterHoustonTexasUSA
| |
Collapse
|