1
|
Lin YS, Morozov V, Kadry AR, Caffrey JL, Chou WC. Reconstructing population exposures to acrylamide from human monitoring data using a pharmacokinetic framework. CHEMOSPHERE 2023; 331:138798. [PMID: 37137393 PMCID: PMC12035573 DOI: 10.1016/j.chemosphere.2023.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Acrylamide toxicity involves several metabolic pathways. Thus, a panel of blood and urinary biomarkers for the evaluation of acrylamide exposure was deemed appropriate. OBJECTIVE The study was designed to evaluate daily acrylamide exposure in US adults via hemoglobin adducts and urinary metabolites using a pharmacokinetic framework. METHODS A cohort of 2798 subjects aged 20-79 was selected from the National Health and Nutrition Examination Survey (NHANES, 2013-2016) for analysis. Three acrylamide biomarkers including hemoglobin adducts of acrylamide in blood and two urine metabolites, N-Acetyl-S-(2-carbamoylethyl)cysteine (AAMA) and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine (GAMA) were used to estimate daily acrylamide exposure using validated pharmacokinetic prediction models. Multivariate regression models were also used to examine key factors in determining estimated acrylamide intake. RESULTS The estimated daily acrylamide exposure varied across the sampled population. Estimated acrylamide daily exposure was comparable among the three different biomarkers (median: 0.4-0.7 μg/kg/d). Cigarette smoking emerged as the leading contributor to the acquired acrylamide dose. Smokers had the highest estimated acrylamide intake (1.20-1.49 μg/kg/d) followed by passive smokers (0.47-0.61) and non-smokers (0.45-0.59). Several covariates, particularly, body mass index and race/ethnicity, played roles in determining estimated exposures. DISCUSSION Estimated daily acrylamide exposures among US adults using multiple acrylamide biomarkers were similar to populations reported elsewhere providing additional support for using the current approach in assessing acrylamide exposure. This analysis assumes that the biomarkers used indicate intake of acrylamide into the body, which is consistent with the substantial known exposures due to diet and smoking. Although this study did not explicitly evaluate background exposure arising from analytical or internal biochemical factors, these findings suggest that the use of multiple biomarkers may reduce uncertainties regarding the ability of any single biomarker to accurately represent actual systemic exposures to the agent. This study also highlights the value of integrating a pharmacokinetic approach into exposure assessments.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Office of Research and Development, US Environmental Protection Agency, Washington, DC, 20460, USA.
| | - Viktor Morozov
- Office of Research and Development, US Environmental Protection Agency, Washington, DC, 20460, USA
| | - Abdel-Razak Kadry
- School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - James L Caffrey
- Institute of Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Wei-Chun Chou
- College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Albasheer O, Alhazmi AH, Alharbi A, Makeen AM, Alqassim AY, Al-Musawa HI, Alabah AE, Alhazmi AK, Khormi NA, Hamzi YA, Sharhah EYA, Salami RM, Alshareef M, Suwaydi H, Elkhobby A. Effectiveness and determinants of smoking cessation in the Saudi Arabian Region of Jazan: A cross-sectional study. Tob Induc Dis 2023; 21:06. [PMID: 36721860 PMCID: PMC9865635 DOI: 10.18332/tid/156842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Smoking cessation has significant health benefits. The purpose of this study is to assess the efficacy and related factors of smoking cessation therapies in the Jazan Region of Saudi Arabia. METHODS This is a cross-sectional study that took place at smoking cessation clinics in primary healthcare centers between January 2019 and January 2020. RESULTS This study enrolled a total of 103 people. The success rate for quitting smoking was 36% at three months, with a 13% relapse rate at six months. Age (p=0.017), occupation (p=0.046), daily cigarette intake (p=0.015), and number of visits (p=0.001) were all found to be significant determinants of smoking cessation. In the multivariate analysis, only the number of visits increased the likelihood to quit smoking (AOR=0.31; 95% CI: 0.15-0.63). Self-efficacy was cited as the primary reason for quitting smoking by 71% of the participants, whereas family support, smoking cessation therapies, and friends' support were cited as predictive variables by 18%, 10%, and 1% of the participants, respectively. CONCLUSIONS Smokers who received the smoking cessation intervention package were three times more likely to succeed in giving up smoking when compared to those who received the routine service. Regular follow-up during smoking cessation interventions significantly enhanced the quit rate. It is recommended that pharmacotherapy strategies and intense therapy performed face-to-face with a cessation counselor be combined to improve the quit rate.
Collapse
Affiliation(s)
- Osama Albasheer
- Family and Community Medicine Department, Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | - Abdulaziz H. Alhazmi
- Emerging and Epidemic Infectious Diseases Research Unit, Medical Research Center, Jazan University, Jazan City, Saudi Arabia,Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan City, Saudi Arabia
| | - Abdullah Alharbi
- Family and Community Medicine Department, Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | - Anwar M. Makeen
- Family and Community Medicine Department, Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | - Ahmad Y. Alqassim
- Family and Community Medicine Department, Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | | | - Amjad E. Alabah
- Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | | | - Nawaf A. Khormi
- Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | - Yazeed A. Hamzi
- Faculty of Medicine, Jazan University, Jazan City, Saudi Arabia
| | | | | | - Mohammed Alshareef
- Family Medicine and Primary Health Care, Ministry of Health, Jazan City, Saudi Arabia
| | - Hassan Suwaydi
- Family Medicine and Primary Health Care, Ministry of Health, Jazan City, Saudi Arabia
| | - Ahmed Elkhobby
- Family Medicine and Primary Health Care, Ministry of Health, Jazan City, Saudi Arabia
| |
Collapse
|
3
|
Wan X, Zhang Y, Gao S, Shen X, Jia W, Pan X, Zhuang P, Jiao J, Zhang Y. Machine learning prediction of exposure to acrylamide based on modelling of association between dietary exposure and internal biomarkers. Food Chem Toxicol 2022; 170:113498. [PMID: 36328216 DOI: 10.1016/j.fct.2022.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The ubiquitous occurrence of acrylamide in various thermal processing food products poses a potential health risk for the public. An accurate exposure assessment is crucial to the risk evaluation of acrylamide. Machine learning emerging as a powerful computational tool for prediction was employed to establish the association between internal exposure and dietary exposure to acrylamide among a Chinese cohort of middle-aged and elderly population (n = 1,272). Five machine learning regression models were constructed and compared to predict the daily dietary acrylamide exposure based on urinary biomarkers including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA). Other important covariates such as age, gender, physical activities, and total energy intake were also considered as predictors in the models. Average dietary intake of acrylamide among Chinese elderly participants was 8.9 μg/day, while average urinary contents of AAMA, AAMA-sul, GAMA, and iso-GAMA were 52.2, 19.1, 4.4, and 1.7 nmol/g Ucr (urine creatinine), respectively. Support vector regression (SVR) model showed the best prediction performance with a R of 0.415, followed by light gradient boosting machine (LightGBM) model (R = 0.396), adjusted multiple linear regression (MLR) model (R = 0.378), neural networks (NN) model (R = 0.365), MLR model (R = 0.363), and extreme gradient boosting (XGBoost) model (R = 0.337). The present study firstly correlated dietary exposure with internal exposure to acrylamide among Chinese elderly population, providing an innovative perspective for the exposure assessment of acrylamide.
Collapse
Affiliation(s)
- Xuzhi Wan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Sunan Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinyi Shen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xingqi Pan
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Wan X, Zhu F, Zhuang P, Liu X, Zhang L, Jia W, Jiao J, Xu C, Zhang Y. Associations of Hemoglobin Adducts of Acrylamide and Glycidamide with Prevalent Metabolic Syndrome in a Nationwide Population-Based Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8755-8766. [PMID: 35796657 DOI: 10.1021/acs.jafc.2c03016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental and dietary exposures to acrylamide (AA) have been linked with various metabolic-related outcomes, but the results are mixed. However, the association between long-term exposure to AA and the prevalence of metabolic syndrome (MetS) remains unknown. In this study, we aimed to assess the relationship between hemoglobin adducts of AA, biomarkers of internal exposure to AA, and MetS prevalence among a U.S. nationwide population. MetS patients were defined by meeting three or more of the following five characteristics: elevated blood pressure, high fasting glucose, abdominal obesity, hypertriglyceridemia, and lower high-density lipoprotein cholesterol (HDL-C). Multivariate-adjusted logistic regression models and restricted cubic spline models were used to analyze the associations between AA hemoglobin biomarkers and MetS prevalence. A total of 1552 MetS cases were documented. After adjustment for the potential confounders, the odds ratios (95% confidence intervals) of MetS prevalence in the highest quartile of AA hemoglobin biomarkers were 0.60 (0.40-0.89), 1.26 (0.84-1.89), 0.93 (0.71-1.21), and 1.61 (1.18-2.20) for HbAA, HbGA, the sum of HbAA and HbGA (HbAA + HbGA), and the ratio of HbGA to HbAA (HbGA/HbAA), compared with the lowest quartile, respectively. HbAA was significantly and inversely associated with blood pressure, fasting glucose, abdominal obesity, hypertriglyceridemia, and low HDL-C, while the HbGA/HbAA ratio was also positively associated with abdominal obesity, hypertriglyceridemia, and low HDL-C. The restricted cubic spline models revealed a positive relationship between the HbGA/HbAA ratio and the prevalence of MetS, while the HbAA level was inversely associated with MetS prevalence. Our current findings provided epidemiological evidence that HbAA and the HbGA/HbAA ratio were significantly associated with MetS prevalence among general U.S. adults. Further studies should be conducted to examine the association between internal exposure to AA and MetS prevalence.
Collapse
Affiliation(s)
- Xuzhi Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Fanghuan Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Pan Zhuang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lange Zhang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Yu Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University; Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Wu H, Sun X, Jiang H, Hu C, Xu J, Sun C, Wei W, Han T, Jiang W. The Association Between Exposure to Acrylamide and Mortalities of Cardiovascular Disease and All-Cause Among People With Hyperglycemia. Front Cardiovasc Med 2022; 9:930135. [PMID: 35924219 PMCID: PMC9339995 DOI: 10.3389/fcvm.2022.930135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundAcrylamide is a common environmental volatile organic compound that humans are frequently exposed to in their daily lives. However, whether exposure to acrylamide is associated with long-term survival in patients with hyperglycemia remains largely unknown.Methods and ResultsA total of 3,601 hyperglycemic people were recruited in this study, including 1,247 people with diabetes and 2,354 people with pre-diabetes, who enrolled in the National Health and Nutrition Examination survey (2003–2004, 2005–2006, and 2013–2014). The acrylamide exposure was measured by the serum hemoglobin adduct of acrylamide (HbAA) and glycidamide (HbGA), and the ratio of HbAA and HbGA (HbAA/HbGA) was calculated, which were all categorized into quintiles. The National Death Index was used to identify the participants' death information until 2015. Cox proportional hazards (CPHs) regression models were performed to examine the survival relationship between these biomarkers and mortality. During the 28,652 person-year follow-up, 268 deaths due to the cardiovascular disease (CVD) were documented. After adjustment for multiple confounders, compared with participants in the lowest quintile of HbAA/HbGA, the participants in the highest quintile were more likely to die due to CVD (hazard ratio [HR] = 1.61, 95% CI: 1.09–2.39) and all-cause (HR = 1.59, 95% CI: 1.25–2.01). Moreover, subgroup analysis showed that the highest quintile of HbAA/HbGA in the people with diabetes or pre-diabetes was related to mortalities risk of CVD (HRdiabetes = 1.92, 95% CI: 1.11–3.31; HRpre−diabetes = 1.78, 95% CI: 1.01–3.14) and all-cause mortality (HRdiabetes = 1.81, 95% CI: 1.27–2.58; HRpre−diabetes = 1.59, 95% CI: 1.14–2.20). Additionally, no significant association between the levels of HbAA or HbGA and CVD mortality was observed among people with diabetes or pre-diabetes.ConclusionHigher levels of HbAA/HbGA are associated with greater mortalities of CVD and all-cause among hyperglycemic people.
Collapse
Affiliation(s)
- Huanyu Wu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinyi Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongyan Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Cong Hu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Wei Wei
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Tianshu Han
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Wenbo Jiang
| |
Collapse
|
6
|
Albiach-Delgado A, Esteve-Turrillas FA, Fernández SF, Garlito B, Pardo O. Review of the state of the art of acrylamide human biomonitoring. CHEMOSPHERE 2022; 295:133880. [PMID: 35150700 DOI: 10.1016/j.chemosphere.2022.133880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Human biomonitoring (HBM) is a very useful tool for assessing human exposure to acrylamide (AA). In the framework of the Human Biomonitoring Initiative (HBM4EU) AA was included in its second list of priority substances due to the potential threat to human health. HBM data on AA are scarce, but the use of specific and sensitive biomarkers represents a reliable indicator of exposure. In this review an overview of available knowledge on HBM of AA is provided in terms of: i) preferred exposure biomarkers and matrices for the HBM of AA; ii) analytical methods for determining its biomarkers of exposure in the most used specimens; iii) current HBM data available; and iv) tools for interpreting HBM data for AA in relation to risk assessment. Finally, future trends in this field are discussed.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | | | - Sandra F Fernández
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Borja Garlito
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Olga Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain.
| |
Collapse
|
7
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Li Z, Sun J, Zhang D. Association between Acrylamide Hemoglobin Adduct Levels and Depressive Symptoms in US Adults: NHANES 2013-2016. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13762-13771. [PMID: 34751566 DOI: 10.1021/acs.jafc.1c04647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is widely present in heat-processed carbohydrate-rich food, cigarette smoke, and the environment. Prolonged exposure to AA may cause central nervous system damage. However, few epidemiologic studies assessed the association between hemoglobin adduct levels of AA or its metabolite glycidamide (GA) and depressive symptoms. We included 3595 US adults (≥18 years) from the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Data for hemoglobin adduct levels from AA and GA (HbAA and HbGA) were used as a measure of internal dose. Depressive symptom data were from mental health questionnaires and measured by nine-item Patient Health Questionnaire (PHQ-9) scores. Results of logistic regression models showed a positive association between HbAA in quartile 4 and depressive symptoms with ORs and 95% CI of 2.47 (1.29, 4.77) [ORcontinuous HbAA and 95% CI: 1.006 (1.000, 1.013)], but an inverse association was detected in quartiles 2 and 3 of HbGA/HbAA [0.62 (0.38, 0.99) and 0.54 (0.32, 0.92), respectively]. Especially, an association between HbAA and depressive symptoms was strengthened in smokers, in age 18-39 and 40-59 years and BMI 25-30 kg/m2 groups. Further explorations are needed to study the found associations between HbAA, HbGA, and depressive symptoms.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Epidemiology and Health Statistics, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
9
|
Liu Z, Wang J, Chen S, Xu C, Zhang Y. Associations of acrylamide with non-alcoholic fatty liver disease in American adults: a nationwide cross-sectional study. Environ Health 2021; 20:98. [PMID: 34461916 PMCID: PMC8407016 DOI: 10.1186/s12940-021-00783-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acrylamide (AA) is a toxicant to humans, but the association between AA exposure and the risk of non-alcoholic fatty liver disease (NAFLD) remains unclear. In this study, our objective is to examine the cross-sectional association between AA exposure and the risk of NAFLD in American adults. METHODS A total of 3234 individuals who took part in the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2013-2016 were enrolled in the study. NAFLD was diagnosed by the U.S. Fatty Liver Index. Multivariable logistic regression models were applied to estimate the association between AA and NAFLD in the whole group and the non-smoking group. RESULTS We discovered that in the whole group, serum hemoglobin adducts of AA (HbAA) were negatively associated with the prevalence of NAFLD after adjustment for various covariables (P for trend < 0.001). Compared with individuals in the lowest HbAA quartiles, the odds ratios (ORs) with 95% confidence intervals (CIs) in the highest HbAA quartiles were 0.61 (0.46-0.81) and 0.57 (0.36-0.88) in the whole group and the non-smoking group, respectively. In contrast, HbGA/HbAA showed a significantly positive correlation with the prevalence of NAFLD in both groups (P for trend < 0.001). In addition, HbGA was not significantly associated with NAFLD in the whole group or the non-smoking group. CONCLUSIONS HbAA is negatively associated with NAFLD whereas HbGA/HbAA is positively associated with NAFLD in adults in the U.S. Further studies are needed to clarify these relationships.
Collapse
Affiliation(s)
- Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
10
|
Yamamoto J, Ishihara J, Matsui Y, Matsuda T, Kotemori A, Zheng Y, Nakajima D, Terui M, Shinohara A, Adachi S, Kawahara J, Sobue T. Acrylamide-Hemoglobin Adduct Levels in a Japanese Population and Comparison with Acrylamide Exposure Assessed by the Duplicated Method or a Food Frequency Questionnaire. Nutrients 2020; 12:E3863. [PMID: 33348772 PMCID: PMC7767078 DOI: 10.3390/nu12123863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
The levels of hemoglobin adducts of acrylamide (AA-Hb), a biomarker of acrylamide exposure, have not been reported for Japanese subjects. Herein, we determined the AA-Hb levels in a Japanese population and compared them with the estimated dietary intake from the duplicate diet method (DM) and a food frequency questionnaire (FFQ). One-day DM samples, FFQ, and blood samples were collected from 89 participants and analyzed for acrylamide. AA-Hb was analyzed using liquid chromatography tandem mass spectrometry and the N-alkyl Edman method. Participants were divided into tertiles of estimated acrylamide intake and geometric means (GMs) of AA-Hb adjusted for sex and smoking status. A stratified analysis according to smoking status was also performed. The average AA-Hb levels for all participants, never, past, and current smokers were 46, 38, 65, and 86 pmol/g Hb, respectively. GMs of AA-Hb levels in all participants were significantly associated with tertiles of estimated acrylamide intake from DM (p for trend = 0.02) and FFQ (p for trend = 0.04), although no association with smokers was observed. AA-Hb levels reflected smoking status, which were similar to values reported in Western populations, and they were associated with estimated dietary intake of acrylamide when adjusted for sex and smoking status.
Collapse
Affiliation(s)
- Junpei Yamamoto
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
| | - Junko Ishihara
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
| | - Yasuto Matsui
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (Y.M.); (T.M.)
| | - Tomonari Matsuda
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (Y.M.); (T.M.)
| | - Ayaka Kotemori
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yazhi Zheng
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Daisuke Nakajima
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Miho Terui
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Akiko Shinohara
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Shuichi Adachi
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Junko Kawahara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
11
|
Huang M, Zhuang P, Jiao J, Wang J, Zhang Y. Association of acrylamide hemoglobin biomarkers with obesity, abdominal obesity and overweight in general US population: NHANES 2003-2006. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:589-596. [PMID: 29533795 DOI: 10.1016/j.scitotenv.2018.02.338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Exposure to chemical contaminants is considered as one of risk factors to the current epidemic of obesity. Acrylamide (AA) is a ubiquitous chemical contaminant in environmental waste, mainstream cigarette smoke and carbohydrate-rich foods, and widely used in industrial manufacturers and cosmetics. Few studies have highlighted the association of daily exposure to AA with obesity-related outcomes. We analyzed data from 8364 participants who aged 20-85years and were recruited in National Health and Nutrition Examination Surveys (NHANES) 2003-2006. We established the model of PROC Survey Logistic regressions via using AA biomarkers in blood, hemoglobin adducts of acrylamide and glycidamide (HbAA and HbGA), as the measure of internal exposure to AA, and assessing obesity, abdominal obesity and overweight with body mass index (BMI) or waist circumference (WC). After the adjustment of sociodemographic variables, lifestyle behaviors, and health-related factors, the ratio of HbGA to HbAA (HbGA/HbAA) was significantly associated with obesity (p for trend<0.0001). The odd ratios (ORs) with 95% confidence intervals (CIs) of HbGA/HbAA across increasing quartiles were 1.740 (1.413-2.144), 2.604 (2.157-3.144), and 2.863 (2.425-3.380) compared with the lowest quartile. HbGA was positively associated with obesity [OR (95% CI): 1.226 (1.041-1.443), 1.283 (1.121-1.468), and 1.398 (1.165-1.679); p for trend=0.0004], while HbAA was inversely associated with obesity [OR (95% CI): 0.839 (0.718-0.980), 0.713 (0.600-0.848), and 0.671 (0.554-0.811); p for trend<0.0001]. Negative associations were found between the sum of HbAA and HbGA (HbAA+HbGA) and the body weight outcomes. Similar associations were also observed between the hemoglobin biomarkers of AA and abdominal obesity as well as overweight. Thus, the hemoglobin adducts of AA as long-term internal exposure biomarkers are strongly associated with obesity-related outcomes in a population of US adults.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Duke TJ, Ruestow PS, Marsh GM. The influence of demographic, physical, behavioral, and dietary factors on hemoglobin adduct levels of acrylamide and glycidamide in the general U.S. population. Crit Rev Food Sci Nutr 2017; 58:700-710. [PMID: 28956625 DOI: 10.1080/10408398.2016.1215289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aims to better understand the individual characteristics and dietary factors that affect the relationship between estimated consumption of acrylamide and measured acrylamide hemoglobin adduct levels (HbAA) and glycidamide hemoglobin adduct levels (HbGA). METHODS Acrylamide levels in individual food items, estimated by the U.S. Food and Drug Administration, were linked to data collected in the 2003-2004 National Health and Nutrition Examination Survey. Multivariable linear regression was used to evaluate the relationship between estimated consumption of acrylamide and HbAA. RESULTS A significant association between acrylamide intake and HbAA was observed, after adjustment for gender, race/ethnicity, smoking status, age, and BMI (R2 = 0.34). Across quartiles of acrylamide consumption, HbAA and HbGA levels increased monotonically. Among nonsmokers, an evaluation of three heavily consumed, high AA concentration foods showed a positive trend between the consumed amount of fried potatoes and HbAA in children, adolescents, and adults. A significant positive trend between the consumed amount of potato chips or coffee was indicated in adolescents, adults, and seniors. CONCLUSIONS Consumption of some individual foods affects HbAA concentrations more strongly and in an age-dependent manner. Our results suggest that effective dietary guidelines for controlling acrylamide intake should be subpopulation specific.
Collapse
Affiliation(s)
| | | | - Gary M Marsh
- b Department of Biostatistics , University of Pittsburgh , Pittsburgh , Pennsylvania , USA.,c Cardno ChemRisk , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
13
|
Obón-Santacana M, Lujan-Barroso L, Freisling H, Cadeau C, Fagherazzi G, Boutron-Ruault MC, Kaaks R, Fortner RT, Boeing H, Ramón Quirós J, Molina-Montes E, Chamosa S, Castaño JMH, Ardanaz E, Khaw KT, Wareham N, Key T, Trichopoulou A, Lagiou P, Naska A, Palli D, Grioni S, Tumino R, Vineis P, De Magistris MS, Bueno-de-Mesquita HB, Peeters PH, Wennberg M, Bergdahl IA, Vesper H, Riboli E, Duell EJ. Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort. Eur J Nutr 2017; 56:1157-1168. [PMID: 26850269 PMCID: PMC5576523 DOI: 10.1007/s00394-016-1165-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE Acrylamide was classified as 'probably carcinogenic' to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th-75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8-53.1) pmol/g Hb and 34.2 (25.4-46.9) pmol/g Hb, respectively. RESULTS The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively. CONCLUSIONS Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - Claire Cadeau
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Guy Fagherazzi
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114/116, 14558, Nuthetal, Germany
| | - J Ramón Quirós
- Public Health and Participation Directorate, Ciriaco Miguel Vigil 9, 33009, Asturias, Spain
| | - Esther Molina-Montes
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Cuesta del Observatorio, 4, Campus Universitario de Cartuja, 18080, Granada, Spain
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
| | - Saioa Chamosa
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, Avda. Navarra, 4, 20013, San Sebastián, Spain
| | - José María Huerta Castaño
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Authority, Ronda de Levante, 11, 30008, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Navarre Public Health Institute, Polígono de Landaben C/F, 31012, Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge, CB2 0SR, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, 184 Hills Road, Cambridge, CB2 8PQ, UK
| | - Tim Key
- Cancer Epidemiology Unit, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Androniki Naska
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Ponte Nuovo, Via delle Oblate n.2, 50141, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P.Arezzo" Hospital, Via Civile, 97100, Ragusa, Italy
| | - Paolo Vineis
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126, Turin, Italy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Maria Santucci De Magistris
- Department of Clinical and Experimental Medicine, Federico II University, Corso Umberto I, 40bis, 80138, Naples, Italy
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Huispost Str. 6.131, 3508GA, Utrecht, The Netherlands
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Biobank Research, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Hubert Vesper
- Centers for Disease Control and Prevention, MS F25, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|
14
|
Pfeiffer CM, Lacher DA, Schleicher RL, Johnson CL, Yetley EA. Challenges and Lessons Learned in Generating and Interpreting NHANES Nutritional Biomarker Data. Adv Nutr 2017; 8:290-307. [PMID: 28298273 PMCID: PMC5347107 DOI: 10.3945/an.116.014076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
For the past 45 y, the National Center for Health Statistics at the CDC has carried out nutrition surveillance of the US population by collecting anthropometric, dietary intake, and nutritional biomarker data, the latter being the focus of this publication. The earliest biomarker testing assessed iron and vitamin A status. With time, a broad spectrum of water- and fat-soluble vitamins was added and biomarkers for other types of nutrients (e.g., fatty acids) and bioactive dietary compounds (e.g., phytoestrogens) were included in NHANES. The cross-sectional survey is flexible in design, and biomarkers may be measured for a short period of time or rotated in and out of surveys depending on scientific needs. Maintaining high-quality laboratory measurements over extended periods of time such that trends in status can be reliably assessed is a major goal of the testing laboratories. Physicians, health scientists, and policy makers rely on the NHANES reference data to compare the nutritional status of population groups, to assess the impact of various interventions, and to explore associations between nutritional status and health promotion or disease prevention. Focusing on the continuous NHANES, which started in 1999, this review uses a "lessons learned" approach to present a series of challenges that are relevant to researchers measuring biomarkers in NHANES and beyond. Some of those challenges are the use of multiple related biomarkers instead of a single biomarker for a specific nutrient (e.g., folate, vitamin B-12, iron), adhering to special needs for specimen collection and handling to ensure optimum specimen quality (e.g., vitamin C, folate, homocysteine, iodine, polyunsaturated fatty acids), the retrospective use of long-term quality-control data to correct for assay shifts (e.g., vitamin D, vitamin B-12), and the proper planning for and interpretation of crossover studies to adjust for systematic method changes (e.g., folate, vitamin D, ferritin).
Collapse
Affiliation(s)
| | - David A Lacher
- National Center for Health Statistics, CDC, Hyattsville, MD; and
| | | | | | | |
Collapse
|
15
|
|
16
|
Rybak ME, Sternberg MR, Pfeiffer CM. Sociodemographic and lifestyle variables are compound- and class-specific correlates of urine phytoestrogen concentrations in the U.S. population. J Nutr 2013; 143:986S-94S. [PMID: 23596167 PMCID: PMC4804190 DOI: 10.3945/jn.112.172981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Isoflavones and lignans are plant-derived dietary compounds generally believed to be beneficial to human health. We investigated the extent to which sociodemographic (age, sex, race-ethnicity, education, and income) and lifestyle variables (smoking, alcohol consumption, BMI, physical activity, and dietary supplement use) were correlates of spot urine concentration for daidzein, genistein, O-desmethylangolensin (DMA), equol, enterodiol, and enterolactone in the U.S. population aged ≥ 20 y (NHANES 2003-2006). We performed correlation analyses with continuous variables and calculated stratified unadjusted geometric means for each sociodemographic and lifestyle variable. We used bivariate significance testing and covariate adjustment by use of multiple regression models to identify influential variables and used β coefficients to estimate relative effects. Urine creatinine was also included in our analyses because of its use in correcting for variable dilution in spot urine samples. We observed many significant (P < 0.05) associations with the sociodemographic and lifestyle variables that withstood covariate adjustment. Smoking was a significant correlate of urine DMA and enterolactone, with concentrations at least 25% lower in smokers vs. nonsmokers. Consumers of 1 daily alcoholic drink vs. none were estimated to have 18-21% lower urine equol and DMA concentrations. A 25% increase in BMI was associated with a 21% lower urine enterolactone concentration, and increasing physical activity was associated with a >6% higher urine enterolactone concentration. Dietary supplement use was not significantly associated with any of the urine phytoestrogens. Overall, we found that relationships between sociodemographic and lifestyle variables and urine phytoestrogen concentration were highly compound and class specific.
Collapse
Affiliation(s)
- Michael E. Rybak
- National Center for Environmental Health, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Maya R. Sternberg
- National Center for Environmental Health, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Christine M. Pfeiffer
- National Center for Environmental Health, US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA,Corresponding author: Christine M. Pfeiffer, Division of Laboratory Sciences, National Center for Environmental Health, US Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F-55 Atlanta, GA, USA 30341.
| |
Collapse
|