1
|
Fei J, Liu L, Li JF, Zhou Q, Wei Y, Zhou TD, Fu L. Associations of Vitamin D With GPX4 and Iron Parameters in Chronic Obstructive Pulmonary Disease Patients: A Case-Control Study. Can Respir J 2024; 2024:4505905. [PMID: 39502871 PMCID: PMC11535414 DOI: 10.1155/2024/4505905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Vitamin D deficiency elevates the risk of chronic obstructive pulmonary disease (COPD) patients. Iron parameters elevation and glutathione peroxidase 4 (GPX4) reduction are involved in the process of COPD. The goal is to explore the associations of vitamin D with GPX4 and iron parameters in COPD patients through a case-control study. Methods: COPD patients and control subjects were enrolled. Serum samples and lung tissues were collected. Serum vitamin D and iron levels and pulmonary ferritin and GPX4 expressions were determined. In addition, human pulmonary epithelial cells (BEAS-2B) were incubated with 1,25(OH)2D3 (100 nM), the active form of vitamin D3. Then, vitamin D receptor (VDR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) signaling were detected. Results: In patients with COPD, serum 25-hydroxyvitamin D (25(OH)D) decreased, and iron and ferritin levels in serum and lung tissues increased. Furthermore, pulmonary expression of GPX4 was reduced. Correlative analyzes indicated that lung function was inversely correlated with iron parameters and positively correlated with GPX4. The results showed that serum 25(OH)D deficiency was associated with an elevation in serum iron parameters and a reduction in pulmonary GPX4. In addition, VDR- and Nrf-2-positive lung nuclei were decreased in COPD patients than in control subjects. In patients with COPD, the results indicated a positive relationship between VDR and Nrf-2. Further analysis revealed that Nrf-2-positive nuclei were negatively correlated with iron parameters. In vitro experiments found that 1,25(OH)2D3 treatment activated VDR signaling and elevated the expression of Nrf-2 and GPX4 in BEAS-2B cells. Conclusions: Vitamin D deficiency is positively associated with GPX4 reduction and iron parameters elevation in COPD patients. It is recommended to explore the role of vitamin D supplementation in the progression of COPD.
Collapse
Affiliation(s)
- Jun Fei
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
- Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, Anhui, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yingshan, Fuyang 236000, Anhui, China
| | - Jia-Fei Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Chuzhou, Chuzhou 239001, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yu Wei
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ting-Dong Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Lin Fu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Yeung WCG, Toussaint ND, Badve SV. Vitamin D therapy in chronic kidney disease: a critical appraisal of clinical trial evidence. Clin Kidney J 2024; 17:sfae227. [PMID: 39119524 PMCID: PMC11306979 DOI: 10.1093/ckj/sfae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
In people with chronic kidney disease (CKD), the physiology of vitamin D is altered and leads to abnormalities in bone and mineral metabolism which contribute to CKD mineral and bone disorder (CKD-MBD). Observational studies show an association between vitamin D deficiency and increased risk of mortality, cardiovascular disease and fracture in CKD. Although vitamin D therapy is widely prescribed in people with CKD, clinical trials to date have failed to demonstrate a clear benefit of either nutritional vitamin D supplementation or active vitamin D therapy in improving clinical outcomes in CKD. This review provides an updated critical analysis of recent trial evidence on vitamin D therapy in people with CKD.
Collapse
Affiliation(s)
- Wing-Chi G Yeung
- Department of Nephrology, Wollongong Hospital, Wollongong, New South Wales, Australia
- Renal and Metabolic Division, The George Institute for Global Health, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine (RMH), University of Melbourne, Parkville, Victoria, Australia
| | - Sunil V Badve
- Renal and Metabolic Division, The George Institute for Global Health, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Nephrology, St George Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
5
|
Fu YF, Guo YX, Xia SH, Zhou TT, Zhao YC, Jia ZH, Zhang Y. Eldecalcitol protected osteocytes against ferroptosis of D-gal-induced senescent MLO-Y4 cells and ovariectomized mice. Exp Gerontol 2024; 189:112408. [PMID: 38521178 DOI: 10.1016/j.exger.2024.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Active vitamin D analog eldecalcitol is clinically applied in treatment of postmenopausal osteoporosis. This study aims to determine the role of eldecalcitol in the protection of osteocytes from senescence and the associated ferroptosis. METHODS The MLO-Y4 osteocytes were exposed to D-gal inducing senescence. The ovariectomized (OVX) mice treated with D-gal using as an aging inducer were intraperitoneally injected with eldecalcitol. The multiplexed confocal imaging, fluorescence in situ hybridization and transmission electron microscopy were applied in assessing osteocytic properties. Immunochemical staining and immunoblotting were carried out to detect abundance and expression of molecules. RESULTS The ablation of vitamin D receptor led to a reduction in amounts of osteocytes, a loss of dendrites, an increase in mRNA expression of SASP factors and in protein expression of senescent factors, as well as changes in mRNA expression of ferroptosis-related genes (PTGS2 & RGS4). Eldecalcitol reversed senescent phenotypes of MLO-Y4 cells shown by improving cell morphology and density, decreasing β-gal-positive cell accumulation, and down-regulating protein expression (P16, P21 & P53). Eldecalcitol reduced intracellular ROS and MDA productions, elevated JC-1 aggregates, and up-regulated expression of Nrf2 and GPX4. Eldecalcitol exhibited osteopreserve effects in D-gal-induced aging OVX mice. The confocal imaging displayed its improvement on osteocytic network organization. Eldecalcitol decreased the numbers of senescent osteocytes at tibial diaphysis by SADS assay and attenuated mRNA expression of SASP factors as well as down-regulated protein expression of senescence-related factors and restored levels of ferroptotic biomarkers in osteocytes-enriched bone fraction. It reduced 4-HNE staining area, stimulated Nrf2-positive staining, and promoted nuclear translocation of Nrf2 in osteocytes of mice as well as inhibited and promoted protein expression of 4-HNE and Nrf2, respectively, in osteocytes-enriched bone fraction. CONCLUSIONS The present study revealed the ameliorative effects of eldecalcitol on senescence and the associated ferroptosis of osteocytes, contributing to its preservation against osteoporosis of D-gal-induced senescent ovariectomized mice.
Collapse
Affiliation(s)
- Yong-Fang Fu
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Yi-Xun Guo
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Shi-Hui Xia
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Ting-Ting Zhou
- Experimental Research Center, Cangzhou Hospital of Integrated TCM-WM, Cangzhou 061001, China
| | - Yun-Chao Zhao
- Experimental Research Center, Cangzhou Hospital of Integrated TCM-WM, Cangzhou 061001, China
| | - Zhen-Hua Jia
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, China.
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
6
|
Nardin M, Verdoia M, Nardin S, Cao D, Chiarito M, Kedhi E, Galasso G, Condorelli G, De Luca G. Vitamin D and Cardiovascular Diseases: From Physiology to Pathophysiology and Outcomes. Biomedicines 2024; 12:768. [PMID: 38672124 PMCID: PMC11048686 DOI: 10.3390/biomedicines12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is rightly recognized as an essential key factor in the regulation of calcium and phosphate homeostasis, affecting primary adequate bone mineralization. In the last decades, a more complex and wider role of vitamin D has been postulated and demonstrated. Cardiovascular diseases have been found to be strongly related to vitamin D levels, especially to its deficiency. Pre-clinical studies have suggested a direct role of vitamin D in the regulation of several pathophysiological pathways, such as endothelial dysfunction and platelet aggregation; moreover, observational data have confirmed the relationship with different conditions, including coronary artery disease, heart failure, and hypertension. Despite the significant evidence available so far, most clinical trials have failed to prove any positive impact of vitamin D supplements on cardiovascular outcomes. This discrepancy indicates the need for further information and knowledge about vitamin D metabolism and its effect on the cardiovascular system, in order to identify those patients who would benefit from vitamin D supplementation.
Collapse
Affiliation(s)
- Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Internal Medicine, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Monica Verdoia
- Division of Cardiology, Ospedale degli Infermi, ASL Biella, 13875 Biella, Italy
- Department of Translational Medicine, Eastern Piedmont University, 28100 Novara, Italy
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiology, Humanitas Gavazzeni Hospital, 24125 Bergamo, Italy
| | - Mauro Chiarito
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Elvin Kedhi
- McGill University Health Center, Montreal, QC H3G 1A4, Canada
- Department of Cardiology and Structural Heart Disease, University of Silesia, 40-032 Katowice, Poland
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Cardiovascular Medicine, IRCCS-Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Giuseppe De Luca
- Division of Cardiology, AOU “Policlinico G. Martino”, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
- Division of Cardiology, IRCCS Hospital Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
7
|
Popa AD, Niță O, Caba L, Gherasim A, Graur M, Mihalache L, Arhire LI. From the Sun to the Cell: Examining Obesity through the Lens of Vitamin D and Inflammation. Metabolites 2023; 14:4. [PMID: 38276294 PMCID: PMC10820276 DOI: 10.3390/metabo14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Obesity affects more than one billion people worldwide and often leads to cardiometabolic chronic comorbidities. It induces senescence-related alterations in adipose tissue, and senescence is closely linked to obesity. Fully elucidating the pathways through which vitamin D exerts anti-inflammatory effects may improve our understanding of local adipose tissue inflammation and the pathogenesis of metabolic disorders. In this narrative review, we compiled and analyzed the literature from diverse academic sources, focusing on recent developments to provide a comprehensive overview of the effect of vitamin D on inflammation associated with obesity and senescence. The article reveals that the activation of the NF-κB (nuclear factor kappa B subunit 1) and NLRP3 inflammasome (nucleotide-binding domain, leucine-rich-containing, pyrin domain-containing-3) pathways through the toll-like receptors, which increases oxidative stress and cytokine release, is a common mechanism underlying inflammation associated with obesity and senescence, and it discusses the potential beneficial effect of vitamin D in alleviating the development of subclinical inflammation. Investigating the main target cells and pathways of vitamin D action in adipose tissue could help uncover complex mechanisms of obesity and cellular senescence. This review summarizes significant findings related to opportunities for improving metabolic health.
Collapse
Affiliation(s)
- Alina Delia Popa
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lavinia Caba
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Laura Mihalache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| | - Lidia Iuliana Arhire
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.P.); (A.G.); (L.M.); (L.I.A.)
| |
Collapse
|
8
|
Al-Sroji RY, Al-Laham S, Almandili A. Protective effects of vitamin D 3 (cholecalciferol) on vancomycin-induced oxidative nephrotoxic damage in rats. PHARMACEUTICAL BIOLOGY 2023; 61:755-766. [PMID: 37139624 PMCID: PMC10161947 DOI: 10.1080/13880209.2023.2204916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Vancomycin (VCM), an important antibiotic against refractory infections, has been used to treat secondary infections in severe COVID-19 patients. Regrettably, VCM treatment has been associated with nephrotoxicity. Vitamin D3 can prevent nephrotoxicity through its antioxidant effect. OBJECTIVE This study tests the antioxidant effect of vitamin D3 in the prevention of VCM-induced nephrotoxicity. MATERIALS AND METHODS Wistar Albino rats (21) were randomly divided into 3 groups: (A) control; (B) VCM 300 mg/kg daily for 1 week; and (C) VCM plus vitamin D3 500 IU/kg daily for 2 weeks. All the rats were sacrificed and serum was separated to determine kidney function parameters. Their kidneys were also dissected for histological examination and for oxidative stress markers. RESULTS Lipid peroxidation, creatinine, and urea levels decreased significantly (p < 0.0001) in the vitamin D3-treated group (14.46, 84.11, 36.17%, respectively) compared to the VCM group that was given VCM (MIC<2 μg/mL) only. A significant increase was observed in superoxide dismutase levels in the vitamin D3-treated group (p < 0.05) compared to rats without treatment. Furthermore, kidney histopathology of the rats treated with vitamin D3 showed that dilatation, vacuolization and necrosis tubules decreased significantly (p < 0.05) compared with those in the VCM group. Glomerular injury, hyaline dystrophy, and inflammation improved significantly in the vitamin D3 group (p < 0.001, p < 0.05, p < 0.05, respectively) compared with the VCM group. DISCUSSION AND CONCLUSIONS Vitamin D3 can prevent VCM nephrotoxicity. Therefore, the appropriate dose of this vitamin must be determined, especially for those infected with COVID-19 and receiving VCM, to manage their secondary infections.
Collapse
Affiliation(s)
- Rouba Yasser Al-Sroji
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Shaza Al-Laham
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Ahmad Almandili
- Department of Histopathology, Faculty of Dentistry, Damascus University, Damascus, Syria
| |
Collapse
|
9
|
Du F, Zhu Z, Lai Z, Li K, Chen J, Zhang E, Wang J, Zhao H, Liu B. Imbalance of helper T cell subtypes and adipokine secretion in perivascular adipose tissue as a trigger of atherosclerosis in chronic Porphyromonas gingivalis W83 infection. Microbes Infect 2023; 25:105181. [PMID: 37423325 DOI: 10.1016/j.micinf.2023.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontal disease, a prevalent oral disease, is an independent risk factor for atherosclerosis. Porphyromonas gingivalis (P.g), a keystone pathogen of periodontal disease, contributes to the pathogenesis of atherosclerosis. However, the exact mechanism remains unclear. An increasing number of studies have proposed the atherogenic influence of perivascular adipose tissue (PVAT) in pathological conditions including hyperlipidemia and diabetes. Nevertheless, the role of PVAT in atherosclerosis promoted by P.g infection has not been explored. In our study, we investigated the association between P.g colonization in PVAT and progression of atherosclerosis through experiments on clinical samples. We further investigated P.g invasion of PVAT, PVAT inflammation, aortic endothelial inflammation, aortic lipid deposition, and systemic inflammation in C57BL/6 J mice with or without P.g infection at 20, 24, and 28 weeks of age. PVAT inflammation, characterized by imbalance in Th1/Treg and dysregulated adipokine levels, was associated with P.g invasion, preceding endothelial inflammation that occurred independently of its direct invasion. The phenotype of systemic inflammation coincided with that of PVAT inflammation, but systemic inflammation occurred after endothelial inflammation. Therefore PVAT inflammation in early atherosclerosis could be a primary trigger of aortic endothelial inflammation and lipid deposition in chronic P.g infection, through the dysregulated paracrine secretion of T helper-1-related adipokines.
Collapse
Affiliation(s)
- Fenghe Du
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhan Zhu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Kang Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Erli Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China.
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
10
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
11
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Chen X, Zhang F, Li H, Liu J, Jiang Y, Ren F, Huang L, Yuan X, Li Y, Yang W, Yang C, Li S, Jiao N, Jiang S. The combination of macleaya extract and glucose oxidase improves the growth performance, antioxidant capacity, immune function and cecal microbiota of piglets. Front Vet Sci 2023; 10:1173494. [PMID: 37576836 PMCID: PMC10421655 DOI: 10.3389/fvets.2023.1173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
This study aims to investigate the effects of macleaya extract and glucose oxidase combination (MGO) on growth performance, antioxidant capacity, immune function, and cecal microbiota in piglets. A total of 120 healthy 28-day-old weaned piglets were randomly divided into two treatments of six replicates. Piglets were either received a basal diet or a basal diet supplemented with 250 mg/kg MGO (2 g/kg sanguinarine, 1 g/kg chelerythrine, and 1 × 106 U/kg glucose oxidase). The results showed that MGO supplementation increased average daily gain (ADG) and decreased feed:gain ratio (F/G) (p < 0.05). MGO increased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and immunoglobulin G (IgG) content (p < 0.05), but decreased malondialdehyde (MDA) and interleukin 1β (IL-1β) content (p < 0.05). The jejunal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (HO-1) were increased in MGO group (p < 0.05), while that of kelch like ECH associated protein 1 (Keap1) was decreased (p < 0.05). The Firmicutes was significantly increased at phylum levels in MGO group (p < 0.05). In conclusion, 250 mg/kg MGO improved piglet growth, and regulated intestinal flora of piglets, which provided a theoretical basis for MGO as an alternative additive for antibiotics.
Collapse
Affiliation(s)
- Xing Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Huirong Li
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Jie Liu
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Yanping Jiang
- Shandong Livestock Product Quality and Safety Center, Shandong, China
| | - Furong Ren
- Zhongcheng Feed Technology Co., Ltd., Feicheng, Shandong, China
| | - Libo Huang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xuejun Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Weiren Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Chongwu Yang
- Ciyao Animal Husbandry Station, Ningyang, Shandong, China
| | - Shuang Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Ning Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Shuzhen Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
13
|
Liu Y, Croft KD, Mori TA, Gaspari TA, Kemp-Harper BK, Ward NC. Long-term dietary nitrate supplementation slows the progression of established atherosclerosis in ApoE -/- mice fed a high fat diet. Eur J Nutr 2023; 62:1845-1857. [PMID: 36853380 PMCID: PMC10195750 DOI: 10.1007/s00394-023-03127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is associated with a reduction in the bioavailability and/or bioactivity of endogenous nitric oxide (NO). Dietary nitrate has been proposed as an alternate source when endogenous NO production is reduced. Our previous study demonstrated a protective effect of dietary nitrate on the development of atherosclerosis in the apoE-/- mouse model. However most patients do not present clinically until well after the disease is established. The aims of this study were to determine whether chronic dietary nitrate supplementation can prevent or reverse the progression of atherosclerosis after disease is already established, as well as to explore the underlying mechanism of these cardiovascular protective effects. METHODS 60 apoE-/- mice were given a high fat diet (HFD) for 12 weeks to allow for the development of atherosclerosis. The mice were then randomized to (i) control group (HFD + 1 mmol/kg/day NaCl), (ii) moderate-dose group (HFD +1 mmol/kg/day NaNO3), or (iii) high-dose group (HFD + 10 mmol/kg/day NaNO3) (20/group) for a further 12 weeks. A group of apoE-/- mice (n = 20) consumed a normal laboratory chow diet for 24 weeks and were included as a reference group. RESULTS Long-term supplementation with high dose nitrate resulted in ~ 50% reduction in plaque lesion area. Collagen expression and smooth muscle accumulation were increased, and lipid deposition and macrophage accumulation were reduced within atherosclerotic plaques of mice supplemented with high dose nitrate. These changes were associated with an increase in nitrite reductase as well as activation of the endogenous eNOS-NO pathway. CONCLUSION Long-term high dose nitrate significantly attenuated the progression of established atherosclerosis in the apoE-/- mice fed a HFD. This appears to be mediated in part through a XOR-dependent reduction of nitrate to NO, as well as enhanced eNOS activation via increased Akt and eNOS phosphorylation.
Collapse
Affiliation(s)
- Yang Liu
- School of Biomedical Sciences, University of Western Australia, Perth, WA Australia
| | - Kevin D. Croft
- School of Biomedical Sciences, University of Western Australia, Perth, WA Australia
| | - Trevor A. Mori
- Medical School, University of Western Australia, Perth, WA Australia
| | - Tracey A. Gaspari
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - Natalie C. Ward
- Medical School, University of Western Australia, Perth, WA Australia
- Dobney Hypertension Centre, Medical School, University of Western Australia, G.P.O Box X2213, Perth, WA 6847 Australia
| |
Collapse
|
14
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
16
|
Anwar MJ, Alenezi SK, Alhowail AH. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother 2023; 162:114718. [PMID: 37084561 DOI: 10.1016/j.biopha.2023.114718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia.
| | - Ahmad Hamad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| |
Collapse
|
17
|
Chia (Salvia hispanica L.) oil supplementation ameliorates liver oxidative stress in high-fat diet-fed mice through PPAR-γ and Nrf2 upregulation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
|
18
|
Genomic or Non-Genomic? A Question about the Pleiotropic Roles of Vitamin D in Inflammatory-Based Diseases. Nutrients 2023; 15:nu15030767. [PMID: 36771473 PMCID: PMC9920355 DOI: 10.3390/nu15030767] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (vit D) is widely known for its role in calcium metabolism and its importance for the bone system. However, various studies have revealed a myriad of extra-skeletal functions, including cell differentiation and proliferation, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory properties in various cells and tissues. Vit D mediates its function via regulation of gene expression by binding to its receptor (VDR) which is expressed in almost all cells within the body. This review summarizes the pleiotropic effects of vit D, emphasizing its anti-inflammatory effect on different organ systems. It also provides a comprehensive overview of the genetic and epigenetic effects of vit D and VDR on the expression of genes pertaining to immunity and anti-inflammation. We speculate that in the context of inflammation, vit D and its receptor VDR might fulfill their roles as gene regulators through not only direct gene regulation but also through epigenetic mechanisms.
Collapse
|
19
|
Liang Y, Lu J, Yi W, Cai M, Shi W, Li B, Zhang Z, Jiang F. 1α,25-dihydroxyvitamin D 3 supplementation alleviates perfluorooctanesulfonate acid-induced reproductive injury in male mice: Modulation of Nrf2 mediated oxidative stress response. ENVIRONMENTAL TOXICOLOGY 2023; 38:322-331. [PMID: 36321694 DOI: 10.1002/tox.23685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanesulfonate acid (PFOS) is a typical persistent organic pollutant that widely exists in the environment. To clarify the toxic effects and mechanisms of PFOS and to find effective intervention strategies have been attracted global attention. Here, we investigated the effects of PFOS on the male reproductive system and explored the potential protective role of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ). Our results showed that 1α,25(OH)2 D3 intervention significantly improved PFOS-induced sperm quality decline and testicular damage. Moreover, 1α,25(OH)2 D3 aggrandized the total antioxidant capacity. Furthermore, after PFOS exposure, the transcription factor nuclear factor erythroid-related factor 2 (Nrf2) was adaptively increased together with its target genes, such as HO-1, NQO1, and SOD2. Meanwhile, 1α,25(OH)2 D3 ameliorated PFOS-induced augment of Nrf2 and target genes. These findings indicated that 1α,25(OH)2 D3 might attenuate PFOS-induced reproductive injury in male mice via Nrf2-mediated oxidative stress.
Collapse
Affiliation(s)
- Yongchao Liang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jingjing Lu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wenjie Yi
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ming Cai
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Ameliorative Effects of a Rhenium (V) Compound with Uracil-Derived Ligand Markers Associated with Hyperglycaemia-Induced Renal Dysfunction in Diet-Induced Prediabetic Rats. Int J Mol Sci 2022; 23:ijms232315400. [PMID: 36499723 PMCID: PMC9739195 DOI: 10.3390/ijms232315400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney disease is characterised by the improper functioning of the kidney as a result of kidney damage caused by hyperglycaemia-induced oxidative stress. The moderate hyperglycaemia seen in prediabetes can be treated using a combination of metformin and lifestyle interventions (low-calorie diets and exercising). However, patients have been reported to over-rely on pharmacological interventions, thus decreasing the efficacy of metformin, which leads to the development of type 2 diabetes mellitus (T2DM). In this study, we investigated the effects of a rhenium (V) compound in ameliorating renal dysfunction in both the presence and absence of dietary modification. Kidney function parameters, such as fluid intake and urine output, glomerular filtration rate (GFR), kidney injury molecule (KIM 1), creatinine, urea, albumin and electrolytes, were measured after 12 weeks of treatment. After treatment with the rhenium (V) compound, kidney function was restored, as evidenced by increased GRF and reduced KIM 1, podocin and aldosterone. The rhenium (V) compound ameliorated kidney function by preventing hyperglycaemia-induced oxidative stress in the kidney in both the presence and absence of dietary modification.
Collapse
|
22
|
Jreije A, Medlej-Hashim M, Hajal J, Saliba Y, Chacar S, Fares N, Khouzami L. Calcitriol Supplementation Protects Against Apoptosis and Alleviates the Severity of Abdominal Aortic Aneurysm Induced by Angiotensin II and Anti-TGFβ. J Cardiovasc Transl Res 2022; 15:1340-1351. [PMID: 35445935 DOI: 10.1007/s12265-022-10254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
The present study aims to assess the effect of vitamin D deficiency (VDD) and its supplementation on the severity of AAA in mice. AAA was induced by AngII and anti-TGF-β administration. Animals were divided into four groups: Sham, mice with AAA, mice with AAA, and VDD, and mice with AAA supplemented with calcitriol. Blood pressure, echocardiography, abdominal aortic tissues, and plasma samples were monitored for all groups. VDD was associated with enhanced activity of cleaved MMP-9 and elastin degradation and positively correlated with the severity of AAA. Calcitriol supplementation decreased the INFγ/IL-10 ratio and enhanced the Nrf2 pathway. Moreover, Cu/Zn-superoxide dismutase expression and catalase and neutral sphingomyelinase activity were exacerbated in AAA and VDD groups. Furthermore, calcitriol supplementation showed a significantly lower protein expression of caspase-8, caspase-3, Bid, and t-Bid, and prevented the apoptosis of VSMCs treated by AngII and anti-TGF-β. Calcitriol supplementation may alleviate AAA severity and could be of great interest in the clinical management of AAA. VDD enhances antioxidant enzymes activity and expression, whereas calcitriol supplementation alleviates AAA severity by re-activating Nrf2 and inhibiting apoptotic pathways.
Collapse
Affiliation(s)
- Afaf Jreije
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Myrna Medlej-Hashim
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Stephanie Chacar
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon.
| | - Lara Khouzami
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
23
|
Mihić D, Loinjak D, Maričić L, Smolić R, Šahinović I, Steiner K, Viland S, Šerić V, Duvnjak M. The Relationship between Nrf2 and HO-1 with the Severity of COVID-19 Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1658. [PMID: 36422196 PMCID: PMC9693233 DOI: 10.3390/medicina58111658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) have significant roles in the development of a hyperinflammatory state in infectious diseases. We aimed to investigate the association of the serum concentrations of Nrf2 and HO-1 with the severity of COVID-19 disease. The study included 40 subjects with mild and moderately severe forms of the disease (MEWS scoring system ≤2). Twenty of the subjects had MEWS scores of 3 or 4, which indicate a severe form of the disease, and twenty subjects had a MEWS score of ≥5, which indicates a critical form of the disease. HO-1 and Nrf2 were measured using the commercially available Enzyme-Linked Immunosorbent Assay (ELISA). Subjects with the most severe form of COVID-19 (critically ill) had a lower concentration of Nrf2 that negatively correlated with the markers of hyperinflammatory response (CRP, IL-6, ferritin). This observation was not made for HO-1, and the correlation between Nrf2 and HO-1 values was not established. In the mild/moderate form of COVID-19 disease, Nrf2 was associated with an increased 1,25 dihydroxy vitamin D concentration. The results of this study show that Nrf2 has a role in the body's anti-inflammatory response to COVID-19 disease, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Damir Mihić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Domagoj Loinjak
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
| | - Ines Šahinović
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Kristina Steiner
- Department of Endocrinology, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Sven Viland
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
| | - Vatroslav Šerić
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Center Hospital Osijek, 31000 Osijek, Croatia
| | - Mario Duvnjak
- Faculty of Medicine, J. J. Strossmayer University in Osijek, 31000 Osijek, Croatia
- Department of Infective Diseases, University Center Hospital Osijek, 31000 Osijek, Croatia
| |
Collapse
|
24
|
Meng Q, Zhang Y, Li J, Shi B, Ma Q, Shan A. Lycopene Affects Intestinal Barrier Function and the Gut Microbiota in Weaned Piglets via Antioxidant Signaling Regulation. J Nutr 2022; 152:2396-2408. [PMID: 36774106 DOI: 10.1093/jn/nxac208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In pig production, early and abrupt weaning frequently causes weaning stress, which manifests as oxidative damage, barrier disruption, and digestion and absorption capacity declines. Lycopene exhibits beneficial antioxidant capacity in both humans and other animal models. OBJECTIVES The present study aimed to investigate the effects of lycopene supplementation on early weaning stress in piglets and the underlying mechanisms by examining the oxidative stress state, gut intestinal barrier function, and the gut microbiota. METHODS Twenty-four 21-day-old weaned piglets [Duroc × (Landrace × Yorkshire); castrated males; 5.48 ± 0.10 kg initial body weight] were randomly assigned to 2 treatments. The piglets were fed a basal diet (control treatment) or a basal diet supplemented with 50 mg/kg lycopene (lycopene treatment) for 28 days. The serum lipid levels, serum and jejunum enzyme activities, jejunum morphology, mRNA and protein expression, and gut microbiota were determined. RESULTS Compared with the control treatment, lycopene supplementation increased the serum catalase activity (P = 0.042; 62.0%); serum total cholesterol concentration (P = 0.020; 14.1%); and jejunum superoxide dismutase activity (P = 0.032; 21.4%), whereas it decreased serum (P = 0.039, 23.0%) and jejunum (P = 0.047; 20.9%) hydrogen peroxide concentrations. Additionally, lycopene increased the mRNA and protein expression of NFE2-like bZIP transcription factor 2 (214.0% and 102.4%, respectively) and CD36 (100.8% and 145.2%, respectively) in the jejunum, whereas it decreased the mRNA and protein expression of Kelch-like ECH-associated protein 1 (55.6% and 39.8%, respectively ). Lycopene also improved jejunal morphology, increasing the villus height (P = 0.018; 27.5%) and villus:crypt ratio (P < 0.001; 57.9%). Furthermore, it increased the abundances of potentially beneficial bacterial groups, including Phascolarctobacterium and Parasutterella, and decreased those of potentially pathogenic bacterial groups, including Treponema_2 and Prevotellaceae_unclassified. CONCLUSIONS Lycopene supplementation strengthens the intestinal barrier function and improves the gut microbiota in weaned piglets by regulating intestinal antioxidant signaling.
Collapse
Affiliation(s)
- Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yiming Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
25
|
Li N, Liu T, Zhu S, Yang Y, Wang Z, Zhao Z, Liu T, Wang X, Qin W, Yan Y, Liu Y, Xia Q, Zhang H. Corylin from Psoralea fructus (Psoralea corylifolia L.) protects against UV-induced skin aging by activating Nrf2 defense mechanisms. Phytother Res 2022; 36:3276-3294. [PMID: 35821646 DOI: 10.1002/ptr.7501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Oxidative stress damage can lead to premature skin aging or age-related skin disorders. Therefore, strategies to improve oxidative stress-induced aging are needed to protect the skin and to treat skin diseases. This study aimed to determine whether the flavonoid corylin derived from Psoralea corylifolia can prevent UV-induced skin aging and if so, to explore the potential molecular mechanisms. We found that corylin potently blocked UV-induced skin photoaging in mice by reducing oxidative stress and increasing the nuclear expression of nuclear factor-erythroid factor 2-related factor 2 Nrf2. We also found that corylin stimulated Nrf2 translocation into the nucleus and increased the delivery of its target antioxidant genes together with Kelch-like ECH-associated protein 1 (Keap1) to dissociate Nrf2. These findings indicate that corylin could prevent skin aging by inhibiting oxidative stress via Keap1-Nrf2 in mouse cells. Thus, Nrf2 activation might be a therapeutic target for preventing skin aging or skin diseases caused by aging. Our findings also provided evidence that warrants the further investigation of plant ingredients to facilitate the discovery of novel therapies targeting skin aging.
Collapse
Affiliation(s)
- Nan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shan Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zijing Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhiyue Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xiang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenxiao Qin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yang Liu
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qingmei Xia
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022; 63:7772-7794. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency has been linked to several major chronic diseases, such as cardiovascular and neurodegenerative diseases, diabetes, and cancer, linked to oxidative stress, inflammation, and aging. Vitamin D deficiency appears to be particularly harmful to the cardiovascular system, as it can cause endothelial dysfunctioning and vascular abnormalities through the modulation of various downstream mechanisms. As a result, new research indicates that therapeutic approaches targeting vitamin D inadequacies or its significant downstream effects, such as impaired autophagy, abnormal pro-inflammatory and pro-oxidant reactions, may delay the onset and severity of major cerebrovascular disorders such as stroke and neurologic malformations. Vitamin D modulates the various molecular pathways, i.e., Nitric Oxide, PI3K-Akt Pathway, cAMP pathway, NF-kB Pathway, Sirtuin 1, Nrf2, FOXO, in cerebrovascular disorder. The current review shows evidence for vitamin D's mitigating or slowing the progression of these cerebrovascular disorders, which are significant causes of disability and death worldwide.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
27
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
28
|
Yang H, Wang Y, Liu M, Liu X, Jiao Y, Jin S, Shan A, Feng X. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks ( Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB Signaling Pathways. Animals (Basel) 2021; 11:3588. [PMID: 34944363 PMCID: PMC8698092 DOI: 10.3390/ani11123588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to explore the effect of dietary resveratrol on the growth performance and anti-inflammatory mechanism in ducks. A total of 280 one-day-old specific pathogen-free male ducklings (Anas platyrhynchos) with an average body weight of 35 ± 1 g were randomly divided into two dietary treatment groups with different supplementation levels of resveratrol for growth performance experiments: R0 and R400 (0 and, 400 mg kg-1 resveratrol, respectively). At the age of 28 days, 16 ducks were selected from each treatment group and divided into four subgroups for a 2 × 2 factorial pathological experiment: R0; R400; R0 + LPS; R400 + LPS, (0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol, 0 mg kg-1 resveratrol, 400 mg kg-1 resveratrol + 5 mg lipopolysaccharide/kg body weight). The results showed that resveratrol significantly improved final body weight and average daily gain (p < 0.01) and alleviated the lipopolysaccharide-induced inflammatory response with a reduction in IL-1β and IL-6 in the plasma and the liver (p < 0.05). Resveratrol improved mRNA levels of Nrf2 and HO-1 and decreased the mRNA levels of TLR4 and NF-κB in duck liver (p < 0.05). Dietary resveratrol can improve growth performance and reduce inflammation through the Nrf2/HO-1 and TLR4/NF-κB signaling pathways in duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Feng
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Changjiang Street 600#, Xiangfang District, Harbin 150030, China; (H.Y.); (Y.W.); (M.L.); (X.L.); (Y.J.); (S.J.); (A.S.)
| |
Collapse
|
29
|
Scrimieri R, Cazzaniga A, Castiglioni S, Maier JAM. Vitamin D Prevents High Glucose-Induced Lipid Droplets Accumulation in Cultured Endothelial Cells: The Role of Thioredoxin Interacting Protein. Biomedicines 2021; 9:1874. [PMID: 34944690 PMCID: PMC8698366 DOI: 10.3390/biomedicines9121874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin D (VitD) exerts protective effects on the endothelium, which is fundamental for vascular integrity, partly by inhibiting free radical formation. We found that VitD prevents high glucose-induced Thioredoxin Interacting Protein (TXNIP) upregulation. Increased amounts of TXNIP are responsible for the accumulation of reactive oxygen species and, as a consequence, of lipid droplets. This is associated with increased amounts of triglycerides as the result of increased lipogenesis and reduced fatty acid oxidation. Remarkably, VitD rebalances the redox equilibrium, restores normal lipid content, and prevents the accumulation of lipid droplets. Our results highlight TXNIP as one of the targets of VitD in high glucose-cultured endothelial cells and shed some light on the protective effect of VitD on the endothelium.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Jeanette A. M. Maier
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milano, Italy
| |
Collapse
|
30
|
Peng X, Cai X, Li J, Huang Y, Liu H, He J, Fang Z, Feng B, Tang J, Lin Y, Jiang X, Hu L, Xu S, Zhuo Y, Che L, Wu D. Effects of Melatonin Supplementation during Pregnancy on Reproductive Performance, Maternal-Placental-Fetal Redox Status, and Placental Mitochondrial Function in a Sow Model. Antioxidants (Basel) 2021; 10:1867. [PMID: 34942970 PMCID: PMC8698367 DOI: 10.3390/antiox10121867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Melatonin (MT) is a bio-antioxidant that has been widely used to prevent pregnancy complications, such as pre-eclampsia and IUGR during gestation. This experiment evaluated the impacts of dietary MT supplementation during pregnancy on reproductive performance, maternal-placental-fetal redox status, placental inflammatory response, and mitochondrial function, and sought a possible underlying mechanism in the placenta. Sixteen fifth parity sows were divided into two groups and fed each day of the gestation period either a control diet or a diet that was the same but for 36 mg of MT. The results showed that dietary supplementation with MT increased placental weight, while the percentage of piglets born with weight < 900 g decreased. Meanwhile, serum and placental MT levels, maternal-placental-fetal redox status, and placental inflammatory response were increased by MT. In addition, dietary MT markedly increased the mRNA levels of nutrient transporters and antioxidant-related genes involved in the Nrf2/ARE pathway in the placenta. Furthermore, dietary MT significantly increased ATP and NAD+ levels, relative mtDNA content, and the protein expression of Sirt1 in the placenta. These results suggested that MT supplementation during gestation could improve maternal-placental-fetal redox status and reproductive performance by ameliorating placental antioxidant status, inflammatory response, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xie Peng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Xuelin Cai
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jian Li
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yingyan Huang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Hao Liu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jiaqi He
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Bin Feng
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yan Lin
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| | - De Wu
- Key Laboratory for Animal Disease Resistant Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.P.); (X.C.); (J.L.); (Y.H.); (H.L.); (J.H.); (Z.F.); (B.F.); (J.T.); (Y.L.); (X.J.); (S.X.); (Y.Z.); (L.C.)
| |
Collapse
|
31
|
Yang H, Wang Y, Jin S, Pang Q, Shan A, Feng X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J Anim Physiol Anim Nutr (Berl) 2021; 106:1306-1320. [PMID: 34729831 DOI: 10.1111/jpn.13657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Gram-negative bacteria contamination of feed can occur at all the stage of feed production, storage, transportation and utilization. Lipopolysaccharide (LPS) is a major toxic metabolite of Gram-negative bacteria. The aim of this study was to explore the effect of dietary resveratrol on the duck ileitis caused by LPS and its optimum addition level in diet. The results showed that LPS-induced duck ileitis with the destruction of intestinal structure, oxidative stress, mitochondrial dysfunction, inflammatory response and permeability alteration. Dietary resveratrol alleviated LPS-induced intestinal dysfunction and the increase of intestinal permeability by linearly increasing mRNA levels of tight junction protein genes (Claudin-1, Occludin-1, ZO-1) (p < 0.05) and protein expression of Claudin-1 (p < 0.01). In addition, dietary resveratrol improved the antioxidant capacity of duck ileum by reducing the production of MDA and increasing the activity of T-SOD (p < 0.01) and CAT. Lipopolysaccharide increased Keap1 at mRNA and protein level (p < 0.01) and decreased the protein level of Nrf2 (p < 0.05). Dietary resveratrol significantly downregulated expression of Keap1 and upregulated expression of Nrf2 in duck (p < 0.05). Dietary resveratrol suppressed the TLR4/NF-κB signalling pathway and the expression of its downstream genes including IKK, TXNIP, NLRP3, Caspase-1, IL-6 and IL-18. Meanwhile, the levels of inflammatory cytokines (IL-6, IL-18 and TNF-α) showed a linearly decrease (p < 0.01) with increasing dietary resveratrol level. These results demonstrated that resveratrol alleviated the LPS-induced acute ileitis of duck through Nrf2 and NF-κB signalling pathways, and the dietary resveratrol of 500 mg/kg is more efficiently.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| |
Collapse
|
32
|
Bermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL, D´Marco L. The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front Endocrinol (Lausanne) 2021; 12:735070. [PMID: 34603210 PMCID: PMC8479191 DOI: 10.3389/fendo.2021.735070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.
Collapse
Affiliation(s)
- Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Edward Rojas
- Cardiovascular Division, University Hospital, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Rivas
- Department of Medicine, Cardiology Division, University of Florida-College of Medicine, Jacksonville, FL, United States
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano Ponce
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Luis D´Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
33
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|
34
|
Chen H, Zhang H, Xie H, Zheng J, Lin M, Chen J, Tong Y, Jin J, Xu K, Yang J, Sun C, Xu X, Zheng J. Maternal, umbilical arterial metabolic levels and placental Nrf2/CBR1 expression in pregnancies with and without 25-hydroxyvitamin D deficiency. Gynecol Endocrinol 2021; 37:807-813. [PMID: 34232092 DOI: 10.1080/09513590.2021.1942451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The aim of this case-control study was to document maternal, umbilical arterial metabolic levels and correlations in pregnancies with and without 25-hydroxyvitamin D [25(OH)D] deficiency, while, also investigating the expression of nuclear factor erythroid 2 related factor 2 (Nrf2) and carbonyl reductase 1 (CBR1) in the placenta. METHODS One hundred participants, 50 deficient for 25(OH)D and 50 normal, were recruited from among hospitalized single-term pregnant women who had elected for cesarean section. Umbilical arterial and placental samples were collected during cesarean section. Metabolic levels were assessed for the 25(OH)D deficiency and control groups' maternal, umbilical arterial samples. Nrf2 and CBR1 expression levels were investigated in the placentas of 12 pregnant women with 25(OH)D deficiency and 12 controls. RESULTS Compared with the control participants, the 25(OH)D deficient women had significantly higher triglyceride (TG) levels (3.80 ± 2.11 vs. 2.93 ± 1.16 mmol/L, 3.64 ± 1.84 vs. 2.81 ± 1.16 mmol/L, p < .01, .001); lower high density lipoprotein cholesterol (HDL-C) levels (1.54 ± 0.32 vs. 1.82 ± 0.63 mmol/L, 1.41 ± 0.72 vs. 2.44 ± 1.68 mmol/L, p < .001, .01) in both material blood and the umbilical artery. In addition, Nrf2 and CBR1 expression levels were lower in the maternal 25(OH)D deficient placenta. CONCLUSION 25(OH)D deficient pregnant women have higher TG levels and lower HDL-C levels in both material blood and the umbilical artery. TG level is negatively correlated with 25(OH)D in both the maternal serum and infant umbilical artery. 25(OH)D deficiency also lowers placental expression of Nrf2 and CBR1. UNLABELLED Supplemental data for this article is available online at here.
Collapse
Affiliation(s)
- Haiying Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Han Xie
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiayong Zheng
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Meimei Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Yu Tong
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Jiang Jin
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Kai Xu
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Jie Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Congcong Sun
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Xiaoming Xu
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| |
Collapse
|
35
|
Xun W, Fu Q, Shi L, Cao T, Jiang H, Ma Z. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. Int Immunopharmacol 2021; 99:107989. [PMID: 34303281 DOI: 10.1016/j.intimp.2021.107989] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
This study investigated the effects of resveratrol (RES) on intestinal morphology, antioxidant capacity, intestinal inflammation, and barrier function in weaned piglets challenged with diquat (DIQ). Thirty weaned piglets were randomly assigned to 5 treatments: non-challenged group (CON), DIQ-challenged group (DIQ), and DIQ-challenged group with 10, 30, or 90 mg/kg of RES, respectively. The trail lasted 21 days, and piglets were intraperitoneally injected with DIQ or the same amount of saline on day 15. The results showed that supplementation with 90 mg/kg RES increased (P < 0.05) jejunal villus height and villus height: crypt depth ratio, and decreased (P < 0.05) crypt depth, plasma D-lactate and diamine oxidase (DAO) compared with the DIQ group. Piglets fed with 30 or 90 mg/kg RES prevented the diquat-induced decrease (P < 0.05) of mRNA expression of occludin, claudin-1, ZO-1, and IL-10, and increase (P < 0.05) of TNF-α mRNA expression. Moreover, addition of 90 mg/kg RES increased (P < 0.05) the activities of SOD, GSH-Px, and CAT and decreased (P < 0.05) the MDA levels in jejunal mucosa compared with the DIQ group. Finally, addition of 90 mg/kg RES enhanced (P < 0.05) the mRNA expression of SOD1, SOD2, CAT, GPx1, and HO-1, and increased (P < 0.05) mRNA and protein expression of Nrf2, NQO1, aryl hydrocarbon receptor (AhR), and cytochrome P450 family 1 member A1 (CYP1A1). These data indicated that supplementation with 90 mg/kg RES was effective in protecting the intestinal integrity, alleviating intestinal inflammation and oxidative stress by activating AhR/Nrf2 pathways in diquat-challenged piglets.
Collapse
Affiliation(s)
- Wenjuan Xun
- Laboratory of Tropical Animal Breeding, Reproduction, and Nutrition, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| | - Qingyao Fu
- Laboratory of Tropical Animal Breeding, Reproduction, and Nutrition, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Hongzheng Jiang
- Laboratory of Tropical Animal Breeding, Reproduction, and Nutrition, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Zhonghua Ma
- Laboratory of Tropical Animal Breeding, Reproduction, and Nutrition, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| |
Collapse
|
36
|
Is Vitamin D Deficiency Related to Increased Cancer Risk in Patients with Type 2 Diabetes Mellitus? Int J Mol Sci 2021; 22:ijms22126444. [PMID: 34208589 PMCID: PMC8233804 DOI: 10.3390/ijms22126444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
There is mounting evidence that type 2 diabetes mellitus (T2DM) is related with increased risk for the development of cancer. Apart from shared common risk factors typical for both diseases, diabetes driven factors including hyperinsulinemia, insulin resistance, hyperglycemia and low grade chronic inflammation are of great importance. Recently, vitamin D deficiency was reported to be associated with the pathogenesis of numerous diseases, including T2DM and cancer. However, little is known whether vitamin D deficiency may be responsible for elevated cancer risk development in T2DM patients. Therefore, the aim of the current review is to identify the molecular mechanisms by which vitamin D deficiency may contribute to cancer development in T2DM patients. Vitamin D via alleviation of insulin resistance, hyperglycemia, oxidative stress and inflammation reduces diabetes driven cancer risk factors. Moreover, vitamin D strengthens the DNA repair process, and regulates apoptosis and autophagy of cancer cells as well as signaling pathways involved in tumorigenesis i.e., tumor growth factor β (TGFβ), insulin-like growth factor (IGF) and Wnt-β-Cathenin. It should also be underlined that many types of cancer cells present alterations in vitamin D metabolism and action as a result of Vitamin D Receptor (VDR) and CYP27B1 expression dysregulation. Although, numerous studies revealed that adequate vitamin D concentration prevents or delays T2DM and cancer development, little is known how the vitamin affects cancer risk among T2DM patients. There is a pressing need for randomized clinical trials to clarify whether vitamin D deficiency may be a factor responsible for increased risk of cancer in T2DM patients, and whether the use of the vitamin by patients with diabetes and cancer may improve cancer prognosis and metabolic control of diabetes.
Collapse
|
37
|
Wang C, Gao F, Guan X, Yao X, Shi B, Zhang Y. Exposure to oxidized soybean oil induces mammary mitochondrial injury in lactating rats and alters the intestinal barrier function of progeny. Food Funct 2021; 12:3705-3719. [PMID: 33900354 DOI: 10.1039/d1fo00423a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar to other food contaminants, dietary oxidized soybean oil (OSO) is also a toxic xenobiotic for animal and human nutrition. This research evaluated the effects of maternal OSO exposure during lactation on mammary mitochondrial injury and intestinal barrier of sucking progeny. Twenty-four female adult SD rats were fed a fresh soybean oil (FSO) homozygous diet (7%) or an OSO homozygous diet (7%) during lactation. On day 21 of lactation, upregulated mRNA expression of Sirt3 and PRDX3 and downregulated mRNA expression of Mfn2 were observed in mammary tissues in the OSO group compared to the control group (P < 0.05). Maternal OSO consumption increased the FasL transcriptional level in the mammary glands of rat dams (P < 0.05), while the mRNA expression of Bax, Bcl-2, Caspase3, and Fas was not different from that in the control group (P > 0.05). OSO enhanced the Nrf2 transcriptional level and decreased the expression of Keap1 and PPARα in mammary tissues (P < 0.05). In addition, the contents of CAT, MDA, SOD were not affected by dietary OSO (P > 0.05), while the concentration of H2O2 was significantly decreased in the OSO-treated mammary glands of rat dams (P < 0.05). Maternal OSO exposure during lactation did not affect the organ coefficients of pups (P > 0.05). However, maternal OSO consumption influenced the intestinal tight junction protein expression of progeny (P < 0.05). In summary, the present study demonstrated that dietary OSO may aggravate mammary injury and mitochondria dysfunction, but the OSO-induced damage was self-alleviating via the promotion of Sirt3 and PRDX3 expression and further scavenging of oxidative products.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xinxin Yao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yinghua Zhang
- Department of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
38
|
Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms22115446. [PMID: 34064112 PMCID: PMC8196747 DOI: 10.3390/ijms22115446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.
Collapse
|
39
|
Wu M, Wu Y, Xu K, Lin L. Protective Effects of 1,25 Dihydroxyvitamin D3 against High-Glucose-Induced Damage in Human Umbilical Vein Endothelial Cells Involve Activation of Nrf2 Antioxidant Signaling. J Vasc Res 2021; 58:267-276. [PMID: 33946068 DOI: 10.1159/000515512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022] Open
Abstract
AIM To explore the protective effects and related mech-anisms of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) on en-dothelial dysfunction under hyperglycemic conditions. METHODS Cultured human umbilical vein endothelial cells (HUVECs) were treated with normal glucose (glucose concentration of 5.5 mmol/L), high glucose (glucose concentration of 33 mmol/L), and high glucose plus 1,25(OH)2D3, respectively. Cell viability and apoptosis, intracellular reactive oxygen species (ROS) and nitric oxide (NO) contents, antioxidant enzyme activities, proinflammatory cytokine mRNA levels, and expression levels of proteins involved were measured. RESULTS High glucose decreased HUVEC viability, promoted ROS production and apoptosis, and reduced NO generation, which was associated with decreased activities of antioxidant enzymes and increased levels of proinflam-matory cytokines. 1,25(OH)2D3 treatment enhanced HUVEC viability, attenuated ROS generation and apoptosis, and -increased NO production, which was accompanied by -enhanced antioxidant enzyme activities and reduced -proinflammatory factors. Mechanically, 1,25(OH)2D3 promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in a vitamin D receptor (VDR)-dependent manner, and Nrf2 siRNA abolished the antioxidative and -anti-inflammatory effects of 1,25(OH)2D3. CONCLUSIONS 1,25(OH)2D3 attenuates high-glucose-induced endothelial oxidative injury through upregulation of the Nrf2 antioxidant pathway in a VDR-dependent manner.
Collapse
Affiliation(s)
- Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, Affiliated Putian Hospital, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, Affiliated Putian Hospital, Southern Medical University, Putian, China
| | - Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, Affiliated Putian Hospital, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, Affiliated Putian Hospital, Southern Medical University, Putian, China
| |
Collapse
|
40
|
Osikov MV, Simonyan EV, Boyko MS, Ogneva OI, Ilyinykh MA, Vorgova LV, Bogomolova AM. Effect of Vitamin D3 in Composition of Original Rectal Suppositories on Parameter of Protein Oxidative Modification in Large Intestine in Experimental Ulcerative Colitis. Bull Exp Biol Med 2021; 170:608-612. [PMID: 33788108 DOI: 10.1007/s10517-021-05116-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/30/2022]
Abstract
The effect of vitamin D3 in the composition of original rectal suppositories on the content of products of oxidative modification of proteins in mucous membrane of the large intestine was studied in rats with experimental ulcerative colitis provoked by a two-stage administration of 3% oxazolone. The rectal suppositories with vitamin D3 (1500 IU) were administered every 12 h during 5 days. Condition of the rats was assessed according to disease activity index (DAI), while the content of oxidative modification products of proteins in the homogenate of the mucous membrane was assayed with extraction-spectrophotometric method in the lesion focus of large intestine. DAI increased during entire observation period of ulcerative colitis, which correlated with the level of products of spontaneous and induced oxidative modification of proteins in mucous membrane of the colon. The study examined the pharmaceutical and technological features of novel rectal suppositories of original composition weighing 300 mg, which are based on polyethylene glycol supplemented with aqueous solution of vitamin D3 (10%). The use of rectal suppositories with vitamin D3 reduced DAI and inhibited the oxidative modification of proteins.
Collapse
Affiliation(s)
- M V Osikov
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - E V Simonyan
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - M S Boyko
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia.
| | - O I Ogneva
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - M A Ilyinykh
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - L V Vorgova
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - A M Bogomolova
- South-Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| |
Collapse
|
41
|
Abstract
Over the past decade, oxidative stress was shown to be a key factor for various diseases. The term “antioxidant” also rapidly gained attention worldwide, viewed as beneficial in disease prevention. Resveratrol (RSV), a natural polyphenol, is a plant antitoxin formed in response to harmful environmental factors such as infection and injury. This antitoxin is found in grapes, strawberries, peanuts, or herbal medicines and exhibits many pharmacological effects involved in antitumor, anti-inflammatory, antiaging, and antioxidation stress mechanisms. Recently, numerous in vitro and in vivo experiments have shown that RSV harbors antioxidative stress properties and can be used as an antioxidant. Here, we review the free radical scavenging ability, antioxidant properties, signaling pathways, expression and regulation of antioxidant enzymes, and oxidative stress-related diseases associated with RSV.
Collapse
|
42
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
43
|
Zhang J, Tecson KM, McCullough PA. Role of endothelial cell receptors in the context of SARS-CoV-2 infection (COVID-19). Proc (Bayl Univ Med Cent) 2021; 34:262-268. [PMID: 33664552 PMCID: PMC7852287 DOI: 10.1080/08998280.2021.1874231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell (EC) dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy, and the angiotensin-converting enzyme 2 (ACE2) receptor plays a role in EC dysfunction in COVID-19. To expand the understanding of the role of the ACE2 receptor relative to EC dysfunction, this review addresses (1) tissue distribution of the ACE2 protein and its mRNA expression in humans, (2) susceptibility of the capillary ECs to SARS-CoV-2 infection, and (3) the role of EC dysfunction relevant to ACE2 and nuclear factor-κB in COVID-19.
Collapse
Affiliation(s)
- Jun Zhang
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Kristen M Tecson
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Department of Internal Medicine, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, Texas
| |
Collapse
|
44
|
Xiang Y, Fu L, Xiang HX, Zheng L, Tan ZX, Wang LX, Cao W, Xu DX, Zhao H. Correlations among Pulmonary DJ-1, VDR and Nrf-2 in patients with Chronic Obstructive Pulmonary Disease: A Case-control Study. Int J Med Sci 2021; 18:2449-2456. [PMID: 33967623 PMCID: PMC8100631 DOI: 10.7150/ijms.58452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson protein 7 (PARK7)/DJ-1 (DJ-1) is a redox sensitive molecular and stabilizer of nuclear factor erythroid 2-related factor 2 (Nrf-2). Nrf-2 regulates the downstream antioxidant defense system and exerts a significant function in patients with chronic obstructive pulmonary disease (COPD). Vitamin D receptor (VDR) is the nuclear receptor that regulates the downstream target genes. This study aimed to analyze the associations among pulmonary function, DJ-1, VDR and Nrf-2 in COPD patients. Serum was collected from 180 COPD patients and control subjects. Thirty-five lung tissues were obtained. DJ-1 was measured using ELISA and western blotting. Nrf-2 and VDR were detected by immunohistochemistry. Serum and pulmonary DJ-1 levels were lower in COPD patients than those in control subjects. Pulmonary VDR-positive nuclei were reduced in COPD patients. Nrf-2-positive nuclei were reduced in lung tissues of COPD patients. On the contrary, Nrf-2-related downstream target proteins were elevated in COPD patients. Further correlation analysis indicated that forced expiratory volume in 1 second (FEV1) was positively associated with pulmonary DJ-1, VDR and Nrf-2 in patients with COPD. In addition, there were positive correlations among DJ-1, VDR and Nrf-2 in lung tissues of COPD patients. In conclusion, DJ-1, VDR and Nrf-2 were decreased in COPD patients compared with control subjects. The reduction of DJ-1 and VDR associating with Nrf-2 downregulation may be involved in the process of COPD.
Collapse
Affiliation(s)
- Ying Xiang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ling Zheng
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhu-Xia Tan
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Li-Xiang Wang
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Cao
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Respiratory and critical care medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
45
|
Dessie G, Ayelign B, Akalu Y, Shibabaw T, Molla MD. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab Syndr Obes 2021; 14:3307-3322. [PMID: 34305402 PMCID: PMC8296717 DOI: 10.2147/dmso.s321311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
In response to obesity-associated chronic inflammatory disorders, adipose tissue releases a biologically active peptide known as leptin. Leptin activates the secretion of chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase in the production of aldosterone, which also results in elevation of arterial blood pressure. Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL-17, and other cytokines to promote inflammation. The release of those cytokines leads to chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level in both MetS and chronic inflammatory disorders also leads to the complication of cardiovascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect and dysregulated sympathetic nervous system activity may prevent further cardiovascular complication. This review mainly assesses the mechanism of leptin on the pathogenesis and further cardiovascular risk complication of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Dessie Tel +251 975152796 Email
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
46
|
A Novel STAT3-Mediated GATA6 Pathway Contributes to tert-Butylhydroquinone- (tBHQ-) Protected TNF α-Activated Vascular Cell Adhesion Molecule 1 (VCAM-1) in Vascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6584059. [PMID: 33274004 PMCID: PMC7683157 DOI: 10.1155/2020/6584059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium.
Collapse
|
47
|
Podkowińska A, Formanowicz D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants (Basel) 2020; 9:E752. [PMID: 32823917 PMCID: PMC7463588 DOI: 10.3390/antiox9080752] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Generating reactive oxygen species (ROS) is necessary for both physiology and pathology. An imbalance between endogenous oxidants and antioxidants causes oxidative stress, contributing to vascular dysfunction. The ROS-induced activation of transcription factors and proinflammatory genes increases inflammation. This phenomenon is of crucial importance in patients with chronic kidney disease (CKD), because atherosclerosis is one of the critical factors of their cardiovascular disease (CVD) and increased mortality. The effect of ROS disrupts the excretory function of each section of the nephron. It prevents the maintenance of intra-systemic homeostasis and leads to the accumulation of metabolic products. Renal regulatory mechanisms, such as tubular glomerular feedback, myogenic reflex in the supplying arteriole, and the renin-angiotensin-aldosterone system, are also affected. It makes it impossible for the kidney to compensate for water-electrolyte and acid-base disturbances, which progress further in the mechanism of positive feedback, leading to a further intensification of oxidative stress. As a result, the progression of CKD is observed, with a spectrum of complications such as malnutrition, calcium phosphate abnormalities, atherosclerosis, and anemia. This review aimed to show the role of oxidative stress and inflammation in renal impairment, with a particular emphasis on its influence on the most common disturbances that accompany CKD.
Collapse
Affiliation(s)
| | - Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
48
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
49
|
Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, Retta SF. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel) 2020; 9:antiox9040327. [PMID: 32316584 PMCID: PMC7222411 DOI: 10.3390/antiox9040327] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
| | - Alberto Ragni
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - Francesca Retta
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - T. Michael De Silva
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| |
Collapse
|
50
|
Zheng J, Liu X, Zheng B, Zheng Z, Zhang H, Zheng J, Sun C, Chen H, Yang J, Wang Z, Lin M, Chen J, Zhou Q, Zheng Z, Xu X, Ying H. Maternal 25-Hydroxyvitamin D Deficiency Promoted Metabolic Syndrome and Downregulated Nrf2/CBR1 Pathway in Offspring. Front Pharmacol 2020; 11:97. [PMID: 32184720 PMCID: PMC7058637 DOI: 10.3389/fphar.2020.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome is a disorder of energy use and storage, which is characterized by central obesity, dyslipidemia, and raised blood pressure and blood sugar levels. Maternal 25-hydroxyvitamin D deficiency is known to cause metabolic changes, chronic disease, and increased adiposity in adulthood. However, the underlying mechanism of induced metabolic syndrome (MetS) in the offspring in vitamin D deficient pregnant mothers remains unclear. We identified that maternal 25-hydroxyvitamin D deficiency enhances oxidative stress, which leads to the development of MetS in the mother and her offspring. Further, immunohistochemical, Western blotting, and qRT-PCR analyses revealed that maternal 25-hydroxyvitamin D deficiency inhibited the activation of the Nrf2/carbonyl reductase 1 (CBR1) pathway in maternal placenta, liver, and pancreas, as well as the offspring's liver and pancreas. Further analyses uncovered that application of 25-hydroxyvitamin D activated the Nrf2/CBR1 pathway, relieving the oxidative stress in BRL cells, suggesting that 25-hydroxyvitamin D regulates oxidative stress in offspring and induces the activation of the Nrf2/CBR1 pathway. Taken together, our study finds that maternal 25-hydroxyvitamin D deficiency is likely to result in offspring's MetS probably via abnormal nutrition transformation across placenta. Depression of the Nrf2/CBR1 pathway in both mothers and their offspring is one of the causes of oxidative stress leading to MetS. This study suggests that 25-hydroxyvitamin D treatment may relieve the offspring's MetS.
Collapse
Affiliation(s)
- Jianqiong Zheng
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Xiaohui Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingbing Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jiayong Zheng
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Congcong Sun
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Haiying Chen
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zuo Wang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Meimei Lin
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Qingdiao Zhou
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhi Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Xu
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|