1
|
Sheftel J, Davis CR, Phiri CB, Crenshaw TD, Tanumihardjo SA. Repeated High-Dose Vitamin A Supplements, Standard of Care for Treating Xerophthalmia, Leads to Hypervitaminosis A in Piglets. J Nutr 2024; 154:2363-2373. [PMID: 38797483 DOI: 10.1016/j.tjnut.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Vitamin A (VA) deficiency and excess negatively affect development, growth, and bone health. The World Health Organization's standard of care for xerophthalmia due to VA deficiency, is 3 high-dose VA supplements of 50,000-200,000 IU, based on age, which may cause hypervitaminosis A in some individuals. OBJECTIVES This study measured VA status following 3 VA doses in 2 piglet studies. METHODS In Study 1, 5 groups of piglets (n = 10/group) were weaned 10 d postbirth to VA-free feed and orally administered 0; 25,000; 50,000; 100,000; or 200,000 IU VA ester on days 0, 1, and 7. On days 14 and 15, the piglets underwent the modified relative dose-response (MRDR) test for VA deficiency, and were killed. Tissues were collected for high-pressure liquid chromatography analysis. Study 2 used the same design in 3 groups (n = 13/group) weaned at 16 d and administered 0; 25,000; and 200,000 IU doses. RESULTS In Study 1 (final weight: 3.6 ± 0.7 kg), liver VA concentration was hypervitaminotic in 40%, 90%, and 100% of 50,000; 100,000; and 200,000 IU groups, respectively. The 25,000 IU group was 100% adequate, and the placebo group was 40% deficient. In Study 2 (final weight: 8.7 ± 0.8 kg), where 200,000 IU could be prescribed to infants with a similar body weight, 31% of the piglets were hypervitaminotic, the 25,000 IU group was 100% VA adequate, and the placebo group was 100% deficient. The MRDR test measured deficiency in 50% and 70% of the placebo group in each study but had 3 false positives among hypervitaminotic piglets in Study 1. CONCLUSIONS Repeated high-dose VA may cause hypervitaminosis, indicating dose sizes may need reduction. The MRDR resulted in false positives in a hypervitaminotic state during malnutrition and should be paired with serum retinyl ester evaluation to enhance VA status assessment in populations with overlapping interventions.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, United States
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, United States
| | - Cacious B Phiri
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, United States
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, United States.
| |
Collapse
|
2
|
Titcomb TJ, Fathi F, Kaeppler MS, Beatriz Sandoval Cates S, Falco Cobra P, Markley JL, Gregory JF, Tanumihardjo SA. Inadequate Niacin Intake Disrupts Growth and Retinol Homeostasis Resulting in Higher Liver and Lower Serum Retinol Concentrations in Male Rats. J Nutr 2023; 153:2263-2273. [PMID: 37354977 PMCID: PMC10493434 DOI: 10.1016/j.tjnut.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Niacin-derived nicotinamide adenine dinucleotide is an essential cofactor for many dehydrogenase enzymes involved in vitamin A (VA) metabolism. Several countries with high prevalence of VA deficiency rely on maize, a poor source of available niacin, as a dietary staple. OBJECTIVES This study evaluated the interaction of dietary niacin on VA homeostasis using male Sprague-Dawley rats, aged 21 d (baseline body weight 88.3 ± 6.6 g). METHODS After 1 wk of acclimation, baseline samples were collected (n = 4). Remaining rats (n = 54) were split into 9 groups to receive low tryptophan, VA-deficient feed with 3 different amounts of niacin (0, 15, or 30 mg/kg) and 3 different oral VA doses (50, 350, or 3500 nmol/d) in a 3 × 3 design. After 4 wk, the study was terminated. Serum, livers, and small intestine were analyzed for retinoids using high-performance liquid chromatography. Niacin and metabolites were evaluated with nuclear magnetic resonance. Plasma pyridoxal-P (PLP) was measured with high-performance liquid chromatography. RESULTS Niacin intake correlated with serum retinol concentrations (r = 0.853, P < 0.001). For rats receiving the highest VA dose, liver retinol concentrations were lower in the 30-mg/kg niacin group (5.39 ± 0.27 μmol/g) than those in the 0-mg/kg and 15-mg/kg groups (9.18 ± 0.62 and 8.75 ± 0.07 μmol/g, respectively; P ≤ 0.05 for both). This phenomenon also occurred in the lower VA doses (P ≤ 0.05 for all). Growth and tissue weight at endline were associated with niacin intake (P ≤ 0.001 for all). Plasma PLP correlated with estimated niacin intake (r = 0.814, P < 0.001). CONCLUSIONS Optimal niacin intake is associated with lower liver VA and higher serum retinol and plasma PLP concentrations. The extent to which vitamin B intake affects VA homeostasis requires further investigation to determine if the effects are maintained in humans.
Collapse
Affiliation(s)
- Tyler J Titcomb
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin, United States.
| | - Fariba Fathi
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
| | - Mikayla S Kaeppler
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin, United States
| | - Sofía Beatriz Sandoval Cates
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin, United States
| | - Paulo Falco Cobra
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, United States
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin, United States.
| |
Collapse
|
3
|
Sheftel J, Smith JB, Tanumihardjo SA. Time Since Dose and Dietary Vitamin A Intake Affect Tracer Mixing in the 13C-Retinol Isotope Dilution Test in Male Rats. J Nutr 2022; 152:1582-1591. [PMID: 35259277 DOI: 10.1093/jn/nxac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Retinol isotope dilution (RID) estimates total liver vitamin A reserves (TLRs), the gold-standard vitamin A (VA) biomarker. RID equation assumptions are based on limited data. OBJECTIVES We measured the impact of tracer choice, mixing period, and VA intake on tracer mixing [ratio of tracer enrichment in serum to that in liver stores (S)] in VA-deficient, -adequate, and hypervitaminotic rats. METHODS Study 1 was a 3 × 2 × 3 design (18 groups, n = 5/group). Male Sprague-Dawley rats (21 d old) received 50, 100, or 3500 nmol VA/d for 21 d, were administered 52 nmol 13C2- or 13C10-retinyl acetate orally, and killed 5, 10, or 15 d later. Unlabeled VA (50 nmol/d) was given on days 11-14. Study 2 used 100 nmol VA/d for 21 d with 3 groups (n = 6-7): 52 nmol 13C2- or 13C10-retinyl acetate and 100 nmol VA/d throughout 14-d mixing, or 13C2-retinyl acetate without VA. Repeated-measures, 1-factor, and 3-factor ANOVAs were used for analysis. RESULTS Mean ± SD TLRs (μmol/g liver) reflected intake: 0.11 ± 0.04 (50 nmol VA/d), 0.16 ± 0.04 (100 nmol VA/d), and 5.07 ± 1.58 (3500 nmol VA/d) in Study 1 and 0.24 ± 0.08 (100 nmol VA/d) in Study 2. In Study 1, mean ± SD S was 1.65 ± 0.26 (5 d), 1.16 ± 0.09 (10 d), and 0.92 ± 0.08 (15 d). The interactions tracer*VA intake and time*VA intake were significant between days 10 and 15 (P < 0.05). In Study 2, mean ± SD S was 1.07 ± 0.02 without VA during mixing, and 0.81 ± 0.04 (13C2) and 0.79 ± 0.03 (13C10) with VA intake throughout. Estimated:measured TLRs varied by VA intake and time in Study 1 but not between groups in Study 2. CONCLUSIONS The 13C-content effect on RID through S is inconsistent. S is highly variable at 5 d, contraindicating early-time point RID. VA intake effects on S vary with timing and quantity. Assuming S = 0.8 at 14 d with consistent VA intake in human studies is likely appropriate.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jordan B Smith
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Sheftel J, van Stuijvenberg ME, Dhansay MA, Suri DJ, Grahn M, Keuler NS, Binkley NC, Tanumihardjo SA. Chronic and acute hypervitaminosis A are associated with suboptimal anthropometric measurements in a cohort of South African preschool children. Am J Clin Nutr 2022; 115:1059-1068. [PMID: 35030234 DOI: 10.1093/ajcn/nqab422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Excessive vitamin A (VA) can cause bone resorption and impair growth. Government-mandated VA supplementation (VAS) and adequate intake through dietary fortification and liver consumption led to excessive VA in South African children. OBJECTIVES We evaluated the relation between VAS and underlying hypervitaminosis A assessed by retinol isotope dilution (RID) with measures of growth and bone turnover in this cohort. METHODS Primary outcomes in these children (n = 94, 36-60 mo) were anthropometric measurements [height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) z scores], serum bone turnover markers [C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (P1NP)], and inflammation defined as C-reactive protein (CRP; ≥5 mg/L) and/or α1-acid glycoprotein (AGP; ≥1 g/L). VA status was previously measured by RID-estimated total body VA stores (TBSs) and total liver VA reserves (TLRs), and serum retinol and carotenoid concentrations, before and 4 wk after children were administered 200,000 IU VAS. Serum 25-hydroxyvitamin D3 was measured by ultra-performance LC. RESULTS In this largely hypervitaminotic A cohort, HAZ, WAZ, and WHZ were negatively associated with increasing TLRs, where TLRs predicted 6-10% of the variation before VAS (P < 0.05), increasing to 14-19% 4 wk after VAS (P < 0.01). Bone resorption decreased after VAS (P < 0.0001), whereas formation was unaffected. Neither CTX nor P1NP were correlated with TLRs at either time. Serum carotenoids were low. One child at each time point was vitamin D deficient (<50 nmol/L). CRP and AGP were not associated with growth measurements. CONCLUSIONS Excessive TLRs due to dietary VA intake and VAS are associated with lower anthropometric measures and bone resorption decreased after supplementation. VA supplementation programs should monitor VA status with biomarkers sensitive to TLRs to avoid causing negative consequences in children with hypervitaminosis A. This trial is registered at clinicaltrials.gov as NCT02915731.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Martha E van Stuijvenberg
- Non-Communicable Diseases Research Unit, South African Medical Research Council, and Division of Human Nutrition, Stellenbosch University, Stellenbosch, South Africa
| | - Muhammad A Dhansay
- Burden of Disease Research Unit, South African Medical Research Council, and Division of Human Nutrition and Department of Pediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Devika J Suri
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Grahn
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas S Keuler
- Department of Statistics, University of Wisconsin-Madison, Madison WI, USA
| | - Neil C Binkley
- Osteoporosis Clinical Research Program, University of Wisconsin-Madison, Madison WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Development and validation of a method to deliver vitamin A to macrophages. Methods Enzymol 2022; 674:363-389. [DOI: 10.1016/bs.mie.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gannon BM, Rogers LM, Tanumihardjo SA. Metabolism of Neonatal Vitamin A Supplementation: A Systematic Review. Adv Nutr 2021; 12:942-958. [PMID: 33216111 PMCID: PMC8262574 DOI: 10.1093/advances/nmaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
A systematic review was conducted to summarize the absorption, transport, storage, and metabolism of oral neonatal vitamin A supplementation (NVAS). This review focused specifically on the neonatal period (first 28 d of life for humans) to inform guidance by WHO on recommendations related to NVAS. A systematic search of international and regional databases was conducted. Inclusion criteria were human or animal studies that gave oral vitamin A as a single or limited number of doses to apparently healthy neonates. Studies evaluating fortification or food-based approaches, dosing with retinoic acid, or studies of neonatal models of disease were excluded. The search retrieved 8847 unique records. After screening by title and abstract, 88 were screened using the full text, and 35 records met inclusion criteria: 13 human and 22 animal studies. Studies indicate that high-dose NVAS is absorbed well by neonates, typically mirroring fat absorption. Doses were primarily stored in the liver and transiently increased in the lung, kidney, spleen, adrenal glands, brain, skin, and adipose tissue, generally with a dose-response. Serum retinol and retinyl esters also transiently increased following NVAS. Although minimal acute adverse effects are noted, there is a lack of data supporting NVAS for improving organ maturation or sustained delivery to target organs. Research gaps include the physiological effects of the short-term increase of vitamin A concentrations in extrahepatic tissues, or whether there are unknown adverse effects over time.
Collapse
Affiliation(s)
- Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Lisa M Rogers
- Department of Nutrition and Food Safety, WHO, Geneva, Switzerland
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Effect of Vitamin A Supplementation on Growth Performance, Serum Biochemical Parameters, Intestinal Immunity Response and Gut Microbiota in American Mink ( Neovison vison). Animals (Basel) 2021; 11:ani11061577. [PMID: 34071204 PMCID: PMC8229402 DOI: 10.3390/ani11061577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Vitamin A is critical throughout life, but utilization of vitamin A often results in local and systemic toxicity. This study investigated the effect of vitamin A supplementation on mink growth and health. The results show that vitamin A deficiency decreased the ADG, villus height, villus height/crypt depth ratio and mRNA expression levels of IL-22, Occludin and ZO-1. Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia and Lachnospiraceae NK4A136 group. Abstract This experiment investigated the effect of vitamin A supplementation on growth, serum biochemical parameters, jejunum morphology and the microbial community in male growing-furring mink. Thirty healthy male mink were randomly assigned to three treatment groups, with 10 mink per group. Each mink was housed in an individual cage. The mink in the three groups were fed diets supplemented with vitamin A acetate at dosages of 0 (CON), 20,000 (LVitA) and 1,280,000 IU/kg (HVitA) of basal diet. A 7-day pretest period preceded a formal test period of 45 days. The results show that 20,000 IU/kg vitamin A increased the ADG, serum T-AOC and GSH-Px activities, villus height and villus height/crypt depth ratio (p < 0.05). The mRNA expression levels of IL-22, Occludin and ZO-1 in the jejunum of mink were significantly higher in the LVitA group than those in the CON and HVitA groups (p < 0.05). Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia, uncultured bacterium f Muribaculaceae, Allobaculum, Lachnospiraceae NK4A136 group, Rummeliibacillus and Parasutterella. The comparison of potential functions also showed enrichment of glycan biosynthesis and metabolism, transport and catabolism pathways in the vitamin A supplementation groups compared with the CON group. In conclusion, these results indicate that dietary vitamin A supplementation could mediate host growth by improving intestinal development, immunity and the relative abundance of the intestinal microbiota.
Collapse
|
8
|
Tanumihardjo SA. Biological evidence to define a vitamin A deficiency cutoff using total liver vitamin A reserves. Exp Biol Med (Maywood) 2021; 246:1045-1053. [PMID: 33765844 PMCID: PMC8113730 DOI: 10.1177/1535370221992731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vitamin A is a fat-soluble vitamin involved in essential functions including growth, immunity, reproduction, and vision. The vitamin A Dietary Reference Intakes (DRIs) for North Americans suggested that a minimally acceptable total liver vitamin A reserve (TLR) is 0.07 µmol/g, which is not explicitly expressed as a vitamin A deficiency cutoff. The Biomarkers of Nutrition for Development panel set the TLR cutoff for vitamin A deficiency at 0.1 µmol/g based on changes in biological response of several physiological parameters at or above this cutoff. The criteria used to formulate the DRIs include clinical ophthalmic signs of vitamin A deficiency, circulating plasma retinol concentrations, excretion of vitamin A metabolites in the bile, and long-term storage of vitamin A as protection against vitamin A deficiency during times of low dietary intake. This review examines the biological responses that occur as TLRs are depleted. In consideration of all of the DRI criteria, the review concludes that induced biliary excretion and long-term vitamin A storage do not occur until TLRs are >0.10 µmol/g. If long-term storage is to continue to be part of the DRI criteria, vitamin A deficiency should be set at a minimum cutoff of 0.10 µmol/g and should be set higher during times of enhanced requirements where TLRs can be rapidly depleted, such as during lactation or in areas with high infection burden. In population-based surveys, cutoffs are important when using biomarkers of micronutrient status to define the prevalence of deficiency and sufficiency to inform public health interventions. Considering the increasing use of quantitative biomarkers of vitamin A status that indirectly assess TLRs, i.e. the modified-relative-dose response and retinol-isotope dilution tests, setting a TLR as a vitamin A deficiency cutoff is important for users of these techniques to estimate vitamin A deficiency prevalence. Future researchers and policymakers may suggest that DRIs should be set with regard to optimal health and not merely to prevent a micronutrient deficiency.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Zhou HB, Huang XY, Bi Z, Hu YH, Wang FQ, Wang XX, Wang YZ, Lu ZQ. Vitamin A with L-ascorbic acid sodium salt improves the growth performance, immune function and antioxidant capacity of weaned pigs. Animal 2020; 15:100133. [PMID: 33573953 DOI: 10.1016/j.animal.2020.100133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Vitamin A is easily degraded by environmental factors. Therefore, it is very important to add antioxidants during Vitamin A production. In the past, ethoxyquin (EQ) was widely used, but recent studies have found that it has potential toxicity. Therefore, in this study, we evaluated the antioxidant activities of 4 antioxidants in vitro: EQ, butylated hydroxytoluene, α-tocopherol and L-ascorbic acid sodium salt (Vitamin C sodium). In vitro experiments showed that Vitamin C sodium had better antioxidant capacity. Then, we explored the effects of different antioxidant types of Vitamin A on the growth performance, immune function and antioxidant capacity of weaned pigs. In total, 288 weaned piglets with an initial mean BW of 8.34 ± 0.02 kg at 30 days old were randomly divided into three groups with four replicates and 24 piglets per replicate for 35 days of feeding. The experimental diets were as follows: i) basal diet without external Vitamin A (NC); ii) basal diet supplemented with 12000 IU/kg EQ Vitamin A and iii) basal diet supplemented with 12000 IU/kg Vitamin C sodium Vitamin A. On day 36, two pigs from each replicate were selected to collect serum samples. The in vivo results showed that pigs in the EQ Vitamin A and Vitamin C sodium Vitamin A groups had significantly higher final weight and average daily gain (P < 0.05). During the trial, the levels of IgG and glutathione peroxidase in the EQ Vitamin A and Vitamin C sodium Vitamin A groups were significantly higher than those in the NC group (P < 0.05), and the malondialdehyde content was significantly lower (P < 0.05). On the 36th day, the levels of IgA and total antioxidant capacity in the Vitamin C sodium Vitamin A group were significantly higher than those in the EQ Vitamin A and NC (P < 0.05) groups. Thus, Vitamin C sodium Vitamin A can significantly improve the growth performance, antioxidant capacity and immune function of weaned pigs. Meanwhile, Vitamin C sodium may replace EQ as an antioxidant additive for Vitamin A.
Collapse
Affiliation(s)
- H B Zhou
- Dalian Chengsan Husbandry Co., Ltd, Dalian 116308, China
| | - X Y Huang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Z Bi
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Y H Hu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - F Q Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - X X Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Y Z Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Z Q Lu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission; Key Laboratory of Molecular Animal Nutrition, Ministry of Education; Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
10
|
Sowa M, Mourao L, Sheftel J, Kaeppler M, Simons G, Grahn M, Davis CR, von Lintig J, Simon PW, Pixley KV, Tanumihardjo SA. Overlapping Vitamin A Interventions with Provitamin A Carotenoids and Preformed Vitamin A Cause Excessive Liver Retinol Stores in Male Mongolian Gerbils. J Nutr 2020; 150:2912-2923. [PMID: 32455433 PMCID: PMC8023580 DOI: 10.1093/jn/nxaa142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/27/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Vitamin A (VA) deficiency is a public health problem in some countries. Fortification, supplementation, and increased provitamin A consumption through biofortification are efficacious, but monitoring is needed due to risk of excessive VA intake when interventions overlap. OBJECTIVES Two studies in 28-36-d-old male Mongolian gerbils simulated exposure to multiple VA interventions to determine the effects of provitamin A carotenoid consumption from biofortified maize and carrots and preformed VA fortificant on status. METHODS Study 1 was a 2 × 2 × 2 factorial design (n = 85) with high-β-carotene maize, orange carrots, and VA fortification at 50% estimated gerbil needs, compared with white maize and white carrot controls. Study 2 was a 2 × 3 factorial design (n = 66) evaluating orange carrot and VA consumption through fortification at 100% and 200% estimated needs. Both studies utilized 2-wk VA depletion, baseline evaluation, 9-wk treatments, and liver VA stores by HPLC. Intestinal scavenger receptor class B member 1 (Scarb1), β-carotene 15,15'-dioxygenase (Bco1), β-carotene 9',10'-oxygenase (Bco2), intestine-specific homeobox (Isx), and cytochrome P450 26A1 isoform α1 (Cyp26a1) expression was analyzed by qRT-PCR in study 2. RESULTS In study 1, liver VA concentrations were significantly higher in orange carrot (0.69 ± 0.12 μmol/g) and orange maize groups (0.52 ± 0.21 μmol/g) compared with baseline (0.23 ± 0.069 μmol/g) and controls. Liver VA concentrations from VA fortificant alone (0.11 ± 0.053 μmol/g) did not differ from negative control. In study 2, orange carrot significantly enhanced liver VA concentrations (0.85 ± 0.24 μmol/g) relative to baseline (0.43 ± 0.14 μmol/g), but VA fortificant alone (0.42 ± 0.21 μmol/g) did not. Intestinal Scarb1 and Bco1 were negatively correlated with increasing liver VA concentrations (P < 0.01, r2 = 0.25-0.27). Serum retinol concentrations did not differ. CONCLUSIONS Biofortified carrots and maize without fortification prevented VA deficiency in gerbils. During adequate provitamin A dietary intake, preformed VA intake resulted in excessive liver stores in gerbils, despite downregulation of carotenoid absorption and cleavage gene expression.
Collapse
Affiliation(s)
- Margaret Sowa
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luciana Mourao
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikayla Kaeppler
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabrielle Simons
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Grahn
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Philipp W Simon
- Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin V Pixley
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Ahmad SM, Huda MN, Raqib R, Qadri F, Alam MJ, Afsar MNA, Peerson JM, Tanumihardjo SA, Stephensen CB. High-Dose Neonatal Vitamin A Supplementation to Bangladeshi Infants Increases the Percentage of CCR9-Positive Treg Cells in Infants with Lower Birthweight in Early Infancy, and Decreases Plasma sCD14 Concentration and the Prevalence of Vitamin A Deficiency at Two Years of Age. J Nutr 2020; 150:3005-3012. [PMID: 32939553 PMCID: PMC7675026 DOI: 10.1093/jn/nxaa260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vitamin A (VA) stores are low in early infancy and may impair development of the immune system. OBJECTIVE This study determined if neonatal VA supplementation (VAS) affects the following: 1) development of regulatory T (Treg) cells; 2) chemokine receptor 9 (CCR9) expression, which directs mucosal targeting of immune cells; and 3) systemic endotoxin exposure as indicated by changed plasma concentrations of soluble CD14 (sCD14). Secondarily, VA status, growth, and systemic inflammation were investigated. METHODS In total, 306 Bangladeshi infants were randomly assigned to receive 50,000 IU VA or placebo (PL) within 48 h of birth, and immune function was assessed at 6 wk, 15 wk, and 2 y. Primary outcomes included the following: 1) peripheral blood Treg cells; 2) percentage of Treg, T, and B cells expressing CCR9; and 3) plasma sCD14. Secondary outcomes included the following: 4) VA status measured using the modified relative dose-response (MRDR) test and plasma retinol; 5) infant growth; and 6) plasma C-reactive protein (CRP). Statistical analysis identified group differences and interactions with sex and birthweight. RESULTS VAS increased (P = 0.004) the percentage of CCR9+ Treg cells (13.2 ± 1.37%) relative to PL (9.17 ± 1.15%) in children below the median birthweight but had the opposite effect (P = 0.04) in those with higher birthweight (VA, 9.13 ± 0.89; PL, 12.1 ± 1.31%) at 6 and 15 wk (values are combined mean ± SE). VAS decreased (P = 0.003) plasma sCD14 (1.56 ± 0.025 mg/L) relative to PL (1.67 ± 0.032 mg/L) and decreased (P = 0.034) the prevalence of VA deficiency (2.3%) relative to PL (9.2%) at 2 y. CONCLUSIONS Neonatal VAS enhanced mucosal targeting of Treg cells in low-birthweight infants. The decreased systemic exposure to endotoxin and improved VA status at 2 y may have been due to VA-mediated improvements in gut development resulting in improved barrier function and nutrient absorption. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.
Collapse
Affiliation(s)
- Shaikh M Ahmad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - M Nazmul Huda
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Md Jahangir Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Md Nure Alam Afsar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Janet M Peerson
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
| | - Sherry A Tanumihardjo
- University of Wisconsin–Madison, Department of Nutritional Sciences, Madison, WI, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Gannon BM, Jones C, Mehta S. Vitamin A Requirements in Pregnancy and Lactation. Curr Dev Nutr 2020; 4:nzaa142. [PMID: 32999954 PMCID: PMC7513584 DOI: 10.1093/cdn/nzaa142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pregnancy and lactation are critical life stages with unique nutritional requirements, including for vitamin A (VA). Current DRIs for VA were published in 2001. The objective of this review was to identify and categorize evidence related to VA requirements in pregnancy and lactation since these DRIs were formulated. We searched MEDLINE and included articles according to an analytic framework of maternal VA exposure on status and health outcomes in the mother-child dyad. Intermediate and indirect evidence supports that maternal VA intakes can impact the mother's VA status, breastmilk, and health outcomes, as well as the child's VA status and select health outcomes. Food-based approaches can lead to more sustained, sufficient VA status in mothers and children. Research needs include further study linking maternal VA intakes on maternal and child VA status, and further associations with outcomes to determine intake requirements to optimize health.
Collapse
Affiliation(s)
- Bryan M Gannon
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Camille Jones
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
La Frano MR, Brito A, Johnson CM, Wilhelmson B, Gannon B, Fanter RK, Pedersen TL, Tanumihardjo SA, Newman JW. Metabolomics Reveals Altered Hepatic Bile Acids, Gut Microbiome Metabolites, and Cell Membrane Lipids Associated with Marginal Vitamin A Deficiency in a Mongolian Gerbil Model. Mol Nutr Food Res 2020; 64:e1901319. [PMID: 32453876 DOI: 10.1002/mnfr.201901319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/19/2020] [Indexed: 12/17/2022]
Abstract
SCOPE This study is designed to provide a broad evaluation of the impacts of vitamin A (VA) deficiency on hepatic metabolism in a gerbil model. METHODS AND RESULTS After 28 days of VA depletion, male Mongolian gerbils (Meriones unguiculatus) are randomly assigned to experimental diets for 28 days. Groups are fed a white-maize-based diet with ≈50 µL cottonseed oil vehicle either alone (VA-, n = 10) or containing 40 µg retinyl acetate (VA+, n = 10) for 28 days. Liver retinol is measured by high-performance liquid chromatography. Primary metabolomics, aminomics, lipidomics, bile acids, oxylipins, ceramides, and endocannabinoids are analyzed in post-mortem liver samples by liquid chromatography-mass spectrometry. RESULTS Liver retinol is lower (p < 0.001) in the VA- versus VA+ group, with concentrations indicating marginal VA deficiency. A total of 300 metabolites are identified. Marginal VA deficiency is associated with lower bile acids, trimethylamine N-oxide, and a variety of acylcarnitines, phospholipids and sphingomyelins (p < 0.05). Components of DNA, including deoxyguanosine, cytidine, and N-carbomoyl-beta-alanine (p < 0.05), are differentially altered. CONCLUSIONS Hepatic metabolomics in a marginally VA-deficient gerbil model revealed alterations in markers of the gut microbiome, fatty acid and nucleotide metabolism, and cellular structure and signaling.
Collapse
Affiliation(s)
- Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen, 1445, Luxembourg
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Baylee Wilhelmson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Bryan Gannon
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA.,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Sherry A Tanumihardjo
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA
| | - John W Newman
- West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA.,Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
14
|
Raiten DJ, Darnton-Hill I, Tanumihardjo SA, Suchdev PS, Udomkesmalee E, Martinez C, Mazariegos DI, Mofu M, Kraemer K, Martinez H. Perspective: Integration to Implementation (I-to-I) and the Micronutrient Forum-Addressing the Safety and Effectiveness of Vitamin A Supplementation. Adv Nutr 2020; 11:185-199. [PMID: 31566677 PMCID: PMC7442412 DOI: 10.1093/advances/nmz100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/07/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
An ongoing challenge to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance that are safe, efficacious, and avoid unintended consequences. The integration to effective implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the generation, translation, and implementation of evidence to public health guidance/programs. The I-to-I approach was developed under the auspices of the Micronutrient Forum and has been previously applied to the question of safety and effectiveness of interventions to prevent and treat nutritional iron deficiency. The present article applies the I-to-I approach to questions regarding the safety and utility of large-dose vitamin A supplementation programs, and presents the authors' perspective on key aspects of the topic, including coverage of the basic and applied biology of vitamin A nutrition and assessment, clinical implications, and an overview of the extant data with regard to both the justification for and utility of available intervention strategies. The article includes some practical considerations based on specific country experiences regarding the challenges of implementing vitamin A-related programs. This is followed by an overview of some challenges associated with engagement of the enabling communities that play a critical role in the implementation of these types of public health interventions. The article concludes with suggestions for potential approaches to move this important agenda forward.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ian Darnton-Hill
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- The Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA, USA
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Parminder S Suchdev
- Department of Pediatrics and Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Emorn Udomkesmalee
- Department of Human Nutrition, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Carolina Martinez
- Instituto de Nutrición de Centro América y Panamá (INCAP), Guatemala City, Guatemala
| | - Dora Inés Mazariegos
- Instituto de Nutrición de Centro América y Panamá (INCAP), Guatemala City, Guatemala
| | - Musonda Mofu
- National Food and Nutrition Commission, Lusaka, Zambia
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Homero Martinez
- Nutrition International, Ottawa, Ontario, Canada
- Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| |
Collapse
|
15
|
Ahmad SM, Raqib R, Huda MN, Alam MJ, Monirujjaman M, Akhter T, Wagatsuma Y, Qadri F, Zerofsky MS, Stephensen CB. High-Dose Neonatal Vitamin A Supplementation Transiently Decreases Thymic Function in Early Infancy. J Nutr 2020; 150:176-183. [PMID: 31504694 PMCID: PMC6946900 DOI: 10.1093/jn/nxz193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Vitamin A deficiency (VAD) impairs T-cell-mediated immunity. In regions where VAD is prevalent, vitamin A supplementation (VAS) reduces child mortality, perhaps by improving immune function. OBJECTIVE Our objective was to determine if neonatal VAS would improve thymic function in Bangladeshi infants, and to determine if such effects differed by sex or nutritional status (i.e., birth weight above/below the median). METHODS Three hundred and six infants were randomly assigned to 50,000 IU vitamin A (VA) or placebo (PL) within 48 h of birth. Primary outcomes were measured at multiple ages and included 1) thymic index (TI) at 1, 6, 10, and 15 wk; 2) T-cell receptor excision circles (TREC), an index of thymic output of naïve T cells; and 3) total/naïve T cells in peripheral blood at 6 wk, 15 wk, and 2 y. A mixed linear model for repeated measures was used to assess group differences at each age and identify interactions with sex and birth weight. RESULTS VAS did not significantly (P = 0.21) affect TI overall (i.e., at all ages) but decreased TI by 7.8% (P = 0.029) at 6 wk: adjusted TI means for the PL and VA groups at 1, 6, 10, and 15 wk were 4.09 compared with 3.80 cm2, 7.78 compared with 7.18 cm2, 8.11 compared with 7.84 cm2, and 7.91 compared with 7.97 cm2, respectively. VAS did not significantly (P = 0.25) affect TREC overall but decreased TREC by 19% (P = 0.029) at 15 wk: adjusted TREC means for the PL and VA groups at 6 wk, 15 wk, and 2 y were 13.6 compared with 16.1 copies/pg DNA, 19.4 compared with 15.7 copies/pg DNA, and 11.8 compared with 10.0 copies/pg DNA, respectively. VAS did not significantly affect overall total (P = 0.10) or naïve (P = 0.092) T cells: adjusted naïve T-cell means for the PL and VA groups at 6 wk, 15 wk, and 2 y were 3259 compared with 3109 cells/µL, 3771 compared with 3487 cells/µL, and 1976 compared with 1898 cells/µL, respectively. CONCLUSION In contrast to our hypothesis, VAS decreased thymic function early in infancy but health effects are presumably negligible owing to the transience and small magnitude of this effect. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.
Collapse
Affiliation(s)
- Shaikh M Ahmad
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - M Nazmul Huda
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Md J Alam
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Md Monirujjaman
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Taslima Akhter
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Yukiko Wagatsuma
- Department of Clinical Trials and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Firdausi Qadri
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Melissa S Zerofsky
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| |
Collapse
|
16
|
van Stuijvenberg ME, Dhansay MA, Nel J, Suri D, Grahn M, Davis CR, Tanumihardjo SA. South African preschool children habitually consuming sheep liver and exposed to vitamin A supplementation and fortification have hypervitaminotic A liver stores: a cohort study. Am J Clin Nutr 2019; 110:91-101. [PMID: 31089689 DOI: 10.1093/ajcn/nqy382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In some regions, multiple vitamin A (VA) interventions occur in the same target groups, which may lead to excessive stores. Retinol isotope dilution (RID) is a more sensitive technique than serum retinol to measure VA status. OBJECTIVE We evaluated VA status before and after a high-dose supplement in preschool children living in a region in South Africa with habitual liver consumption and exposed to VA supplementation and fortification. METHODS After baseline blood samples, subjects (46.7 ± 8.4 mo; n = 94) were administered 1.0 μmol [14,15]-13C2-retinyl acetate to estimate total liver retinol reserves by RID with a follow-up 14-d blood sample. Liver intake was assessed with a frequency questionnaire. In line with current practice, a routine 200,000 IU VA capsule was administered after the RID test. RID was repeated 1 mo later. Serum retinyl esters were evaluated using ultra-performance liquid chromatography. RESULTS At baseline, 63.6% of these children had hypervitaminosis A defined as total liver retinol reserves ≥1.0 μmol/g liver, which increased to 71.6% after supplementation (1.13 ± 0.43 to 1.29 ± 0.46 μmol/g; P < 0.001). Total serum VA as retinyl esters was elevated in 4.8% and 6.1% of children before and after supplementation. The odds of having hypervitaminosis A at baseline were higher in children consuming liver ≥1/mo (ratio 3.70 [95% CI: 1.08, 12.6]) and in children receiving 2 (4.28 [1.03, 17.9]) or 3 (6.45 [0.64, 65.41]) supplements in the past 12 mo. Total body stores decreased after the supplement in children in the highest quartile at baseline compared with children with lower stores, who showed an increase (P = 0.007). CONCLUSIONS In children, such as this cohort in South Africa, with adequate VA intake through diet, and overlapping VA fortification and supplementation, preschool VA capsule distribution should be re-evaluated. This trial was registered at https://clinicaltrials.gov/ct2/show/NCT02915731 as NCT02915731.
Collapse
Affiliation(s)
- Martha E van Stuijvenberg
- Non-Communicable Diseases Research Unit, South African Medical Research Council.,Division of Human Nutrition, Cape Town, South Africa
| | - Muhammad A Dhansay
- Burden of Disease Research Unit, South African Medical Research Council.,Division of Human Nutrition, Cape Town, South Africa.,Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Jana Nel
- Integrated Nutrition Programme, Northern Cape Department of Health, Kimberley, South Africa
| | - Devika Suri
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Michael Grahn
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | |
Collapse
|
17
|
Sheftel J, Surles RL, Tanumihardjo SA. Retinol isotope dilution accurately predicts liver reserves in piglets but overestimates reserves in lactating sows. Exp Biol Med (Maywood) 2019; 244:579-587. [PMID: 30889962 DOI: 10.1177/1535370219838785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Vitamin A (VA) deficiency and hypervitaminosis A have been reported in groups of people worldwide. Conventional biomarkers of VA deficiency (e.g. serum retinol concentration, dose response tests) are not able to distinguish between sufficiency and hypervitaminosis A. Retinol isotope dilution (RID) predictions of VA status have been validated in humans and animal models from deficiency through toxicity; however, RID during life stages with unique issues related to isotopic tracing, such as infancy and lactation, requires further evaluation. This study investigated RID in piglets and lactating sows as models for human infants and women. In piglets, RID successfully determined VA deficiency (confirmed with liver analysis), and that the tracer mixes quickly. Conversely, in lactating sows, although serum and milk enrichments were similar, traditional RID equations overestimated VA stores, likely due to losses of tracer and higher extrahepatic VA storage than predictions. These data inform researchers about the challenges of using RID during lactation.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca L Surles
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Mondloch SJ, Tanumihardjo SA, Davis CR, van Jaarsveld PJ. Hepatic Vitamin A Concentrations in Vervets ( Chlorocebus aethiops) Supplemented with Carotenoids Derived from Oil Palm. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:456-464. [PMID: 30021671 PMCID: PMC6159682 DOI: 10.30802/aalas-jaalas-17-000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/02/2018] [Accepted: 02/12/2018] [Indexed: 11/05/2022]
Abstract
Commonly used in biomedical research, vervets (Chlorocebus aethiops) are omnivorous but primarily meet their vitamin A requirements from provitamin A carotenoids. Hypervitaminosis A has occurred in vervets that consume feed high in preformed vitamin A. We investigated the vitamin A status of vervets supplemented daily with various antioxidants derived from palm oil. Male vervets (n = 40) were placed for 23 wk on a high-fat diet (34.9% energy) containing 645 μ g retinol activity equivalents (RAE), with 515 μ g RAE from preformed vitamin A. Vervets were randomized to 5 treatments (duration, 20 mo): control; 100 mg d-α-tocopheryl acetate; 100 mg oil palm (Elaeis guineensis)-derived vitamin E; 50 mg oil palm-derived vitamin E + 50 mg carotenoid complex + unrestricted palm-derived water-soluble antioxidants; and 5) unrestricted water-soluble antioxidants. Livers (n = 38) were analyzed for vitamin A, α-retinol (α-vitamin A), and carotenoids. Median hepatic vitamin A and total carotenoid concentrations were 6.49 μ mol/g and 4.30 nmol/g, respectively. Compared with controls, vervets fed the carotenoid complex had higher hepatic vitamin A (11.9 ± 5.1 μ mol/g), α -vitamin A (1.3 ± 0.7 μ mol/g), α -carotene (11.5 ± 5.3 nmol/g), β-carotene (15.6 ± 8.6 nmol/g), and total carotenoids (28.1 ± 13.9 nmol/g) but lower lutein (0.66 ± 0.28 nmol/g) and zeaxanthin (0.24 ± 0.06 nmol). NHP may benefit from replacement of preformed vitamin A with carotenoids in feeds; however, bioconversion efficiency in these models should be investigated to determine optimal levels.
Collapse
Affiliation(s)
- Stephanie J Mondloch
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin;,
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul J van Jaarsveld
- Noncommunicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
19
|
Sheftel J, Gannon BM, Davis CR, Tanumihardjo SA. Provitamin A-biofortified maize consumption increases serum xanthophylls and 13C-natural abundance of retinol in Zambian children. Exp Biol Med (Maywood) 2017; 242:1508-1514. [PMID: 28836851 DOI: 10.1177/1535370217728500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plants that undergo C4 photosynthesis, such as maize, are enriched in the stable isotope of carbon (13C) compared with other dietary plants and foods. Consumption of maize that has been biofortified to contain elevated levels of provitamin A carotenoids (orange maize) increased the abundance of 13C in serum retinol of Mongolian gerbils. We evaluated this method in humans to determine if it has potential for further use in intervention effectiveness studies. A random subset of samples from a two-month randomized controlled feeding trial of rural three- to five-year old Zambian children were used to determine the impact of orange maize intake on serum carotenoid concentrations ( n = 88) and 13C-natural abundance in serum retinol ( n = 77). Concentrations of β-cryptoxanthin (a xanthophyll provitamin A carotenoid) and the dihydroxy xanthophylls lutein and zeaxanthin, which do not have vitamin A activity, were elevated in children consuming orange maize compared with those consuming a white maize control ( P < 0.001), while β-carotene was not different ( P > 0.3). Furthermore, 13C natural abundance was higher after two months' intervention in the orange maize group compared with the white maize group ( P = 0.049). Predictions made from equations developed in the aforementioned gerbil study estimated that maize provided 11% (2-21%, 95% confidence interval) of the recent dietary vitamin A to these children. These results demonstrate that orange maize is efficacious at providing retinol to the vitamin A pool in children through provitamin A carotenoids, as monitored by the change in 13C enrichment, which was not reflected in serum β-carotene concentrations. Further effectiveness studies in countries who have adopted orange maize should consider determining differences in retinol 13C-enrichment among target groups in addition to profiling serum xanthophyll carotenoids with specific emphasis on zeaxanthin. Impact statement Maize biofortified with provitamin A carotenoids (orange) has been released in some African markets. Responsive and sensitive methods to evaluate dissemination effectiveness are needed. This study investigated methods to evaluate effectiveness of orange maize consumption using serum from Zambian children fed orange maize for two months. Many varieties of orange maize contain higher amounts of the xanthophyll carotenoids in addition to β-carotene compared with typical varieties. This study uniquely showed higher concentrations of the maize xanthophylls lutein, zeaxanthin, and β-cryptoxanthin in children who consumed orange maize compared with white. Furthermore, maize is a C4 plant and is therefore naturally enriched with 13C. Higher 13C was detected in the serum retinol of the orange maize consumers with no change in serum β-carotene concentration suggesting preferential bioconversion to retinol. The combined analyses of serum zeaxanthin specifically and 13C-natural abundance of retinol could prove useful in effectiveness studies between orange maize adopters and non-adopters.
Collapse
Affiliation(s)
- Jesse Sheftel
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|