1
|
Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data. MATERIALS 2022; 15:ma15103664. [PMID: 35629692 PMCID: PMC9143528 DOI: 10.3390/ma15103664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
Background: The purpose of this review was to analyze and correlate the findings for zirconia implants in clinical, preclinical and in vitro cell studies in relation to surface structure. Methods: Electronic searches were conducted to identify clinical, preclinical and in vitro cell studies on zirconia implant surfaces. The primary outcomes were mean bone loss (MBL) for clinical studies, bone-to-implant contact (BIC) and removal torque (RT) for preclinical studies and cell spreading, cell proliferation and gene expression for cell studies. The secondary outcomes included comparisons of data found for those surfaces that were investigated in all three study types. Results: From 986 screened titles, 40 studies were included for data extraction. In clinical studies, only micro-structured surfaces were investigated. The lowest MBL was reported for sandblasted and subsequently etched surfaces, followed by a sinter and slurry treatment and sandblasted surfaces. For BIC, no clear preference of one surface structure was observable, while RT was slightly higher for micro-structured than smooth surfaces. All cell studies showed that cell spreading and cytoskeletal formation were enhanced on smooth compared with micro-structured surfaces. Conclusions: No correlation was observed for the effect of surface structure of zirconia implants within the results of clinical, preclinical and in vitro cell studies, underlining the need for standardized procedures for human, animal and in vitro studies.
Collapse
|
2
|
Histomorphometric assessment of implant coated with mixture of nano-alumina and fluorapatite in rabbits. Saudi Dent J 2021; 33:1142-1148. [PMID: 34938060 PMCID: PMC8665202 DOI: 10.1016/j.sdentj.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/20/2020] [Accepted: 02/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background The application of nanoscale surface modification was found to be useful in the improvement of osseointegration of endosseous dental implants. The fluorapatite (FA)/alumina (Al2O3) mixture is recognized for its outstanding bioinertia and can significantly increase the biocompatibility and bioactivity of biomaterials. Objective The aim of the present work was to evaluate the bone response to nano-alumina- and fluorapatite-coated dental implants using rabbit tibiae. Material and Methods The coating was performed using the dip-coating method. Commercially pure titanium screw-type implants were used as a control group. The coated implants were the experimental group. Each group consisted of 12 screws that were surgically implanted in 6 healthy New Zealand rabbits. Histological and histomorphometric evaluations were performed at the bone to implant contact (BIC) interface, bone fraction area occupancy (BAFO) and fibrous tissue at 2 and 6 weeks of healing. Results This analysis showed that the coated implants had more rapid osseointegration than the control group, with a significant difference after 2 and 6 weeks of healing for both groups. The histomorphometric evaluation demonstrated higher values for BIC% and BAFO% and lower values of fibrous tissue in the mixture-coated Ti implants than in the control group. Conclusion The current study suggested that the nano-alumina and fluorapatite mixture coating is a favourable candidate for rapid osseointegration over uncoated implants.
Collapse
|
3
|
Chacun D, Lafon A, Courtois N, Reveron H, Chevalier J, Margossian P, Alves A, Gritsch K, Grosgogeat B. Histologic and histomorphometric evaluation of new zirconia-based ceramic dental implants: A preclinical study in dogs. Dent Mater 2021; 37:1377-1389. [PMID: 34238605 DOI: 10.1016/j.dental.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Healing of soft tissues and improvement of aesthetics have become major research objectives in implantology and renewed the interest for ceramics implants. The aim of this study was to evaluate the pre-clinical performance of screw-shaped sandblasted-etched implants processed from an innovative zirconia-based ceramic composite, in comparison to titanium. METHODS Twenty-four ceramic and twenty-four titanium screw-shaped sandblasted-etched dental implants were tested in a split-mouth design in six Beagle dogs. Surface topographies were investigated by confocal microscopy. Local tissue effects were evaluated at 4 and 13 weeks after implantation through histology. An ANOVA statistical analysis (5% risk; p < 0.05) was performed to compare peri-implant quantitative histomorphometric parameters on buccal and lingual sides, including Bone to Implant Contact (BIC) among test groups and time-periods. RESULTS Titanium and ceramic implants presented respectively moderate and minimal roughness. After 4 and 13 weeks, ceramic implants showed an inflammatory tissue response close to titanium implants. At both period of time there was no significant difference between the titanium and ceramic groups in terms of BIC values (mean ± SD) at the lingual or buccal sides or when combining buccal + lingual BIC values (respectively for titanium and ceramic, 68.4 ± 14.7 % and 75.0 ± 13.5 % at 4 weeks, and 92.0 ± 8.6 % and 86.1 ± 13.8 % at 13 weeks). SIGNIFICANCE Within the limits of the present study, it can be concluded that newly developed zirconia-based ceramic composite dental implants have similar biocompatibility and osseointegration to those observed in titanium implants. These pre-clinical results corroborate the potential for the use of these new zirconia-based ceramics in oral implantology.
Collapse
Affiliation(s)
- Doriane Chacun
- Université de Lyon, Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615, Faculté d'Odontologie, 69372 Lyon Cedex 08, France; Hospices Civils de Lyon, Pôle d'Odontologie, Lyon, France
| | - Arnaud Lafon
- Université de Lyon, Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615, Faculté d'Odontologie, 69372 Lyon Cedex 08, France; Hospices Civils de Lyon, Pôle d'Odontologie, Lyon, France
| | | | - Helen Reveron
- Université de Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, 69621 Villeurbanne Cedex, France
| | - Jérôme Chevalier
- Université de Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, 69621 Villeurbanne Cedex, France
| | - Patrice Margossian
- Exclusive Private Practice of Implantology and Periodontology, Marseille, France
| | | | - Kerstin Gritsch
- Université de Lyon, Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615, Faculté d'Odontologie, 69372 Lyon Cedex 08, France; Hospices Civils de Lyon, Pôle d'Odontologie, Lyon, France
| | - Brigitte Grosgogeat
- Université de Lyon, Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces UMR CNRS 5615, Faculté d'Odontologie, 69372 Lyon Cedex 08, France; Hospices Civils de Lyon, Pôle d'Odontologie, Lyon, France.
| |
Collapse
|
4
|
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang K, Wu D, Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine 2020; 15:7199-7214. [PMID: 33061376 PMCID: PMC7535115 DOI: 10.2147/ijn.s270229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dankai Wu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
5
|
Iinuma Y, Hirota M, Hayakawa T, Ohkubo C. Surrounding Tissue Response to Surface-Treated Zirconia Implants. MATERIALS 2019; 13:ma13010030. [PMID: 31861679 PMCID: PMC6981750 DOI: 10.3390/ma13010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022]
Abstract
Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which are partially stabilized zirconia, have been used for fabricating dental implants. This study investigated the soft tissue attachment, the collagen fiber orientation to zirconia at different surface conditions, and the bone response using implantation experiments in animals. The zirconia implant surfaces were treated with ultraviolet irradiation (UV), a combination of large-grit sandblasting and hydrofluoric acid etching (blastedHF), and a combination of blastedHF and UV (blastedHF+UV). The surface treated with blastedHF and blastedHF+UV appeared rough and hydrophilic. The surface treated with blastedHF+UV appeared to be superhydrophilic. Subsequently, tapered cylindrical zirconia implants were placed in the alveolar sockets of the maxillary molars of rats. The bone-to-implant contact ratio of blastedHF and blastedHF+UV implants was significantly higher than that of the non-treated controls and UV-treated implants. The four different surface-treated zirconia implants demonstrated tight soft tissue attachments. Perpendicularly oriented collagen fibers towards zirconia implants were more prominent in blastedHF and blastedHF+UV implants compared to the controls and UV-treated implants. The area of the soft tissue attachment was the greatest with the perpendicularly oriented collagen fibers of blastedHF+UV-treated implants. In conclusion, blastedHF+UV treatment could be beneficial for ensuring greater soft-tissue attachment for zirconia implants.
Collapse
Affiliation(s)
- Yohei Iinuma
- Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan;
- Correspondence: ; Tel.: +81-45580-8421
| | - Masatsugu Hirota
- School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan; (M.H.); (T.H.)
| | - Tohru Hayakawa
- School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan; (M.H.); (T.H.)
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Yokohama, Kanagawa 230-8501, Japan;
| |
Collapse
|
6
|
Roehling S, Schlegel KA, Woelfler H, Gahlert M. Zirconia compared to titanium dental implants in preclinical studies—A systematic review and meta‐analysis. Clin Oral Implants Res 2019; 30:365-395. [DOI: 10.1111/clr.13425] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Roehling
- Clinic for Oral and Cranio‐Maxillofacial Surgery Hightech Research Center University Hospital Basel University of Basel Basel Switzerland
- Clinic for Oral and Cranio‐Maxillofacial Surgery Kantonsspital Aarau Aarau Switzerland
- Unit for Oral & Maxillofacial Surgery Medical Healthcare Center Lörrach Lörrach Germany
| | - Karl A. Schlegel
- Private Clinic for Oral and Maxillofacial Surgery Prof. Schlegel Munich Germany
- Maxillofacial Surgery Department University Hospital Erlangen University of Erlangen Erlangen Germany
| | | | - Michael Gahlert
- Clinic for Oral and Cranio‐Maxillofacial Surgery Hightech Research Center University Hospital Basel University of Basel Basel Switzerland
- Dental Clinic for Oral Surgery and Implant Dentistry Prof. Gahlert Munich Germany
- Department for Oral Surgery Faculty of Medicine Sigmund Freud University Vienna Vienna Austria
| |
Collapse
|
7
|
Current status of zirconia implants in dentistry: preclinical tests. J Prosthodont Res 2018; 63:1-14. [PMID: 30205949 DOI: 10.1016/j.jpor.2018.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE This systematic review aimed to provide an overview of zirconia implants as well as regarding the outcome of the implant-restorative complex in preclinical studies. STUDY SELECTION An electronic search of the literature prior to July 2017 was performed to identify all articles related to preclinical research on zirconia implants. The search was conducted using MEDLINE (National Library of Medicine) and PubMed without restrictions concerning the date of publication. The search terminology included: zirconia implant, osseointegration, bone-to-implant contact, soft tissue, histology, histomorphometry, surface modification, surface roughness, surface characteristics, and restoration (connecting multiple keywords with AND, OR). RESULTS Fifty-seven studies were finally selected from an initial yield of 654 titles, and the data were extracted. The identified preclinical studies focused on several aspects related to zirconia implants, namely biocompatibility, mechanical properties, implant design, osseointegration capacity, soft tissue response, and restorative options. Due to heterogeneity of the studies, a meta-analysis was not possible. The most frequently used zirconia material for the fabrication of implants is yttria-stabilized tetragonal zirconia polycrystal. The resistance-to-fracture for zirconia implants ranged between 516-2044N. The mostly investigated parameter was osseointegration, which is compared to that of titanium. A lack of evidence was found with other parameters. CONCLUSIONS Due to its good biocompatibility as well as favorable physical and mechanical properties, zirconia implants are a potential alternative to titanium implants. However, knowledge regarding the implant-restorative complex and related aspects is still immature to recommend its application for daily practice.
Collapse
|
8
|
|
9
|
Igarashi K, Nakahara K, Kobayashi E, Watanabe F, Haga-Tsujimura M. Hard and soft tissue responses to implant made of three different materials with microgrooved collar in a dog model. Dent Mater J 2018; 37:964-972. [PMID: 29998938 DOI: 10.4012/dmj.2017-197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present study was to assess hard and soft tissue around dental implants made of three different materials with microgrooves on the collar surface. Microgrooved implants were inserted in the mandibles of five male beagles. Implants were made of three kinds of material; titanium (Ti), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and ceria partially stabilized zirconia/alumina nanocomposite (Ce-TZP/Al2O3). The animals were euthanatized at three months after implantation, and harvested tissue was analyzed by means of histology. All kinds of implant were osseointegrated, and there were no significant differences in any histomorphometric parameters among the three groups of microgrooved implants made of different materials. Within the limitations of this study, implants with microgrooves integrated into the surrounding bone tissue, without statistically significant differences among the three tested materials, Ti, Y-TZP, and Ce-TZP/Al2O3.
Collapse
Affiliation(s)
- Kensuke Igarashi
- Department of Life Science Dentistry, The Nippon Dental University
| | - Ken Nakahara
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata
| | - Eizaburo Kobayashi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| | - Fumihiko Watanabe
- Department of Crown and Bridge Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata
| | - Maiko Haga-Tsujimura
- Department of Histology, The Nippon Dental University School of Life Dentistry at Niigata
| |
Collapse
|
10
|
Pieralli S, Kohal RJ, Lopez Hernandez E, Doerken S, Spies BC. Osseointegration of zirconia dental implants in animal investigations: A systematic review and meta-analysis. Dent Mater 2017; 34:171-182. [PMID: 29122237 DOI: 10.1016/j.dental.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To determine the osseointegration rate of zirconium dioxide (ZrO2) dental implants in preclinical investigations. DATA Data on the osseointegration rate was extracted considering the bone to implant contact (BIC), removal torque analysis (RTQ) and push-in tests. Meta analyses were conducted using multilevel multivariable mixed-effects linear regression models. The Šidák method was used in case of multiple testing. SOURCES An electronic screening of the literature (MEDLINE/Pubmed, Cochrane Library and Embase) and a supplementary manual search were performed. Animal investigations with a minimum sample size of 3 units evaluating implants made of zirconia (ZrO2) or its composites (ZrO2>50vol.%) were included. STUDY SELECTION The search provided 4577 articles, and finally 54 investigations were included and analyzed. Fifty-two studies included implants made from zirconia, 4 zirconia composite implants and 37 titanium implants. In total, 3435 implants were installed in 954 animals. CONCLUSIONS No significant influence of the evaluated bulk materials on the outcomes of interest could be detected. When comparing different animal models, significant differences for the evaluated variables could be found. These results might be of interest for the design of further animal investigations.
Collapse
Affiliation(s)
- Stefano Pieralli
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Ralf-Joachim Kohal
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Emilia Lopez Hernandez
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Sam Doerken
- Medical Center - University of Freiburg, Center for Medical Biometry and Medical Informatics, Institute for Medical Biometry and Statistics, Faculty of Medicine - University of Freiburg, Hebelstr. 11, 79104 Freiburg, Germany
| | - Benedikt Christopher Spies
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), CC 3 Dental and Craniofacial Sciences, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| |
Collapse
|
11
|
Bugaeva AY, Loukhina IV, Filippov VN, Dudkin BN. Ceramic composite [78ZrO2–21CeO2–Y2O3]/La0.85Y0.15Al11O18/Al2O3. Microstructure and properties. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000 2016; 73:241-258. [DOI: 10.1111/prd.12180] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|