1
|
Gnanasekaran L, Manoj D, Rajendran S, Gracia F, Jalil AA, Chen WH, Soto-Moscoso M, Gracia-Pinilla MA. Mesoporous NiO/Ni 2O 3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol. ENVIRONMENTAL RESEARCH 2023; 236:116790. [PMID: 37517483 DOI: 10.1016/j.envres.2023.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India; Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; University of Twente, Mesoscale Chemical System, MESA+ Institute, Enschede 7500AE, The Netherlands
| |
Collapse
|
2
|
Hierarchical Ultrathin Layered GO-ZnO@CeO 2 Nanohybrids for Highly Efficient Methylene Blue Dye Degradation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248788. [PMID: 36557922 PMCID: PMC9784927 DOI: 10.3390/molecules27248788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Highly efficient interfacial contact between components in nanohybrids is a key to achieving great photocatalytic activity in photocatalysts and degradation of organic model pollutants under visible light irradiation. Herein, we report the synthesis of nano-assembly of graphene oxide, zinc oxide and cerium oxide (GO-ZnO@CeO2) nanohybrids constructed by the hydrothermal method and subsequently annealed at 300 °C for 4 h. The unique graphene oxide sheets, which are anchored with semiconducting materials (ZnO and CeO2 nanoparticles), act with a significant role in realizing sufficient interfacial contact in the new GO-ZnO@CeO2 nanohybrids. Consequently, the nano-assembled structure of GO-ZnO@CeO2 exhibits a greater level (96.66%) of MB dye degradation activity than GO-ZnO nanostructures and CeO2 nanoparticles on their own. This is due to the thin layers of GO-ZnO@CeO2 nanohybrids with interfacial contact, suitable band-gap matching and high surface area, preferred for the improvement of photocatalytic performance. Furthermore, this work offers a facile building and cost-effective construction strategy to synthesize the GO-ZnO@CeO2 nanocatalyst for photocatalytic degradation of organic pollutants with long-term stability and higher efficiency.
Collapse
|
3
|
Bulyga DV, Evstropiev SK, Nashchekin AV. Structural engineering of ZnO–MgO intermediates for functional ceramics. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Cáceres-Hernández A, Torres-Torres JG, Silahua-Pavón A, Godavarthi S, García-Zaleta D, Saavedra-Díaz RO, Tavares-Figueiredo R, Cervantes-Uribe A. Facile Synthesis of ZnO-CeO 2 Heterojunction by Mixture Design and Its Application in Triclosan Degradation: Effect of Urea. NANOMATERIALS 2022; 12:nano12121969. [PMID: 35745314 PMCID: PMC9230812 DOI: 10.3390/nano12121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
In this study, simplex centroid mixture design was employed to determine the effect of urea on ZnO-CeO. The heterojunction materials were synthesized using a solid-state combustion method, and the physicochemical properties were evaluated using X-ray diffraction, nitrogen adsorption/desorption, and UV–Vis spectroscopy. Photocatalytic activity was determined by a triclosan degradation reaction under UV irradiation. According to the results, the crystal size of zinc oxide decreases in the presence of urea, whereas a reverse effect was observed for cerium oxide. A similar trend was observed for ternary samples, i.e., the higher the proportion of urea, the larger the crystallite cerium size. In brief, urea facilitated the co-existence of crystallites of CeO and ZnO. On the other hand, UV spectra indicate that urea shifts the absorption edge to a longer wavelength. Studies of the photocatalytic activity of TCS degradation show that the increase in the proportion of urea favorably influenced the percentage of mineralization.
Collapse
Affiliation(s)
- Antonia Cáceres-Hernández
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Jose Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Adib Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por México—División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86690, TB, Mexico;
| | - David García-Zaleta
- División Académica Multidisciplinaria de Jalpa de Méndez, Carretera Cunduacán–Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, km 1, Col. La Esmeralda, Villahermosa 86690, TB, Mexico;
| | - Rafael Omar Saavedra-Díaz
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
| | | | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 carretera Cunduacán-Jalpa de Méndez, C.P. Cunduacán 86690, TB, Mexico; (A.C.-H.); (J.G.T.-T.); (A.S.-P.); (R.O.S.-D.)
- Correspondence: ; Tel.: +52-553-143-9893
| |
Collapse
|
5
|
Hydrothermal Synthesis of Ce-doped ZnO Heterojunction Supported on Carbon Nanofibers with High Visible Light Photocatalytic Activity. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1114-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Synthesis and Characterization of CeO2/CuO Nanocomposites for Photocatalytic Degradation of Methylene Blue in Visible Light. COATINGS 2021. [DOI: 10.3390/coatings11030305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Removal of hazardous organic dyes from polluted water bodies requires the introduction of strong adsorbents and photocatalysts to industrial wastewaters. Herein, photocatalytic CeO2 nanoparticles and CeO2/CuO nanocomposite were synthesized following a co-precipitation method for low cost elution of methylene blue (MB) from water. The crystallinity and surface structure of the as-prepared materials have been analyzed using characterization techniques including X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), ultra-violet visible spectroscopy (UV–Vis), and Fourier-transform infrared spectroscopy (FTIR). The average particle size of both the nano scaled samples were approximately 20–30 nm. The photocatalytic properties of CeO2/CuO were investigated under visible light against methylene blue (MB). The results showed 91% photodegradation of MB organic pollutant in 3 h as monitored by UV–Vis spectroscopy. Absorbance peaks appeared at around 670 nm corresponding to degradation of MB. Such output displayed the effectiveness of Ce nanocomposites for environmental benefits. Hence, CeO2/CuO nanocomposite could be useful for treatment of industrial wastewaters by removing hazardous MB dye.
Collapse
|
7
|
Saranya J, Sreeja BS, Padmalaya G, Radha S, Arivanandan M. Microwave Thermally Assisted Porous Structured Cerium Oxide/Zinc Oxide Design: Fabrication, Electrochemical Activity Towards Pb Ions, Anticancer Assessment in HeLa and VERO Cell Lines. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01809-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Xiao Y, Yu H, Dong XT. Ordered mesoporous CeO2/ZnO composite with photodegradation concomitant photocatalytic hydrogen production performance. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120893] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Sheydaei M, Fattahi M, Ghalamchi L, Vatanpour V. Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor. ULTRASONICS SONOCHEMISTRY 2019; 56:361-371. [PMID: 31101273 DOI: 10.1016/j.ultsonch.2019.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 05/07/2023]
Abstract
In the present work, La-ZnO, Ho-ZnO and Ce-ZnO nanoparticles were synthesized by sonochemical method to use as catalysts in visible light photocatalysis, sono-photocatalysis and visible light sono-photocatalysis/membrane separation (SPMS) processes for degradation of an organic pollutant. The effect of doping source, mass ratio of doping source to the precursor of ZnO synthesis, pH, sonication temperature and time, and calcination temperature and time was investigated in visible light photocatalytic activity of the prepared lanthanides-doped ZnO nanoparticles using Taguchi design. The optimum conditions for the nanoparticles synthesis were obtained at 8 wt% of cerium nitrate, pH 10, sonication time for 1 h at 60 °C and calcination for 3 h at 300 °C. FE-SEM, EDS, XRD, PL and DRS analyzes were used to identify the characteristics of Ce-ZnO as the optimum catalyst. The Ce-ZnO nanoparticles were used to remove Reactive Orange 29 (RO29) solution via sono-photocatalysis process under the visible light irradiation. The effect of initial pH of solution, catalyst dosage, light intensity (power of applied lamp(s)), initial concentrations of inorganic salts such as Na2CO3, NaCl and Na2SO4 on the decolorization efficiency was investigated. Finally, a continuous flow visible light SPMS reactor was used in the presence of Ce-ZnO catalyst and polypropylene hollow fiber membrane for treatment of dye solution. In the best conditions of SPMS reactor, 97.84% of dye removal was achieved. GC-Mass, COD and TOC analyses were used to approve degradation and mineralization of RO29 using the SPMS process. Moreover, the prepared Ce-ZnO nanocomposite was shown the favorable antibacterial behavior against positive and negative bacteria.
Collapse
Affiliation(s)
- Mohsen Sheydaei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| | - Marzieh Fattahi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| | - Leila Ghalamchi
- Environment Protection Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| |
Collapse
|
10
|
Saravanan R, Agarwal S, Gupta VK, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A. Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Sachuk O, Zazhigalov V, Kuznetsova L, Shcherbakov S. The influence of mechanochemical activation on the Zn–Ce–O composition properties. ADSORPT SCI TECHNOL 2017. [DOI: 10.1177/0263617417719823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- O Sachuk
- Institute for Sorption and Problems of Endoecology, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - V Zazhigalov
- Institute for Sorption and Problems of Endoecology, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - L Kuznetsova
- Institute for Sorption and Problems of Endoecology, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - S Shcherbakov
- Centre of Common Use of Equipment, M.G. Kholodny Institute of Botany, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
12
|
Ahmed MA, Brick AA, Mohamed AA. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. CHEMOSPHERE 2017; 174:280-288. [PMID: 28183053 DOI: 10.1016/j.chemosphere.2017.01.147] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
A new approach for removal of indigo carmine blue (IC) dye which is extensively used in jeans manufacture was successfully performed on novel mesoporous [LDH] nanoparticles prepared by sol-gel route using CTAB as shape and pore directing agent. The physicochemical features were monitored by X-ray diffraction (XRD), Fourier transformer infra-red (FTIR), N2 adsorption-desorption isotherm, Field emission electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The influence of reaction parameters affecting dye adsorption including contact time, initial dye concentration, pH and temperature were investigated. Textural analysis and HRTEM images indicate the existence of mesoporous spherical nanoparticles of size = 26 nm connected to each other's and embedded large numbers of mesopores of average pore radius = 43.5 Å. A successful adsorption of IC on LDH nanoparticles of surface area = 85.6 m2/g at various pH with maximum adsorption capacity = 62.8 mg/g at pH = 9.5. Langmuir model is more favorable to describe the adsorption of IC rather than Freundlich model which reflecting the preferential formation of monolayer on the surface of LDH. Both film diffusion and the intraparticle diffusion affect the dye adsorption. The values of enthalpy change (ΔH) for and (ΔS) are + 28.18 and + 0.118 kJ/mol, respectively indicating that the removal process is endothermic. The results indicated that LDH nanoparticles conserved a good activity even after five consecutive cycles of reuse. Our results suggest that mesoporous LDH nanoparticles are considered a potential novel adsorbent for remediation of wastewater containing IC.
Collapse
Affiliation(s)
- M A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt.
| | - A A Brick
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - A A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
13
|
Karthikeyan N, Sivaranjani T, Dhanavel S, Gupta V, Narayanan V, Stephen A. Visible light degradation of textile effluent by electrodeposited multiphase CuInSe2 semiconductor photocatalysts. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.074] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 2016; 6:31641. [PMID: 27528264 PMCID: PMC4985814 DOI: 10.1038/srep31641] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, pure ZnO, CeO2 and ZnO/CeO2 nanocomposites were synthesized using a thermal decomposition method and subsequently characterized using different standard techniques. High-resolution X-ray photoelectron spectroscopy measurements confirmed the oxidation states and presence of Zn(2+), Ce(4+), Ce(3+) and different bonded oxygen species in the nanocomposites. The prepared pure ZnO and CeO2 as well as the ZnO/CeO2 nanocomposites with various proportions of ZnO and CeO2 were tested for photocatalytic degradation of methyl orange, methylene blue and phenol under visible-light irradiation. The optimized and highly efficient ZnO/CeO2 (90:10) nanocomposite exhibited enhanced photocatalytic degradation performance for the degradation of methyl orange, methylene blue, and phenol as well as industrial textile effluent compared to ZnO, CeO2 and the other investigated nanocomposites. Moreover, the recycling results demonstrate that the ZnO/CeO2 (90:10) nanocomposite exhibited good stability and long-term durability. Furthermore, the prepared ZnO/CeO2 nanocomposites were used for the electrochemical detection of uric acid and ascorbic acid. The ZnO/CeO2 (90:10) nanocomposite also demonstrated the best detection, sensitivity and performance among the investigated materials in this application. These findings suggest that the synthesized ZnO/CeO2 (90:10) nanocomposite could be effectively used in various applications.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - F Gracia
- Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vinod Kumar Gupta
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| | - Stephen Arumainathan
- Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, 600 025, India
| |
Collapse
|
16
|
Ismail IMI, Aslam M, Almeelbi T, Chandrasekaran S, Hameed A. Ce3+ impregnated ZnO: a highly efficient photocatalyst for sunlight mediated mineralization. RSC Adv 2014. [DOI: 10.1039/c4ra00097h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The surface of pre-synthesized hexagonal ZnO was tailored by Ce3+ states.
Collapse
Affiliation(s)
- Iqbal M. I. Ismail
- Centre of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah 21589, Saudi Arabia
- Chemistry Department
- Faculty of Science
| | - M. Aslam
- Centre of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah 21589, Saudi Arabia
| | - T. Almeelbi
- Centre of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah 21589, Saudi Arabia
- Department of Environmental Sciences
- King Abdulaziz University
| | - S. Chandrasekaran
- Centre of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah 21589, Saudi Arabia
| | - A. Hameed
- Centre of Excellence in Environmental Studies (CEES)
- King Abdulaziz University
- Jeddah 21589, Saudi Arabia
- National Centre for Physics
- Quaid-e-Azam University
| |
Collapse
|