1
|
Arra A, Pech M, Fu H, Lingel H, Braun F, Beyer C, Spiliopoulou M, Bröker BM, Lampe K, Arens C, Vogel K, Pierau M, Brunner-Weinzierl MC. Immune-checkpoint blockade of CTLA-4 (CD152) in antigen-specific human T-cell responses differs profoundly between neonates, children, and adults. Oncoimmunology 2021; 10:1938475. [PMID: 34178430 PMCID: PMC8204976 DOI: 10.1080/2162402x.2021.1938475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The monoclonal antibody against CTLA-4, Ipilimumab, is a first-in-class immune-checkpoint inhibitor approved for treatment of advanced melanoma in adults but not extensively studied in children. In light of the fact that the immune response early in life differs from that of adults, we have applied a human in vitro model stimulating CD4+ T-cells from neonates, children (1–5 years), and adults antigen-specifically with Staphylococcus aureus (S. aureus) for assessment of CTLA-4 blockade early in life. We show that T-cell proliferation as well as frequencies of antigen-specific T-cells (CD40L+CD4+) were enhanced in neonatal T-cells upon CTLA-4 blockade showing a larger variance within the group (F-test p < .0001). Using machine learning algorithm Random Forest, adult and neonatal T-cell responses can be unambiguously categorized (F1 score-0.75) on the basis of their cytokine (co-)expression. Blockade of CTLA-4 enhanced frequencies of IL-8, IFNγ, and IL-10 producers among CD40L+ T-cells. Of note, antigen-specific T-cells from neonates displayed higher cytokine coproduction at baseline, while T-cells from children caught up to neonates, and adults to baseline of children upon CTLA-4 blockade. These findings reveal that in neonatal T-cells blockade of CTLA-4 mainly unleashes the antigen-specific capacity by increasing the numbers of responding T-cells, whereas in children and adults it promotes the coexpression of cytokines by individual T-cells. Thus, CTLA-4 blockade boosts antitumor immunity through different mechanisms depending on the patients’ age. These data implicate a strong impact of the developmental stage of the T-cell compartment on the effects of immune-checkpoint therapy.
Collapse
Affiliation(s)
- Aditya Arra
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Maximilian Pech
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Hang Fu
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Franziska Braun
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Beyer
- Department of Informatics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Myra Spiliopoulou
- Department of Informatics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karen Lampe
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christoph Arens
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katrin Vogel
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Pediatrics and Neonatology, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
2
|
Grywalska E, Smarz-Widelska I, Mertowski S, Gosik K, Mielnik M, Podgajna M, Abramiuk M, Drop B, Roliński J, Załuska W. CTLA-4 Expression Inversely Correlates with Kidney Function and Serum Immunoglobulin Concentration in Patients with Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2019; 67:335-349. [PMID: 31177287 PMCID: PMC6732130 DOI: 10.1007/s00005-019-00548-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022]
Abstract
Major causes of chronic kidney disease are primary proliferative and nonproliferative glomerulonephritides (PGN and NPGN). However, the pathogenesis of PGN and NPGN is still not fully understood. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is a T-cell membrane receptor that plays a key role in T-cell inhibition. Despite its role in autoimmunological diseases, little is known about the involvement of CTLA-4 in the pathogenesis of PGN and NPGN. The objective of this study was to determine the role of CTLA-4 in the pathogenesis of PGN and NPGN by evaluating the frequencies of T and B lymphocytes expressing CTLA-4 and the serum concentration of the sCTLA-4 isoform in patients with PGN and NPGN in relation to clinical parameters. The study included peripheral blood (PB) samples from 40 PGN and NPGN patients and 20 healthy age- and sex-matched volunteers (control group). The viable PB lymphocytes were labeled with fluorochrome-conjugated monoclonal anti-CTLA-4 antibodies and analyzed using flow cytometry. The serum concentration of sCTLA-4 was measured using ELISA. The frequencies and absolute counts of CD4+/CTLA-4+ T lymphocytes, CD8+/CTLA-4+ T lymphocytes and CD19+/CTLA-4+ B lymphocytes and the serum sCTLA-4 concentration were lower in PGN and NPGN patients that in the control group. Reduced sCTLA-4 expression was associated with a lower concentration of serum immunoglobulins. Our results indicate that deregulation of CTLA-4 expression may result in continuous activation of T cells and contribute to the pathogenesis of PGN and NPGN.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Gosik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Monika Abramiuk
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Bano A, Pera A, Almoukayed A, Clarke THS, Kirmani S, Davies KA, Kern F. CD28 null CD4 T-cell expansions in autoimmune disease suggest a link with cytomegalovirus infection. F1000Res 2019; 8. [PMID: 30984377 PMCID: PMC6436193 DOI: 10.12688/f1000research.17119.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
Immunosenescence is thought to contribute to the increase of autoimmune diseases in older people. Immunosenescence is often associated with the presence of an expanded population of CD4 T cells lacking expression of CD28 (CD28
null). These highly cytotoxic CD4 T cells were isolated from disease-affected tissues in patients with rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, or other chronic inflammatory diseases and their numbers appeared to be linked to disease severity. However, we recently demonstrated that the common herpes virus, cytomegalovirus (CMV), not ageing, is the major driver of this subset of cytotoxic T cells. In this review, we discuss how CMV might potentiate and exacerbate autoimmune disease through the expansion of CD28
null CD4 T cells.
Collapse
Affiliation(s)
- Aalia Bano
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| | - Alejandra Pera
- Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofia Hospital, University of Cordoba, Av. Menendez Pidal, 14004, Cordoba, Spain
| | - Ahmad Almoukayed
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| | - Thomas H S Clarke
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| | - Sukaina Kirmani
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| | - Kevin A Davies
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| | - Florian Kern
- Department of Clinical and Experimental medicine, Brighton and Sussex Medical School, Brighton, Sussex, BN1 9PX, UK
| |
Collapse
|
4
|
|
5
|
Gaber T, Schönbeck K, Hoff H, Tran CL, Strehl C, Lang A, Ohrndorf S, Pfeiffenberger M, Röhner E, Matziolis G, Burmester GR, Buttgereit F, Hoff P. CTLA-4 Mediates Inhibitory Function of Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2018; 19:ijms19082312. [PMID: 30087255 PMCID: PMC6121442 DOI: 10.3390/ijms19082312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are stem cells of the connective tissue, possess a plastic phenotype, and are able to differentiate into various tissues. Besides their role in tissue regeneration, MSCs perform additional functions as a modulator or inhibitor of immune responses. Due to their pleiotropic function, MSCs have also gained therapeutic importance for the treatment of autoimmune diseases and for improving fracture healing and cartilage regeneration. However, the therapeutic/immunomodulatory mode of action of MSCs is largely unknown. Here, we describe that MSCs express the inhibitory receptor CTLA-4 (cytotoxic T lymphocyte antigen 4). We show that depending on the environmental conditions, MSCs express different isoforms of CTLA-4 with the secreted isoform (sCTLA-4) being the most abundant under hypoxic conditions. Furthermore, we demonstrate that the immunosuppressive function of MSCs is mediated mainly by the secretion of CTLA-4. These findings open new ways for treatment when tissue regeneration/fracture healing is difficult.
Collapse
Affiliation(s)
- Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Kerstin Schönbeck
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Holger Hoff
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Cam Loan Tran
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Eric Röhner
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
| | - Georg Matziolis
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
| | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
- Endokrinologikum Berlin, 10117 Berlin, Germany.
| |
Collapse
|
6
|
Kawayama T, Kinoshita T, Matsunaga K, Naito Y, Sasaki J, Tominaga Y, Hoshino T. Role of Regulatory T cells in Airway Inflammation in Asthma. Kurume Med J 2018; 64:45-55. [PMID: 29553094 DOI: 10.2739/kurumemedj.ms6430001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Asthma is an allergic disease characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), reversibility and remodeling. Inhaled corticosteroids (ICS) are effective in many patients with asthma. However, ICS are a controlling, but not but curative treatment, and there are still many patients with refractory and difficult-to-treat asthma. The evaluation of airway inflammation by induced sputum, non-specific AHR by methacholine, and asthmatic reactions by specific allergen challenge techniques are useful not only to investigate the pathogenesis of asthma but also to help develop new drugs for asthma management. Interactions between inflammation and regulation, such as between regulatory T cells (Tregs), and AHR were investigated using these techniques. The phenotypes are Tregs characterized by expression of the forkhead box P3 (Foxp3) and cytotoxic T-lymphocyte antigen 4 (CTLA4), which are potent mediators of dominant self-tolerance. Foxp3 and CTLA4 interact with each other. In patients with mild asthma, airway Tregs were decreased and airway eosinophilic inflammation was activated with accelerated AHR. Human asthmatic attack models by allergen challenge demonstrated that airway Tregs were decreased from the baseline with late asthmatic response (LAR) in patients with dual-responder asthma, and there was a significant correlation between change in airway Tregs and LAR. Airway Tregs were increased with escalation of interleukin-10 by ICS. The investigation of Tregs may lead to new strategies for management of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Kazuko Matsunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine.,Department of Respiratory Medicine, Fukuoka Sanno Hospital
| | - Yoshiko Naito
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Jun Sasaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| | - Yoshikazu Tominaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine.,Department of Respiratory Medicine, Asakura Medical Association Hospital
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine
| |
Collapse
|
7
|
Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival. JCI Insight 2018; 3:96378. [PMID: 29321374 DOI: 10.1172/jci.insight.96378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling.
Collapse
|
8
|
Crepeau RL, Ford ML. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity. Expert Opin Biol Ther 2017; 17:1001-1012. [PMID: 28525959 DOI: 10.1080/14712598.2017.1333595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. Areas covered: This review discusses past, current and future biological therapies that have been utilized to block the CD28/CTLA-4 cosignaling pathway in the settings of autoimmunity and transplantation, as well the challenges facing successful implementation of these therapies. Expert opinion: The development of CD28 blockers Abatacept and Belatacept provided a more targeted therapy approach for transplant rejection and autoimmune disease relative to calcineurin inhibitors and anti-proliferatives, but overall efficacy may be limited due to their collateral effect of simultaneously blocking CTLA-4 coinhibitory signals. As such, current investigations into the potential of selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4 are promising. However, as selective CD28 blockade inhibits the activity of both effector and regulatory T cells, an important goal for the future is the design of therapies that will maximize the attenuation of effector responses while preserving the suppressive function of T regulatory cells.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| | - Mandy L Ford
- a Emory Transplant Center and Department of Surgery , Emory University , Atlanta , GA , USA
| |
Collapse
|
9
|
The story of CD4+ CD28- T cells revisited: solved or still ongoing? J Immunol Res 2015; 2015:348746. [PMID: 25834833 PMCID: PMC4365319 DOI: 10.1155/2015/348746] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023] Open
Abstract
CD4+CD28− T cells are a unique type of proinflammatory T cells characterised by blockade of costimulatory CD28 receptor expression at the transcriptional level, which is still reversible by IL-12. In healthy individuals older than 65 years, these cells may accumulate to up to 50% of total CD4+ T lymphocytes as in many immune-mediated diseases, immunodeficiency, and specific infectious diseases. Here we focus on CD4+CD28− T cells in chronic immune-mediated diseases, summarizing various phenotypic and functional characteristics, which vary depending on the underlying disease, disease activity, and concurrent treatment. CD4+CD28− T cells present as effector/memory cells with increased replicative history and oligoclonality but reduced apoptosis. As an alternative costimulatory signal instead of CD28, not only natural killer cell receptors and Toll-like receptors, but also CD47, CTLA-4, OX40, and 4-1BB have to be considered. The proinflammatory and cytotoxic capacities of these cells indicate an involvement in progression and maintenance of chronic immune-mediated disease. So far it has been shown that treatment with TNF-α blockers, abatacept, statins, and polyclonal antilymphocyte globulins (ATG) mediates reduction of the CD4+CD28− T cell level. The clinical relevance of targeting CD4+CD28− T cells as a therapeutic option has not been examined so far.
Collapse
|
10
|
T-cell co-stimulation by CD28–CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int J Cardiol 2013; 168:1965-74. [DOI: 10.1016/j.ijcard.2012.12.085] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/27/2012] [Accepted: 12/27/2012] [Indexed: 11/20/2022]
|
11
|
Kawayama T, Matsunaga K, Kaku Y, Yamaguchi K, Kinoshita T, O'Byrne PM, Hoshino T. Decreased CTLA4(+) and Foxp3(+) CD25(high)CD4(+) cells in induced sputum from patients with mild atopic asthma. Allergol Int 2013; 62:203-13. [PMID: 23524650 DOI: 10.2332/allergolint.12-oa-0492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Details of the comparisons between airway and peripheral blood regulatory T cells (Tregs) in patients with atopic asthma are still unclear. The objective of this study is to investigate the profiles of both airway and circulating Tregs in atopic asthma. METHODS We measured the numbers of Tregs and eosinophils in induced sputum and peripheral blood in 28 patients with mild atopic asthma and compared these with numbers in 18 healthy controls. The frequency (%) of Tregs (surface CTLA4+, intracellular Foxp3+, and CTLA4+Foxp3+ on CD25highCD4+ T cells) in sputum and blood was determined by intracellular 5-color flow cytometry. We also correlated the numbers with the level of airway hyperresponsiveness (AHR) in asthmatics. RESULTS The mean frequencies of cells expressing CTLA4+ (19.4 ± 2.1%, p = 0.075), Foxp3+ (16.4 ± 3.3%, p = 0.001), and CTLA4+Foxp3+ (7.0 ± 1.1%, p = 0.008) in induced sputum from asthmatics were significantly lower than controls (27.2 ± 3.7%, 37.4 ± 4.7%, and 18.2 ± 3.6%, respectively), whereas in peripheral blood, there was no inter-group difference in the frequencies of cells expressing CTLA4+ (7.1 ± 1.5% vs 5.7 ± 1.7%, p > 0.05), Foxp3+ (35.7 ± 3.2% vs 21.1 ± 3.9%, p > 0.05), and CTLA4+Foxp3+ (6.6 ± 1.5% vs 4.2 ± 1.0%, p > 0.05). Moreover, the frequency of CD25highCD4+ cells expressing CTLA4+, but not Foxp3+, in induced sputum was associated with AHR (r = 0.60, p = 0.009) and airway eosinophilic inflammation (r = -0.60, p = 0.008) in asthmatics. CONCLUSIONS Airway, but not circulating, Tregs are decreased in mild atopic asthmatics, and are negatively correlated to an increase of airway eosinophilic inflammation and AHR.
Collapse
Affiliation(s)
- Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan. −u.ac.jp
| | | | | | | | | | | | | |
Collapse
|
12
|
Körmendy D, Hoff H, Hoff P, Bröker BM, Burmester GR, Brunner-Weinzierl MC. Impact of the CTLA-4/CD28 axis on the processes of joint inflammation in rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 65:81-7. [DOI: 10.1002/art.37714] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/18/2012] [Indexed: 01/10/2023]
|
13
|
Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation. PLoS One 2012; 7:e31391. [PMID: 22412835 PMCID: PMC3295805 DOI: 10.1371/journal.pone.0031391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 01/06/2012] [Indexed: 11/20/2022] Open
Abstract
Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4) initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K)-dependent activation of protein kinase B (PKB/Akt). In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response.
Collapse
|
14
|
Rudolph M, Hebel K, Miyamura Y, Maverakis E, Brunner-Weinzierl MC. Blockade of CTLA-4 Decreases the Generation of Multifunctional Memory CD4+ T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2011; 186:5580-9. [DOI: 10.4049/jimmunol.1003381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Wang XB, Fan ZZ, Anton D, Vollenhoven AV, Ni ZH, Chen XF, Lefvert AK. CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation. BMC Immunol 2011; 12:21. [PMID: 21414236 PMCID: PMC3070687 DOI: 10.1186/1471-2172-12-21] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 03/18/2011] [Indexed: 01/10/2023] Open
Abstract
Background Dendritic cells (DCs) initiate immune responses through their direct interaction with effector cells. However, the mechanism by which DC activity is regulated is not well defined. Previous studies have shown that CTLA4 on T cells regulates DCs function by "cross-talk". We investigated whether there is an intrinsic regulatory mechanism in DCs, with CTLA4 as a candidate regulator. Results We confirmed via RT-PCR and flow cytometry the natural expression of CTLA4 on mature DCs derived from human monocytes. Approximately 8% CD1a-positive cells express CTLA4 both on surface and intracellular, whereas 10% CD1a-negative cells express CTLA4 intracellularly, but little expression was observed on the cell surface. The cross-linking of CTLA4 inhibits DCs maturation and antigen presentation in vitro, but does not inhibit endocytosis. Conclusions CTLA4 is expressed by DCs and plays an inhibitory role. CTLA4-expressing DCs may represent a group of regulatory DCs. Because of its wide distribution on different cell types, CTLA4 may play a general role in regulating immune responses.
Collapse
Affiliation(s)
- Xiong B Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci (Lond) 2010; 119:75-86. [PMID: 20402669 DOI: 10.1042/cs20100033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is an inflammatory disorder of the airways, which is associated with irreversible airway obstruction. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). Tobacco smoking is established as the main aetiological factor for COPD. A maladaptive modulation of inflammatory responses to inhalation of noxious particles and gases is generally accepted as being a key central pathogenic process; however, the precise regulatory mechanisms of the disease are poorly understood. Two cell types are known to be important in immune regulation, namely regulatory T-cells and the newly identified Th17 (T-helper 17) cells. Both types of cells are subsets of CD4 T-lymphocytes and modulate the immune response through secretion of cytokines, for example IL (interleukin)-10 and IL-17 respectively. The present review will begin by describing the current understanding of inflammatory cell involvement in the disease process, and then focus on the possible role of subsets of regulatory and helper T-cells in COPD.
Collapse
|
17
|
Knieke K, Hoff H, Maszyna F, Kolar P, Schrage A, Hamann A, Debes GF, Brunner-Weinzierl MC. CD152 (CTLA-4) determines CD4 T cell migration in vitro and in vivo. PLoS One 2009; 4:e5702. [PMID: 19479036 PMCID: PMC2682661 DOI: 10.1371/journal.pone.0005702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/29/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge.
Collapse
Affiliation(s)
- Karin Knieke
- Experimentelle Pädiatrie, Universitätskinderklinik – Otto-von-Guericke Universität, Magdeburg, Germany
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Hoff
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Maszyna
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Kolar
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Arnhild Schrage
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Gudrun F. Debes
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Monika C. Brunner-Weinzierl
- Experimentelle Pädiatrie, Universitätskinderklinik – Otto-von-Guericke Universität, Magdeburg, Germany
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|