1
|
Seretis A, Amon L, Tripp CH, Cappellano G, Hornsteiner F, Dieckmann S, Vierthaler J, Ortner-Tobider D, Kanduth M, Steindl R, Boon L, den Haan JMM, Lehmann CHK, Dudziak D, Stoitzner P. Multi-Epitope DC Vaccines with Melanoma Antigens for Immunotherapy of Melanoma. Vaccines (Basel) 2025; 13:346. [PMID: 40333215 PMCID: PMC12031154 DOI: 10.3390/vaccines13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: The revolution for the treatment of melanoma came with the approval of checkpoint blockade antibodies. However, a substantial proportion of patients show primary or secondary resistance to this type of immunotherapy, indicating the need for alternative therapeutic strategies. Dendritic cells (DCs) of the skin are prime targets for vaccination approaches due to their potential to prime naïve T cells and their accessibility. This study aimed to develop and evaluate novel vaccines targeting the C-type lectin receptor DEC-205 to deliver melanoma-associated antigenic peptides to skin DCs. Methods: We cloned MHC-I-restricted peptides from the glycoprotein (gp)10025-33 and Tyrosinase-related protein (trp)2180-188 into the DEC-205 antibody sequence with modified peptide cutting sites from the OVA257-264 SIINFEKL peptide. We tested their potential to induce CD8+ T cell responses in both in vitro and in vivo settings. Tumor growth inhibition was evaluated in the transplantable B16.OVA melanoma murine model using a multi-epitope DC-based vaccine combining both peptides. Results: The cross-presentation of both gp100 and trp2 peptides was confirmed in vivo when peptide sequences were flanked by the OVA257-264 peptide cutting sites. Moreover, the combination of both antigenic peptides into a multi-epitope DC vaccine was required to inhibit B16.OVA melanoma growth. Conclusions: Our findings suggest that a DC-targeted vaccination approach using multiple epitopes deriving from melanoma antigens could represent a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
| | - Christoph H. Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Florian Hornsteiner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Sophie Dieckmann
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Janine Vierthaler
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Daniela Ortner-Tobider
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Markus Kanduth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | - Rita Steindl
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| | | | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Neatherlands;
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
- FAU I-MED, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Department for Paediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.A.); (C.H.K.L.); (D.D.)
- Comprehensive Cancer Center Central Germany Jena/Leipzig (CCCG), 07743 Jena, Germany
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.S.); (C.H.T.); (F.H.); (S.D.); (D.O.-T.)
| |
Collapse
|
2
|
Bunkofske ME, Perumal N, White B, Strauch EM, Tarleton R. Epitopes in the Glycosylphosphatidylinositol Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust but Delayed and Nonprotective CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:420-430. [PMID: 36603035 PMCID: PMC9898211 DOI: 10.4049/jimmunol.2200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi elicits substantial CD8+ T cell responses that disproportionately target epitopes encoded in the large trans-sialidase (TS) gene family. Within the C57BL/6 infection model, a significant proportion (30-40%) of the T. cruzi-specific CD8+ T cell response targets two immunodominant TS epitopes, TSKb18 and TSKb20. However, both TS-specific CD8+ T cell responses are dispensable for immune control, and TS-based vaccines have no demonstrable impact on parasite persistence, a determinant of disease. Besides TS, the specificity and protective capacity of CD8+ T cells that mediate immune control of T. cruzi infection are unknown. With the goal of identifying alternative CD8+ T cell targets, we designed and screened a representative set of genome-wide, in silico-predicted epitopes. Our screen identified a previously uncharacterized, to our knowledge, T cell epitope MUCKb25, found within mucin family proteins, the third most expanded large gene family in T. cruzi. The MUCKb25-specific response was characterized by delayed kinetics, relative to TS-specific responses, and extensive cross-reactivity with a large number of endogenous epitope variants. Similar to TS-specific responses, the MUCKb25 response was dispensable for control of the infection, and vaccination to generate MUCK-specific CD8+ T cells failed to confer protection. The lack of protection by MUCK vaccination was partly attributed to the fact that MUCKb25-specific T cells exhibit limited recognition of T. cruzi-infected host cells. Overall, these results indicate that the CD8+ T cell compartment in many T. cruzi-infected mice is occupied by cells with minimal apparent effector potential.
Collapse
Affiliation(s)
- Molly E. Bunkofske
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Natasha Perumal
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brooke White
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Rick Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Capasso C, Hirvinen M, Garofalo M, Romaniuk D, Kuryk L, Sarvela T, Vitale A, Antopolsky M, Magarkar A, Viitala T, Suutari T, Bunker A, Yliperttula M, Urtti A, Cerullo V. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma. Oncoimmunology 2015; 5:e1105429. [PMID: 27141389 PMCID: PMC4839367 DOI: 10.1080/2162402x.2015.1105429] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/11/2015] [Accepted: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing.
Collapse
Affiliation(s)
- Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Mari Hirvinen
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Mariangela Garofalo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki, Viikinkaari 5, Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, Naples, Italy
| | - Dmitrii Romaniuk
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Lukasz Kuryk
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Teea Sarvela
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Andrea Vitale
- Department of Movement Sciences and Wellness (DiSMEB), University of Naples Parthenope, Via Medina 40, Naples, Italy, CEINGE-Biotecnologie Avanzate , Via G. Salvatore 486 , Naples, Italy
| | - Maxim Antopolsky
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Aniket Magarkar
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Teemu Suutari
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Alex Bunker
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki, Viikinkaari 5, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Center for Drug Research, University of Helsinki , Viikinkaari 5 , Helsinki, Finland
| |
Collapse
|
4
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
5
|
Heipertz EL, Davies ML, Lin E, Norbury CC. Prolonged antigen presentation following an acute virus infection requires direct and then cross-presentation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4169-77. [PMID: 25225666 DOI: 10.4049/jimmunol.1302565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antiviral CD8(+) T cell recognition of MHC class I-peptide complexes on the surface of professional APCs is a requisite step in an effective immune response following many potentially lethal infections. Although MHC class I-peptide production is thought to be closely linked to the continued presence of virus, several studies have shown that the persistence of Ag presentation occurs for an extended period of time following the clearance of RNA viruses. However, the mechanism responsible for Ag presentation persistence following viral clearance was unknown until now. In this study, we used a recombinant DNA virus expressing different forms of a model Ag to study the mechanism of prolonged Ag presentation in mice. We determined that the persistence of Ag presentation consists of three distinct mechanistic phases, as follows: ongoing viral replication, persistence of virally infected cells, and cross-presentation of Ag. These data will allow manipulation of the form of Ag contained within viral vectors to produce the most effective and protective CD8(+) T cell response to be generated following vaccination.
Collapse
Affiliation(s)
- Erica L Heipertz
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Michael L Davies
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Eugene Lin
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Christopher C Norbury
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| |
Collapse
|
6
|
Lindenstrøm T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8⁺ T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol 2014; 44:1699-709. [PMID: 24677089 DOI: 10.1002/eji.201344358] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
Relatively few MHC class I epitopes have been identified from Mycobacterium tuberculosis, but during the late stage of infection, CD8(+) T-cell responses to these epitopes are often primed at an extraordinary high frequency. Although clearly available for recognition during infection, their role in resistance to mycobacterial infections still remain unclear. As an alternative to DNA and viral vaccination platforms, we have exploited a novel CD8(+) T-cell-inducing adjuvant, cationic adjuvant formulation 05 (dimethyldioctadecylammonium/trehalose dibehenate/poly (inositic:cytidylic) acid), to prime high-frequency CD8 responses to the immunodominant H2-K(b) -restricted IMYNYPAM epitope contained in the vaccine Ag tuberculosis (TB)10.4/Rv0288/ESX-H (where ESX is mycobacterial type VII secretion system). We report that the amino acid C-terminal to this minimal epitope plays a decisive role in proteasomal cleavage and epitope priming. The primary structure of TB10.4 is suboptimal for proteasomal processing of the epitope and amino acid substitutions in the flanking region markedly increased epitope-specific CD8(+) T-cell responses. One of the optimized sequences was contained in the closely related TB10.3/Rv3019c/ESX-R Ag and when recombinantly expressed and administered in the cationic adjuvant formulation 05 adjuvant, this Ag promoted very high CD8(+) T-cell responses. This abundant T-cell response was functionally active but provided no protection against challenge, suggesting that CD8(+) T cells play a limited role in protection against M. tuberculosis in the mouse model.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | | | | | | | | |
Collapse
|
7
|
Feliu V, Vasseur V, Grover HS, Chu HH, Brown MJ, Wang J, Boyle JP, Robey EA, Shastri N, Blanchard N. Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite. PLoS Pathog 2013; 9:e1003449. [PMID: 23818852 PMCID: PMC3688528 DOI: 10.1371/journal.ppat.1003449] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 05/07/2013] [Indexed: 12/24/2022] Open
Abstract
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood. Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.
Collapse
Affiliation(s)
- Virginie Feliu
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Virginie Vasseur
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Harshita S. Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - H. Hamlet Chu
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mark J. Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeremy Wang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jon P. Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicolas Blanchard
- INSERM, U1043, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- * E-mail:
| |
Collapse
|
8
|
Busche A, Jirmo AC, Welten SPM, Zischke J, Noack J, Constabel H, Gatzke AK, Keyser KA, Arens R, Behrens GMN, Messerle M. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2767-77. [PMID: 23390296 DOI: 10.4049/jimmunol.1200966] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CMV can infect dendritic cells (DCs), and direct Ag presentation could, therefore, lead to the priming of CMV-specific CD8(+) T cells. However, CMV-encoded immune evasins severely impair Ag presentation in the MHC class I pathway; thus, it is widely assumed that cross-presentation drives the priming of antiviral T cells. We assessed the contribution of direct versus cross priming in mouse CMV (MCMV) infection using recombinant viruses. DCs infected with an MCMV strain encoding the gB498 epitope from HSV-1 were unable to stimulate in vitro naive gB498-specific CD8(+) T cells from TCR transgenic mice. Infection of C57BL/6 mice with this recombinant virus led, however, to the generation of abundant numbers of gB498-specific T cells in vivo. Of the DC subsets isolated from infected mice, only CD8α(+) DCs were able to stimulate naive T cells, suggesting that this DC subset cross-presents MCMV-encoded Ag in vivo. Upon infection of mice with MCMV mutants encoding Ag that can either be well or hardly cross-presented, mainly CD8(+) T cells specific for cross-presented epitopes were generated. Moreover, even in the absence of immune evasion genes interfering with MHC class I-mediated Ag presentation, priming of T cells to Ag that can only be presented directly was not observed. We conclude that the host uses mainly DCs capable of cross-presentation to induce the CMV-specific CD8(+) T cell response during primary, acute infection and discuss the implications for the development of a CMV vaccine.
Collapse
Affiliation(s)
- Andreas Busche
- Department of Virology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vatner RE, Srivastava PK. The tailless complex polypeptide-1 ring complex of the heat shock protein 60 family facilitates cross-priming of CD8 responses specific for chaperoned peptides. THE JOURNAL OF IMMUNOLOGY 2010; 185:6765-73. [PMID: 21048107 DOI: 10.4049/jimmunol.1001720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tailless complex polypeptide-1 ring complex (TRiC) is a eukaryotic heat shock protein 60 (hsp60) molecule that has been shown to bind N-terminally extended precursors of OVA-derived SIINFEKL in vivo. Binding of peptides to TRiC was shown to be essential for their presentation on MHC class I. We demonstrate in this study that purified TRiC binds antigenic peptides in vitro as well; however, such binding is not restricted to N-terminally extended peptides, suggesting that the results obtained in vivo reflect the availability of peptides in vivo rather than structural constraints of TRiC-peptide binding. Immunization of mice with noncovalent complexes of peptides (derived from OVA or β-galactosidase) and TRiC results in cross-priming of CD8(+) T lymphocytes specific for K(b)/SIINFEKL or L(d)/TPHPARIGL. Mechanistic dissection of this phenomenon shows that TRiC binds APC, and TRiC-chaperoned peptides are processed within the APC and presented on their MHC class I. Immunogenicity of TRiC purified from OVA- or β-galactosidase-expressing cells, that is, of endogenously generated TRiC-peptide complexes, was investigated, and such preparations were observed not to be immunogenic. Consistent with this observation, SIINFEKL or its precursors were not observed to be associated with TRiC purified from cells expressing a fusion GFP-OVA protein. In contrast, immunization with TRiC purified from a tumor elicited specific protection against a challenge with that tumor. These results are interpreted with respect to the cell biological properties of TRiC and suggest that in vivo, TRiC binds a limited proportion of peptides derived from a limited set of intracellular proteins.
Collapse
Affiliation(s)
- Ralph E Vatner
- Center for Immunotherapy of Cancer and Infectious Diseases and Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | |
Collapse
|
10
|
Tatum AM, Watson AM, Schell TD. Direct presentation regulates the magnitude of the CD8+ T cell response to cell-associated antigen through prolonged T cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2763-72. [PMID: 20660711 PMCID: PMC2924944 DOI: 10.4049/jimmunol.0903920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The magnitude and complexity of Ag-specific CD8(+) T cell responses is determined by intrinsic properties of the immune system and extrinsic factors, such as vaccination. We evaluated mechanisms that regulate the CD8(+) T cell response to two distinct determinants derived from the same protein Ag, SV40 T Ag (T Ag), following immunization of C57BL/6 mice with T Ag-transformed cells. The results show that direct presentation of T cell determinants by T Ag-transformed cells regulates the magnitude of the CD8(+) T cell response in vivo but not the immunodominance hierarchy. The immunodominance hierarchy was reversed in a dose-dependent manner by addition of excess naive T cells targeting the subdominant determinant. However, T cell competition played only a minor role in limiting T cell accumulation under physiological conditions. We found that the magnitude of the T cell response was regulated by the ability of T Ag-transformed cells to directly present the T Ag determinants. The hierarchy of the CD8(+) T cell response was maintained when Ag presentation in vivo was restricted to cross-presentation, but the presence of T Ag-transformed cells capable of direct presentation dramatically enhanced T cell accumulation at the peak of the response. This enhancement was due to a prolonged period of T cell proliferation, resulting in a delay in T cell contraction. Our findings reveal that direct presentation by nonprofessional APCs can dramatically enhance accumulation of CD8(+) T cells during the primary response, revealing a potential strategy to enhance vaccination approaches.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigen Presentation/immunology
- Antigens, Polyomavirus Transforming/administration & dosage
- Antigens, Polyomavirus Transforming/metabolism
- Antigens, Polyomavirus Transforming/physiology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line
- Cell Proliferation
- Cell Transformation, Viral/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic/methods
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Immunization Schedule
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Time Factors
Collapse
Affiliation(s)
- Angela M Tatum
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
11
|
Xu RH, Remakus S, Ma X, Roscoe F, Sigal LJ. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS Pathog 2010; 6:e1000768. [PMID: 20169189 PMCID: PMC2820535 DOI: 10.1371/journal.ppat.1000768] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/13/2010] [Indexed: 01/21/2023] Open
Abstract
The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines. Professional antigen presenting cells fragment viral proteins and display some of the resulting peptides bound to MHC molecules at the cell surface. When virus-specific CD8+ T cells recognize these viral peptides they become activated, proliferate, and kill virus-infected cells to help rid the body of the virus. Two pathways have been described for the origin of the peptides presented by professional antigen presenting cells. In cross-presentation, the antigen presenting cells acquire the proteins from other cells which, in the case of a viral infection, must be infected. In direct presentation, the antigen presenting cells synthesize the proteins themselves and, therefore, during responses to viruses must be infected. However, the participation of direct presentation in anti-viral responses has never been deliberately demonstrated experimentally. In this paper we demonstrate that direct presentation occurs and is the main pathway to induce CD8+ T cells during infection with vaccinia virus. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.
Collapse
Affiliation(s)
- Ren-Huan Xu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sanda Remakus
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xueying Ma
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Felicia Roscoe
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|