1
|
Dadey RE, Grebinoski S, Zhang Q, Brunazzi EA, Burton A, Workman CJ, Vignali DAA. Regulatory T Cell-Derived TRAIL Is Not Required for Peripheral Tolerance. Immunohorizons 2021; 5:48-58. [PMID: 33483333 PMCID: PMC8663370 DOI: 10.4049/immunohorizons.2000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022] Open
Abstract
TRAIL (Tnfsf10/TRAIL/CD253/Apo2L) is an important immune molecule that mediates apoptosis. TRAIL can play key roles in regulating cell death in the tumor and autoimmune microenvironments. However, dissecting TRAIL function remains difficult because of the lack of optimal models. We have now generated a conditional knockout (Tnfsf10 L/L) for cell type-specific analysis of TRAIL function on C57BL/6, BALB/c, and NOD backgrounds. Previous studies have suggested a role for TRAIL in regulatory T cell (Treg)-mediated suppression. We generated mice with a Treg-restricted Tnfsf10 deletion and surprisingly found no impact on tumor growth in C57BL/6 and BALB/c tumor models. Furthermore, we found no difference in the suppressive capacity of Tnfsf10-deficient Tregs and no change in function or proliferation of T cells in tumors. We also assessed the role of TRAIL on Tregs in two autoimmune mouse models: the NOD mouse model of autoimmune diabetes and the myelin oligodendrocyte glycoprotein (MOG) C57BL/6 model of experimental autoimmune encephalomyelitis. We found that deletion of Tnfsf10 on Tregs had no effect on disease progression in either model. We conclude that Tregs do not appear to be dependent on TRAIL exclusively as a mechanism of suppression in both the tumor and autoimmune microenvironments, although it remains possible that TRAIL may contribute in combination with other mechanisms and/or in different disease settings. Our Tnfsf10 conditional knockout mouse should prove to be a useful tool for the dissection of TRAIL function on different cell populations in multiple mouse models of human disease.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261;
- Tumor Microenvironment Center, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
2
|
CD40 in Endothelial Cells Restricts Neural Tissue Invasion by Toxoplasma gondii. Infect Immun 2019; 87:IAI.00868-18. [PMID: 31109947 DOI: 10.1128/iai.00868-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.
Collapse
|
3
|
Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Dobrodumov AV, Marchenko YY, Margulis BA, Pitkin E, Mikhrina AL, Guzhova IV, Multhoff G. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:611-621. [DOI: 10.1016/j.nano.2015.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/14/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
|
4
|
Behm B, Di Fazio P, Michl P, Neureiter D, Kemmerling R, Hahn EG, Strobel D, Gress T, Schuppan D, Wissniowski TT. Additive antitumour response to the rabbit VX2 hepatoma by combined radio frequency ablation and toll like receptor 9 stimulation. Gut 2016; 65:134-143. [PMID: 25524262 DOI: 10.1136/gutjnl-2014-308286] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Radiofrequency ablation (RFA), a palliative therapeutic option for solid hepatic tumours, stimulates localised and systemic antitumour cytotoxic T cells. We studied how far addition of CpG B oligonucleotides, toll like receptor (TLR) 9 agonists, would increase the antitumoural T cell response of RFA in the highly aggressive VX2 hepatoma. METHODS Rabbits were randomised to receive RFA, CpG B, their combination or no therapy. The antitumour efficacy of RFA alone or in combination with CpG B was further tested by rechallenging a separate group with intravenously injected VX2 tumour cells after 120 days. Animals were assessed for survival, tumour size and spread, and tumour and immune related histological markers after 120 days. Peripheral blood mononuclear cells were tested for tumour-specific T cell activation and cytotoxicity. Immune modulatory cytokines tumour necrosis factor α, interleukin (IL)-2/IL-8/IL-10/IL-12 and interferon γ, and vascular endothelial growth factor were measured in serum. RESULTS Mean survival of untreated animals was 36 days, as compared with 97, 78 and 114 days for RFA, CpG and combination therapy, respectively. Compared with untreated controls, antitumour T cell stimulation/cytotoxicity increased 26/16-fold, 32/17-fold and 50/38-fold 2 weeks after RFA, CpG and combination treatments, respectively. The combination inhibited tumour spread to lungs and peritoneum significantly and prohibited new tumour growth in animals receiving a secondary systemic tumour cell injection. RFA alone induced a Th1 cytokine pattern, while IL-8 and IL-10 were only upregulated in CpG treated animals and controls. CONCLUSIONS The combination of TLR9 stimulation with RFA resulted in a potentiated antitumour T cell response and cytotoxicity in the VX2 tumour model. Only this combination prevented subsequent tumour spread and resulted in a significantly improved survival, justifying the need for further exploration of the combination of ablative therapies and TLR9 agonists in liver cancer.
Collapse
Affiliation(s)
- Barbara Behm
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps-University Marburg, Marburg, Germany
| | - Patrick Michl
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Ralf Kemmerling
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Eckhart Georg Hahn
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Deike Strobel
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Gress
- Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| | - Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Thaddaeus Till Wissniowski
- Department of Medicine 1, University Hospital Erlangen-Nuremberg, Erlangen, Germany Division of Gastroenterology, University Hospital, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Maeda Y, Yoshimura K, Matsui H, Shindo Y, Tamesa T, Tokumitsu Y, Hashimoto N, Tokuhisa Y, Sakamoto K, Sakai K, Suehiro Y, Hinoda Y, Tamada K, Yoshino S, Hazama S, Oka M. Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: a phase 1 dose escalation clinical trial. Cancer Immunol Immunother 2015; 64:1047-56. [PMID: 25982372 PMCID: PMC11028566 DOI: 10.1007/s00262-015-1709-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/04/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously reported overexpression of heat-shock protein (HSP) 70 in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC) using proteomic profiling and immunohistochemical staining (IHS). This suggested that HSP70 could be a molecular target for treatment of HCC. METHODS Twelve patients with HCV-related HCC were enrolled in a phase 1 clinical trial. Dendritic cells (DCs) transfected with HSP70 mRNA (HSP70-DCs) induced by electroporation were injected intradermally. Patients were treated three times every 3 weeks. The number of HSP70-DCs injected was 1 × 10(7) as the lowest dose, then 2 × 10(7) as the medium dose, and then 3 × 10(7) as the highest dose. Immunological analyses were performed. FINDINGS No adverse effects of grade III/IV, except one grade III liver abscess at the 3 × 10(7) dose, were observed. Thus, we added three more patients to confirm whether 3 × 10(7) is an appropriate dose. Eventually, we chose 3 × 10(7) as the recommended dose of DCs. Complete response (CR) without any recurrence occurred in two patients, stable disease in five, and progression of disease in five. The two patients with CR have had no recurrence for 44 and 33 months, respectively. IHS in one patient who underwent partial hepatectomy showed infiltration of CD8+ T cells and granzyme B in tumors, indicating that the dominant immune effector cells were cytotoxic T lymphocytes with tumor-killing activity. INTERPRETATION This study demonstrated that HSP70-DCs therapy is both safe and feasible in patients with HCV-related HCC. Further clinical trials should be considered.
Collapse
Affiliation(s)
- Yoshinari Maeda
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kobayashi T, Kakimi K, Nakayama E, Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine (Lond) 2015; 9:1715-26. [PMID: 25321171 DOI: 10.2217/nnm.14.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Magnetic nanoparticle-mediated hyperthermia (MNHT) generates heat to a local tumor tissue of above 43°C without damaging surrounding normal tissues. By applying MNHT, a significant amount of heat-shock proteins is expressed within and around the tumor tissues, inducing tumor-specific immune responses. In vivo experiments have indicated that MNHT can induce the regression of not only a local tumor tissue exposed to heat, but also distant metastatic tumors unexposed to heat. In this article, we introduce recent progress in the application of MNHT for antitumor treatments and summarize the mechanisms and processes of its biological effects during antitumor induction by MNHT. Several clinical trials have been conducted indicating that the MNHT system may add a promising and novel approach to antitumor therapy.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Research Institute for Biological Functions, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|
7
|
Borges TJ, Wieten L, van Herwijnen MJC, Broere F, van der Zee R, Bonorino C, van Eden W. The anti-inflammatory mechanisms of Hsp70. Front Immunol 2012; 3:95. [PMID: 22566973 PMCID: PMC3343630 DOI: 10.3389/fimmu.2012.00095] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/11/2012] [Indexed: 01/08/2023] Open
Abstract
Immune responses to heat shock proteins (Hsp) develop in virtually all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, Hsp administration can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides have been shown to promote the production of anti-inflammatory cytokines, indicating immunoregulatory potential of Hsp. Therefore, the presence of immune responses to Hsp in inflammatory diseases can be seen as an attempt of the immune system to correct the inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthritis, colitis and graft rejection, and the mechanisms underlying this effect are now being elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic dendritic cells (DCs) and to promote a suppressive phenotype in myeloid-derived suppressor cells and monocytes. These DC could induce regulatory T cells (Tregs), independently of the antigens they presented. Some Hsp70 family members are associated with autophagy, leading to a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells. Henceforth, conserved Hsp70 peptides may be presented in these situations and constitute targets of Tregs, contributing to downregulation of inflammation. Finally, an interfering effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70. Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation of inflammation. This is a physiological immunotherapy approach, without the immediate necessity of defining disease-specific auto-antigens. In this article, we present the evidence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that will be crucial for the further exploration of the immunosuppressive potential of this protein.
Collapse
Affiliation(s)
- Thiago J Borges
- Faculdade de Biociências e Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 2012; 10:1553-68. [PMID: 22043955 DOI: 10.1586/erv.11.124] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular chaperone-peptide complexes extracted from tumors (heat shock protein [HSP] vaccines) have been intensively studied in the preceding two decades, proving to be safe and effective in treating a number of malignant diseases. They offer personalized therapy and target a cross-section of antigens expressed in patients' tumors. Future advances may rely on understanding the molecular underpinnings of this approach to immunotherapy. One property common to HSP vaccines is the ability to stimulate antigen uptake by scavenger receptors on the antigen-presenting cell surface and trigger T-lymphocyte activation. HSPs can also induce signaling through Toll-Like receptors in a range of immune cells and this may mediate the effectiveness of vaccines.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
9
|
De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 2011; 16:235-49. [PMID: 20963644 PMCID: PMC3077223 DOI: 10.1007/s12192-010-0236-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (hsp) have been found to play a fundamental role in the recovery from multiple stress conditions and to offer protection from subsequent insults. The function of hsp during stress goes beyond their intracellular localization and chaperone role as they have been detected outside cells activating signaling pathways. Extracellular hsp are likely to act as indicators of the stress conditions, priming other cells, particularly of the immune system, to avoid the propagation of the insult. Some extracellular hsp, for instance Hsp70, are associated with export vesicles, displaying a robust activation of macrophages. We have coined the term Stress Observation System (SOS) for the mechanism for sensing extracellular hsp, which we propose is a form of cellular communication during stress conditions. An enigmatic and still poorly understood process is the mechanism for the release of hsp, which do not contain any consensus secretory signal. The export of hsp appears to be a very complex phenomenon encompassing different alternative pathways. Moreover, extracellular hsp may not come in a single flavor, but rather in a variety of physical conditions. This review addresses some of our current knowledge about the release and function of extracellular hsp, in particular those associated with vesicles.
Collapse
Affiliation(s)
- Antonio De Maio
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0739, USA.
| |
Collapse
|
10
|
Fischer N, Haug M, Kwok WW, Kalbacher H, Wernet D, Dannecker GE, Holzer U. Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. Eur J Immunol 2010; 40:986-97. [PMID: 20101615 DOI: 10.1002/eji.200939738] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hsp70 plays several roles in the adaptive immune response. Based on the ability to interact with diverse peptides, extracellular Hsp70:peptide complexes exert profound effects both in autoimmunity and in tumor rejection by evoking potent T cell responses to the chaperoned peptide. The interaction with receptors on APC represents the basis for the immunological functions of Hsp70 and a critical point where the immune response can be regulated. Various surface proteins (e.g. CD91, scavenger receptors (SR)) have been implicated in binding of Hsp70. In this study, antigenic peptides from tetanus toxin and influenza hemagglutinin complexed to human stress-inducible Hsp70 were found to enhance the proliferation and cytokine production of human antigen-specific CD4(+) T cells. This was demonstrated in proliferation experiments using human monocytes as APC. Proliferated antigen-specific cells were detected combining HLA-DRB1*0401 or HLA-DRB1*1101 tetramer and CFSE staining. Treating monocytes with CD91 siRNA diminished these effects. Additional blocking of SR by the SR ligand fucoidan completely abolished enhanced proliferation and production of Th1 and Th2 cytokines. Taken together, our data indicate that in the human system, CD91 and members of the SR family efficiently direct Hsp70:peptide complexes into the MHC class II presentation pathway and thus enhance antigen-specific CD4(+) T cell responses.
Collapse
Affiliation(s)
- Nadja Fischer
- Children's Hospital, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Seidl T, Whittall T, Babaahmady K, Lehner T. Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. Eur J Immunol 2010; 40:1628-38. [DOI: 10.1002/eji.200940251] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN. PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3495-504. [PMID: 20176745 DOI: 10.4049/jimmunol.0903299] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosis and host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M. tuberculosis and, in particular, the proline-glutamic acid_polymorphic guanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappaB signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|