1
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
2
|
A Systematic Review of T Cell Epitopes Defined from the Proteome of Hepatitis B Virus. Vaccines (Basel) 2022; 10:vaccines10020257. [PMID: 35214714 PMCID: PMC8878595 DOI: 10.3390/vaccines10020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a worldwide health problem and no eradicative therapy is currently available. Host T cell immune responses have crucial influences on the outcome of HBV infection, however the development of therapeutic vaccines, T cell therapies and the clinical evaluation of HBV-specific T cell responses are hampered markedly by the lack of validated T cell epitopes. This review presented a map of T cell epitopes functionally validated from HBV antigens during the past 33 years; the human leukocyte antigen (HLA) supertypes to present these epitopes, and the methods to screen and identify T cell epitopes. To the best of our knowledge, a total of 205 CD8+ T cell epitopes and 79 CD4+ T cell epitopes have been defined from HBV antigens by cellular functional experiments thus far, but most are restricted to several common HLA supertypes, such as HLA-A0201, A2402, B0702, DR04, and DR12 molecules. Therefore, the currently defined T cell epitope repertoire cannot cover the major populations with HLA diversity in an indicated geographic region. More researches are needed to dissect a more comprehensive map of T cell epitopes, which covers overall HBV proteome and global patients.
Collapse
|
3
|
Stifter K, Dekhtiarenko I, Krieger J, Tissot AC, Seufferlein T, Wagner M, Schirmbeck R. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8 + T-cell responses by DNA vaccination. Vaccine 2020; 38:3711-3719. [PMID: 32278524 DOI: 10.1016/j.vaccine.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Iryna Dekhtiarenko
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Alain Charles Tissot
- Roche Pharma Research and Early Development, Therapeutic Modalities, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH; Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Endogenously Expressed Antigens Bind Mammalian RNA via Cationic Domains that Enhance Priming of Effector CD8 T Cells by DNA Vaccination. Mol Ther 2019; 27:661-672. [PMID: 30713086 PMCID: PMC6403493 DOI: 10.1016/j.ymthe.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/11/2023] Open
Abstract
Hepatitis B virus (HBV) core (HBV-C) antigens with homologous or heterologous HIV-tat48-57-like (HBV-C149tat) cationic domains non-specifically bind cellular RNA in vector-transfected cells. Here, we investigated whether RNA-binding to cationic domains influences the immunogenicity of endogenously expressed antigens delivered by DNA vaccination. We initially evaluated induction of HBV-C (Kb/C93)-specific CD8+ T cell responses in C57BL/6J (B6) and 1.4HBV-Smut transgenic (tg) mice that harbor a replicating HBV genome in hepatocytes by DNA immunization. RNA-binding HBV-C and HBV-C149tat antigens moderately enhanced Kb/C93-specific CD8+ T cells in B6 mice as compared with RNA-free HBV-C149 antigen (lacking cationic domains). However, only the RNA-binding antigens elicited Kb/C93-specific CD8+ T cells that inhibited HBV replication in 1.4HBV-Smut tg mice. Moreover, RNA-binding to designer antigens, which express a Kb/p15E epitope from an endogenous murine leukemia virus-derived tumor-specific gp70 protein, was crucial to prime tumor-rejecting effector CD8+ T cells in B6 mice. Antigen-bound endogenous RNAs function as a Toll-like receptor 7 (TLR-7) ligand and stimulated priming of Kb/p15E-specific CD8+ T cells in B6, but not TLR-7−/−, mice. Antigen-bound cellular RNAs thus function as an endogenous natural adjuvant in in vivo vector-transfected cells, and thus are an attractive tool to induce and/or enhance effector CD8+ T cell responses directed against chronic viral infections or tumor self-antigens by DNA vaccination.
Collapse
|
5
|
Krieger J, Stifter K, Riedl P, Schirmbeck R. Cationic domains in particle-forming and assembly-deficient HBV core antigens capture mammalian RNA that stimulates Th1-biased antibody responses by DNA vaccination. Sci Rep 2018; 8:14660. [PMID: 30279478 PMCID: PMC6168482 DOI: 10.1038/s41598-018-32971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The HBV core protein self-assembles into particles and encapsidates immune-stimulatory bacterial RNA through a cationic COOH-terminal (C150-183) domain. To investigate if different cationic domains have an impact on the endogenous RNA-binding of HBV-C antigens in mammalian cells, we developed a strep-tag (st) based expression/purification system for HBV-C/RNA antigens in vector-transfected HEK-293 cells. We showed that HBV-stC but not HBV-stC149 particles (lacking the cationic domain) capture low amounts of mammalian RNA. Prevention of specific phosphorylation in cationic domains, either by exchanging the serine residues S155, S162 and S170 with alanines (HBV-stCAAA) or by exchanging the entire cationic domain with a HIV-tat48-57-like sequence (HBV-stC149tat) enhanced the encapsidation of RNA into mutant core particles. Particle-bound mammalian RNA functioned as TLR-7 ligand and induced a Th1-biased humoral immunity in B6 but not in TLR-7-/- mice by exogenous (protein) and endogenous (DNA) vaccines. Compared to core particles, binding of mammalian RNA to freely exposed cationic domains in assembly-deficient antigens was enhanced. However, RNA bound to non-particulate antigens unleash its Th1-stimulating adjuvant activity by DNA- but not protein-based vaccination. Mammalian RNAs targeted by an endogenously expressed antigen thus function as a natural adjuvant in the host that facilitates priming of Th1-biased immune responses by DNA-based immunization.
Collapse
Affiliation(s)
- Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Petra Riedl
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
6
|
CD8 + T-Cell Response-Associated Evolution of Hepatitis B Virus Core Protein and Disease Progress. J Virol 2018; 92:JVI.02120-17. [PMID: 29950410 DOI: 10.1128/jvi.02120-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Under the immune pressure of cytotoxic T cells (CTLs), hepatitis B virus (HBV) evolves to accumulate mutations more likely within epitopes to evade immune detection. However, little is known about the specific patterns of the immune pressure-associated HBV mutation of T-cell epitopes and their link to disease progression. Here, we observed a correlation of the accumulated variants on HBV core protein (HBc) with the disease severity of HBV infection. Further analysis indicated that these substitutions were mostly located within CD8+ T-cell epitopes of HBc protein, which were systematically screened and identified in an unbiased manner in our study. From individual peptide level to the human leukocyte antigen I (HLA-I)-restricted population level, we elucidated that the mutations in these well-defined HLA-I-restricted T-cell epitopes significantly decreased antiviral activity-specific CTLs and were positively associated with clinical parameters and disease progression in HBV-infected patients. The molecular pattern for viral epitope variations based on the sequencing of 105 HBV virus genomes indicated that the C-terminal portion (Pc), especially the Pc-1 and Pc-2 positions, have the highest mutation rates. Further structural analysis of HLA-A*02 complexed to diverse CD8+ T-cell epitopes revealed that the highly variable C-terminal bulged peak of M-shaped HBc-derived epitopes are solvent exposed, and most of the CDR3βs of the T-cell receptor hover over them. These data shed light on the molecular and immunological mechanisms of T-cell immunity-associated viral evolution in hepatitis B progression, which is beneficial for designing immunotherapies and vaccines.IMPORTANCE The specific patterns of sequence polymorphisms of T-cell epitopes and the immune mechanisms of the HBV epitope mutation-linked disease progression are largely unclear. In this study, we systematically evaluated the contribution of CD8+ T cells to the disease progress-associated evolution of HBV. By evaluation of patient T-cell responses based on the peptide repertoire, we comprehensively characterized the association of clinical parameters in chronic hepatitis B with the antiviral T-cell response-associated mutations of the viruses from the single-epitope level to the overall HLA-I-restricted peptide levels. Furthermore, we investigated the molecular basis of the HLA-A2-restricted peptide immune escape and found that the solvent-exposed C-terminal portion of the epitopes is highly variable under CDR3β recognition. Our work may provide a comprehensive evaluation of viral mutations impacted by the host CTL response in HBV disease progression in the context of the full repertoire of HBc-derived epitopes.
Collapse
|
7
|
Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization. Cancer Immunol Res 2015; 3:946-55. [PMID: 26041735 DOI: 10.1158/2326-6066.cir-14-0206] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date.
Collapse
Affiliation(s)
- Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brian M Olson
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brett B Maricque
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
8
|
Riedl P, Reiser M, Stifter K, Krieger J, Schirmbeck R. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8+T cells in an epitope-specific manner. Eur J Immunol 2014; 44:1981-91. [DOI: 10.1002/eji.201343933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/28/2014] [Accepted: 04/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Petra Riedl
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Michael Reiser
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Katja Stifter
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | - Jana Krieger
- Department of Internal Medicine I; University Hospital of Ulm; Ulm Germany
| | | |
Collapse
|
9
|
Boukhebza H, Dubois C, Koerper V, Evlachev A, Schlesinger Y, Menguy T, Silvestre N, Riedl P, Inchauspé G, Martin P. Comparative analysis of immunization schedules using a novel adenovirus-based immunotherapeutic targeting hepatitis B in naïve and tolerant mouse models. Vaccine 2014; 32:3256-63. [PMID: 24726690 DOI: 10.1016/j.vaccine.2014.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 12/21/2022]
Abstract
Development of active targeted immunotherapeutics is a rapid developing field in the arena of chronic infectious diseases. The question of repeated, closely spaced administration of immunotherapeutics to achieve a rapid impact on the replicating agent is an important one. We analyzed here, using a prototype adenovirus-based immunotherapeutic encoding Core and Polymerase from the hepatitis B virus (Ad-HBV), the influence of closely spaced repeated immunizations on the level and quality of induced HBV-specific and vector-specific immune responses in various mouse models. Ad-HBV, whether injected once or multiple times, was able to induce HBV- and adeno-specific T cells both in HBV-free mice and in a HBV tolerant mouse model. Adenovirus-specific T cell responses and titers of neutralizing anti-Ad5 antibodies increased from time of the 3rd injection. Interestingly, single or multiple Ad-HBV injections resulted in detection of Polymerase-specific functional T cells in HBV tolerant mice. Overall no modulation of the levels of HBV-specific cytokine-producing (IFNγ/TNFα) and cytolytic T cells was observed following repeated administrations (3 or 6 weekly injections) when compared with levels detected after a single injection with the exception of two markers: 1. the proportion of HBV-specific IFNγ-producing cells bearing the CD27+/CD43+ phenotype appeared to be sustained in C57BL/6J mice following 6 weekly injections; 2. the percentage of IFNγ/TNFα Core-specific producing cells observed in spleens of HLA-A2 mice as well as of that specific of Polymerase observed in livers of HBV tolerant mice was maintained. In addition, percentage of HBV-specific T cells expressing PD-1 was not increased by multiple injections. Overall these data show that, under experimental conditions used, rapid, closely spaced administrations of an adenovirus-based HBV immunotherapeutics does not inhibit induced T-cell responses including in a HBV-tolerant environment.
Collapse
Affiliation(s)
- Houda Boukhebza
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Clarisse Dubois
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Véronique Koerper
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Alexei Evlachev
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France
| | - Yasmine Schlesinger
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Thierry Menguy
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Nathalie Silvestre
- TRANSGENE SA, Boulevard Gonthier d'Andernach, 67405 Illkirch Graffenstaden, France
| | - Petra Riedl
- ULM University, Klinik für Innere Medizin I, Albert Einstein Allee 23, 89081 Ulm, Germany
| | | | - Perrine Martin
- TRANSGENE SA, 321 Avenue Jean Jaures, 69364 Lyon cedex 07, France.
| |
Collapse
|
10
|
Smith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine 2014; 32:1707-15. [PMID: 24492013 DOI: 10.1016/j.vaccine.2014.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/19/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
Abstract
Plasmid DNA serves as a simple and easily modifiable form of antigen delivery for vaccines. The USDA approval of DNA vaccines for several non-human diseases underscores the potential of this type of antigen delivery method as a cost-effective approach for the treatment or prevention of human diseases, including cancer. However, while DNA vaccines have demonstrated safety and immunological effect in early phase clinical trials, they have not consistently elicited robust anti-tumor responses. Hence many recent efforts have sought to increase the immunological efficacy of DNA vaccines, and we have specifically evaluated several target antigens encoded by DNA vaccine as treatments for human prostate cancer. In particular, we have focused on SSX2 as one potential target antigen, given its frequent expression in metastatic prostate cancer. We have previously identified two peptides, p41-49 and p103-111, as HLA-A2-restricted SSX2-specific epitopes. In the present study we sought to determine whether the efficacy of a DNA vaccine could be enhanced by an altered peptide ligand (APL) strategy wherein modifications were made to anchor residues of these epitopes to enhance or ablate their binding to HLA-A2. A DNA vaccine encoding APL modified to increase epitope binding elicited robust peptide-specific CD8+ T cells producing Th1 cytokines specific for each epitope. Ablation of one epitope in a DNA vaccine did not enhance immune responses to the other epitope. These results demonstrate that APL encoded by a DNA vaccine can be used to elicit increased numbers of antigen-specific T cells specific for multiple epitopes simultaneously, and suggest this could be a general approach to improve the immunogenicity of DNA vaccines encoding tumor antigens.
Collapse
Affiliation(s)
- Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Akram A, Inman RD. Co-expression of HLA-B7 and HLA-B27 alleles is associated with B7-restricted immunodominant responses following influenza infection. Eur J Immunol 2013; 43:3254-67. [DOI: 10.1002/eji.201343597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/11/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Ali Akram
- Division of Genetics and Development; Toronto Western Research Institute; Toronto Ontario Canada
- Department of Immunology; Faculty of Medicine; Institute of Medical Sciences; University of Toronto; Toronto Ontario Canada
| | - Robert D. Inman
- Department of Medicine; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
12
|
Discovery of a protective Rickettsia prowazekii antigen recognized by CD8+ T cells, RP884, using an in vivo screening platform. PLoS One 2013; 8:e76253. [PMID: 24146844 PMCID: PMC3797808 DOI: 10.1371/journal.pone.0076253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 01/22/2023] Open
Abstract
Rickettsia prowazekii has been tested for biological warfare due to the high mortality that it produces after aerosol transmission of very low numbers of rickettsiae. Epidemic typhus, the infection caused by these obligately intracellular bacteria, continues to be a threat because it is difficult to diagnose due to initial non-specific symptoms and the lack of commercial diagnostic tests that are sensitive and specific during the initial clinical presentation. A vaccine to prevent epidemic typhus would constitute an effective deterrent to the weaponization of R. prowazekii; however, an effective and safe vaccine is not currently available. Due to the cytoplasmic niche of Rickettsia, CD8+ T-cells are critical effectors of immunity; however, the identification of antigens recognized by these cells has not been systematically addressed. To help close this gap, we designed an antigen discovery strategy that uses cell-based vaccination with antigen presenting cells expressing microbe's proteins targeted to the MHC class I presentation pathway. We report the use of this method to discover a protective T-cell rickettsial antigen, RP884, among a test subset of rickettsial proteins.
Collapse
|
13
|
Therapeutic vaccination against the rhesus lymphocryptovirus EBNA-1 homologue, rhEBNA-1, elicits T cell responses to novel epitopes in rhesus macaques. J Virol 2013; 87:13904-10. [PMID: 24089556 DOI: 10.1128/jvi.01947-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is a vaccine/immunotherapy target due to its association with several human malignancies. EBNA-1 is an EBV protein consistently expressed in all EBV-associated cancers. Herein, EBNA-1-specific T cell epitopes were evaluated after AdC-rhEBNA-1 immunizations in chronically lymphocryptovirus-infected rhesus macaques, an EBV infection model. Preexisting rhEBNA-1-specific responses were augmented in 4/12 animals, and new epitopes were recognized in 5/12 animals after vaccinations. This study demonstrated that EBNA-1-specific T cells can be expanded by vaccination.
Collapse
|
14
|
Mann JFS, McKay PF, Arokiasamy S, Patel RK, Klein K, Shattock RJ. Pulmonary delivery of DNA vaccine constructs using deacylated PEI elicits immune responses and protects against viral challenge infection. J Control Release 2013; 170:452-9. [PMID: 23774102 PMCID: PMC3767111 DOI: 10.1016/j.jconrel.2013.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/02/2022]
Abstract
Vaccination through mucosal surfaces has been shown to elicit antiviral immune responses against a number of mucosal pathogens. Here we demonstrate that both mucosal and systemic immune responses can be elicited against a model HIV-1 CN54gp140 antigen when cation-complexed plasmid DNA vaccines are applied topically to the murine pulmonary mucosa as an immune priming strategy. Furthermore, using an influenza challenge model we show that a plasmid DNA vaccine complexed to a less toxic form of PEI called dPEI (a nearly fully hydrolysed linear PEI with 11% additional free protonatable nitrogen atoms) can provide significant protection against a respiratory challenge infection in mice. Furthermore, we show that dPEI polyplexes have the potential to transfect not only mucosal epithelium, but also to enter deeper into tissues through the modulation of tight junction integrity. Taken together, these results demonstrate that less toxic forms of PEI can be effective delivery vehicles for plasmid DNAs to elicit cellular and humoral protective responses in vivo. Moreover, our observations suggest that these less toxic derivatives of PEI could be utilised for topical plasmid DNA vaccine delivery to human mucosal tissue surfaces, and that this application may permit dissemination of the immune responses through the linked mucosal network thus providing protective immunity at distal portals of pathogen entry.
Collapse
Affiliation(s)
- Jamie F S Mann
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London W2 1PG, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Kron MW, Engler T, Schmidt E, Schirmbeck R, Kochanek S, Kreppel F. High-capacity adenoviral vectors circumvent the limitations of ΔE1 and ΔE1/ΔE3 adenovirus vectors to induce multispecific transgene product-directed CD8 T-cell responses. J Gene Med 2013; 13:648-57. [PMID: 22095925 DOI: 10.1002/jgm.1629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The ability to induce cytotoxic T lymphocyte (CTL) responses that are multispecific is considered to comprise an essential feature for an efficacious genetic vaccine against many pathogens including HIV and hepatitis C virus. ΔE1Ad vectors are promising vectored vaccines but have been shown to induce antigen-specific CTLs with only limited multispecificity. In the present study, we investigated the applicability of gene-deleted high-capacity adenovirus (HC-Ad) vectors and focused on the induction of multispecific CTL responses. METHODS We generated Δ E1 and HC-Ad vectors expressing hepatitis B virus small surface antigen (HBsAg). We comparatively analyzed the CTL profiles against various transgene product- and vector-derived epitopes in several mouse strains and HBsAg- and vector-directed antibody responses. RESULTS HC-Ad vectors efficiently induced multispecific HBsAg-directed CTLs. By contrast, ΔE1Ad vectors mainly primed CTLs against one immunodominant epitope of HBsAg. This absence of multispecific CTL responses correlated with the induction of CTLs against viral epitopes generated by de novo expression of Ad genes from the ΔE1Ad vector. However, Ad-specific CTLs induced in trans did not impair HC-AdS-induced multispecific CTL responses against HBsAg. Finally, HC-Ad vectors also induced higher HBsAg antibody titers compared to ΔE1Ad vectors. CONCLUSIONS De novo expression of viral genes from ΔE1Ad vector genomes restricts the multispecificity of transgene product-specific CTLs by immunodominance effects. HC-Ad vectors devoid of Ad genes are favorable for the induction of both multispecific CD8 T-cell responses and high antibody responses. Our results suggest the deletion of Ad genes as an important means for developing potent Ad-based vectored vaccines.
Collapse
|
16
|
Valbuena G, Walker DH. Approaches to vaccines against Orientia tsutsugamushi. Front Cell Infect Microbiol 2013; 2:170. [PMID: 23316486 PMCID: PMC3539663 DOI: 10.3389/fcimb.2012.00170] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/14/2012] [Indexed: 12/02/2022] Open
Abstract
Scrub typhus is a severe mite-borne infection caused by Orientia tsutsugamushi, an obligately intracellular bacterium closely related to Rickettsia. The disease explains a substantial proportion of acute undifferentiated febrile cases that require hospitalization in rural areas of Asia, the North of Australia, and many islands of the Pacific Ocean. Delayed antibiotic treatment is common due to the lack of effective commercially available diagnostic tests and the lack of specificity of the early clinical presentation. The systemic infection of endothelial cells that line the vasculature with Orientia can lead to many complications and fatalities. In survivors, immunity does not last long, and is poorly cross-reactive among numerous strains. In addition, chronic infections are established in an unknown number of patients. All those characteristics justify the pursuit of a prophylactic vaccine against O. tsutsugamushi; however, despite continuous efforts to develop such a vaccine since World War II, the objective has not been attained. In this review, we discuss the history of vaccine development against Orientia to provide a clear picture of the challenges that we continue to face from the perspective of animal models and the immunological challenges posed by an intracellular bacterium that normally triggers a short-lived immune response. We finish with a proposal for development of an effective and safe vaccine for scrub typhus through a new approach with a strong focus on T cell-mediated immunity, empirical testing of the immunogenicity of proteins encoded by conserved genes, and assessment of protection in relevant animal models that truly mimic human scrub typhus.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA.
| | | |
Collapse
|
17
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
18
|
Lundegaard C, Lund O, Nielsen M. Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy? Expert Rev Vaccines 2012; 11:43-54. [PMID: 22149708 DOI: 10.1586/erv.11.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prediction methods as well as experimental methods for T-cell epitope discovery have developed significantly in recent years. High-throughput experimental methods have made it possible to perform full-length protein scans for epitopes restricted to a limited number of MHC alleles. The high costs and limitations regarding the number of proteins and MHC alleles that are feasibly handled by such experimental methods have made in silico prediction models of high interest. MHC binding prediction methods are today of a very high quality and can predict MHC binding peptides with high accuracy. This is possible for a large range of MHC alleles and relevant length of binding peptides. The predictions can easily be performed for complete proteomes of any size. Prediction methods are still, however, dependent on good experimental methods for validation, and should merely be used as a guide for rational epitope discovery. We expect prediction methods as well as experimental validation methods to continue to develop and that we will soon see clinical trials of products whose development has been guided by prediction methods.
Collapse
Affiliation(s)
- Claus Lundegaard
- Technical University of Denmark-DTU, Center for Biological Sequence Analysis, Department of Systems Biology, Kemitorvet 208, DK 2800, Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
19
|
Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 2012; 143:99-115. [PMID: 22391152 DOI: 10.1016/j.clim.2012.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 11/24/2022]
Abstract
We encounter pathogens on a daily basis and our immune system has evolved to mount an immune response following an infection. An interesting phenomenon that has evolved in response to clearing bacterial and viral infections is called immunodominance. Immunodominance refers to the phenomenon that, despite co-expression of multiple major histocompatibility complex class I alleles by host cells and the potential generation of hundreds of distinct antigenic peptides for recognition following an infection, a large portion of the anti-viral cytotoxic T lymphocyte population targets only some peptide/MHC class I complexes. Here we review the main factors contributing to immunodominance in relation to influenza A and HIV infection. Of special interest are the factors contributing to immunodominance in humans and rodents following influenza A infection. By critically reviewing these findings, we hope to improve understanding of the challenges facing the discovery of new factors enabling better anti-viral vaccine strategies in the future.
Collapse
|
20
|
Zou Q, Yao X, Feng J, Yin Z, Flavell R, Hu Y, Zheng G, Jin J, Kang Y, Wu B, Liang X, Feng C, Liu H, Li W, Wang X, Wen Y, Wang B. Praziquantel facilitates IFN-γ-producing CD8+ T cells (Tc1) and IL-17-producing CD8+ T cells (Tc17) responses to DNA vaccination in mice. PLoS One 2011; 6:e25525. [PMID: 21998665 PMCID: PMC3187796 DOI: 10.1371/journal.pone.0025525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/05/2011] [Indexed: 12/22/2022] Open
Abstract
Background CD8+ cytotoxic T lymphocytes (CTLs) are crucial for eliminating hepatitis B virus (HBV) infected cells. DNA vaccination, a novel therapeutic strategy for chronic virus infection, has been shown to induce CTL responses. However, accumulated data have shown that CTLs could not be effectively induced by HBV DNA vaccination. Methodology/Principal Findings Here, we report that praziquantel (PZQ), an anti-schistoma drug, could act as an adjuvant to overcome the lack of potent CTL responses by HBV DNA vaccination in mice. PZQ in combination with HBV DNA vaccination augmented the induction of CD8+ T cell-dependent and HBV-specific delayed hypersensitivity responses (DTH) in C57BL/6 mice. Furthermore, the induced CD8+ T cells consisted of both Tc1 and Tc17 subtypes. By using IFN-γ knockout (KO) mice and IL-17 KO mice, both cytokines were found to be involved in the DTH. The relevance of these findings to HBV immunization was established in HBsAg transgenic mice, in which PZQ also augmented the induction of HBV-specific Tc1 and Tc17 cells and resulted in reduction of HBsAg positive hepatocytes. Adoptive transfer experiments further showed that PZQ-primed CD8+ T cells from wild type mice, but not the counterpart from IFN-γ KO or IL-17 KO mice, resulted in elimination of HBsAg positive hepatocytes. Conclusions/Significance Our results suggest that PZQ is an effective adjuvant to facilitate Tc1 and Tc17 responses to HBV DNA vaccination, inducing broad CD8+ T cell-based immunotherapy that breaks tolerance to HBsAg.
Collapse
Affiliation(s)
- Qiang Zou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Xin Yao
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Jin Feng
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhinan Yin
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Richard Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Conneticut, United States of America
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guoxing Zheng
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States of America
| | - Jin Jin
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Youmin Kang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Bing Wu
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxuan Liang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Congcong Feng
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hu Liu
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Weiyi Li
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Xianzheng Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Bin Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Medical Molecular Virology of MOH and MOE, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
21
|
Reiser M, Wieland A, Plachter B, Mertens T, Greiner J, Schirmbeck R. The Immunodominant CD8 T Cell Response to the Human Cytomegalovirus Tegument Phosphoprotein pp65495–503Epitope Critically Depends on CD4 T Cell Help in Vaccinated HLA-A*0201 Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:2172-80. [DOI: 10.4049/jimmunol.1002512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Yin Y, Wu C, Song J, Wang J, Zhang E, Liu H, Yang D, Chen X, Lu M, Xu Y. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV) core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic. PLoS One 2011; 6:e22524. [PMID: 21799884 PMCID: PMC3142188 DOI: 10.1371/journal.pone.0022524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
Background Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance. Principal Findings Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. Conclusion Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses.
Collapse
Affiliation(s)
- Ying Yin
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ejuan Zhang
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Liu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Yang Xu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
23
|
Tan ACL, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1895-902. [PMID: 21765016 DOI: 10.4049/jimmunol.1100664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human HLA-A2-restricted CD8(+) T cell response to influenza A virus (IAV) is largely directed against the matrix protein-derived M1(58-66) epitope and represents an archetypal example of CD8(+) T cell immunodominance. In this study, we examined the CD8(+) T cell hierarchy to M1(58-66) and two subdominant IAV-specific epitopes: NS1(122-130) and PA(46-55) in HLA-A2(+) human subjects and HLA-A2.1 transgenic (HHD) mice. Using epitope-based lipopeptides, we show that the CD8(+) T cell hierarchy induced by IAV infection could also be induced by lipopeptide vaccination in a context outside of viral infection when the Ag load is equalized. In the HHD HLA-A2.1 mouse model, we show that the naive T cell precursor frequencies, and competition at the Ag presentation level, can predict the IAV-specific CD8(+) T cell hierarchy. Immunization of mice with subdominant epitopes alone was unable to overcome the dominance of the M1(58-66)-specific response in the face of IAV challenge; however, a multiepitope vaccination strategy was most effective at generating a broad and multispecific response to infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
24
|
Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite. PLoS One 2011; 6:e22011. [PMID: 21779365 PMCID: PMC3136500 DOI: 10.1371/journal.pone.0022011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 11/19/2022] Open
Abstract
During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.
Collapse
|
25
|
Meldal BHM, Bon AH, Prati D, Ayob Y, Allain JP. Diversity of hepatitis B virus infecting Malaysian candidate blood donors is driven by viral and host factors. J Viral Hepat 2011; 18:91-101. [PMID: 20196797 DOI: 10.1111/j.1365-2893.2010.01282.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malaysia is a medium endemic country for hepatitis B virus (HBV) infection but little is known about HBV strains circulating in Malaysian blood donors. Viral load, HBsAg concentrations and nested PCR products from 84 HBV surface antigen (HBsAg) positive samples were analysed in detail. Median viral load was 3050 IU/mL and median HBsAg 1150 IU/mL. Fifty-six full genome, 20 pre-S/S, 1 S gene and six basic core promoter/precore-only sequences were obtained. Genotypes B and C were present at a ratio of 2:1, and two genotype D samples were obtained, both from donors of Indian background. Phylogenetically, genotype B was more diverse with subgenotypes B2-5, B7 and B8 present, while most genotype C strains were from subgenotype C1. Genotypes B and C were equally frequent in ethnic Malays, but 80% of strains from Chinese were genotype B. HBsAg concentrations were higher in genotype C than in genotype B, in Chinese than Malays and in donors under the age of 30. HBV vaccine escape substitutions (P120S/T, I126N and G145G) were present in six strains. In the large surface protein, immuno-inactive regions were more mutated than CD8 epitopes and the major hydrophilic region. Strains of genotype B or from ethnic Malays had higher genetic diversity than strains of genotype C or from Chinese donors. Hence HBV strains circulating in Malaysia are phylogenetically diverse reflecting the ethnic mix of its population. Ethnic Malays carry lower HBsAg levels and higher genetic diversity of the surface antigen, possibly resulting in more effective immune control of the infection.
Collapse
Affiliation(s)
- B H M Meldal
- Division of Transfusion Medicine and Diagnostic Development, Department of Haematology, University of Cambridge, Cambridge Blood Centre, Long Road, Cambridge, UK.
| | | | | | | | | |
Collapse
|
26
|
Ochoa-Callejero L, Otano I, Vales A, Olagüe C, Sarobe P, Lasarte JJ, Prieto J, Menne S, González-Aseguinolaza G. Identification of CD4+ and CD8+ T cell epitopes of woodchuck hepatitis virus core and surface antigens in BALB/c mice. Vaccine 2010; 28:5323-31. [PMID: 20665977 DOI: 10.1016/j.vaccine.2010.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A therapeutic vaccine against chronic hepatitis B virus (HBV) infection requires the development of a strong and multispecific Th1 cell immune response. Woodchucks chronically infected with the woodchuck hepatitis virus (WHV) closely resemble HBV infection and represent the best animal model for this hepadnavirus-induced disease. Using the BIMAS "HLA Peptide Binding Predictions" program, we have identified and further characterized novel H-2 d-restricted CD8+ epitopes within the WHV core (peptides C#12-21, C#18-32, C#19-27, C#61-69) and surface antigens (peptides preS2#10-18, preS2#27-35, S#76-84, S#133-140 and S#257-265), respectively. These peptides bind to H-2 d with high efficiency and upon immunization of mice with peptide and Freund's adjuvant they induce the development of IFN-gamma producing T cells. More importantly, WHV core peptides C#19-27 and C#61-69 and WHV surface peptides S#133-140 and S#257-265 were also recognized by CD8+ T cells after immunization of mice with DNA/PEI nanoparticles. Direct stimulation of splenocytes obtained from such DNA-immunized mice with peptides C#18-32, S#76-84, and S#257-265 resulted in significant production of IFN-gamma. Thus, we have identified T cell determinants in mice from WHV core and surface antigens that have important value for designing and evaluating an effective vaccine against hepadnavirus infection.
Collapse
Affiliation(s)
- L Ochoa-Callejero
- Laboratory of Gene Therapy of Viral Hepatitis, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ruckwardt TJ, Luongo C, Malloy AMW, Liu J, Chen M, Collins PL, Graham BS. Responses against a subdominant CD8+ T cell epitope protect against immunopathology caused by a dominant epitope. THE JOURNAL OF IMMUNOLOGY 2010; 185:4673-80. [PMID: 20833834 DOI: 10.4049/jimmunol.1001606] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cell responses are critical for the control of virus infections. Following infection, epitope-specific responses establish an unpredictable but reproducible pattern of dominance that is dictated by a large number of both positive and negative factors. Immunodomination, or diminution of subdominant epitope-specific responses by dominant epitopes, can play a substantial role in the establishment of epitope hierarchy. To determine the role of a dominant (K(d)M2(82-90)) and a subdominant (D(b)M(187-195)) epitope of respiratory syncytial virus in viral control and immunodomination, MHC-binding anchor residues in the two epitopes were mutated individually in recombinant infectious viruses, greatly reducing or deleting the epitope-specific CD8(+) T cell responses. Neither mutation negatively affected viral clearance in mice, and compensation by the unmutated epitope was seen in both cases, whereas compensation by five other subdominant epitopes was minimal. Mutation of the dominant K(d)M2(82-90) response resulted in effective viral clearance by the subdominant epitope with less illness, whereas mutation of the subdominant D(b)M(187-195) response resulted in overcompensation of the already dominant K(d)M2(82-90) epitope, and increased severity of illness. Increased illness was associated with poor functionality of the abundant population of CD8(+) T cells specific to the dominant K(d)M2(82-90) epitope, as measured by the percentage and magnitude of IFN-γ production. These data demonstrate efficient viral clearance, and a protective effect of subdominant CD8(+) T cell responses.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kosinska AD, Zhang E, Lu M, Roggendorf M. Therapeutic vaccination in chronic hepatitis B: preclinical studies in the woodchuck. HEPATITIS RESEARCH AND TREATMENT 2010; 2010:817580. [PMID: 21188201 PMCID: PMC3003998 DOI: 10.1155/2010/817580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023]
Abstract
Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to a satisfactory result. Induction of HBV-specific T cells by therapeutic vaccination or immunotherapies may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients did not result in effective control of HBV infection, suggesting that new formulations of therapeutic vaccines are needed. The woodchuck (Marmota monax) is a useful preclinical model for developing the new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments with nucleos(t)ide analogues, DNA vaccines, and protein vaccines were tested in the woodchuck model. In this paper we summarize the available data concerning therapeutic immunization and gene therapy using recombinant viral vectors approaches in woodchucks, which show encouraging results. In addition, we present potential innovations in immunomodulatory strategies to be evaluated in this animal model.
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Ejuan Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| |
Collapse
|
29
|
Wieland A, Riedl P, Reimann J, Schirmbeck R. Silencing an immunodominant epitope of hepatitis B surface antigen reveals an alternative repertoire of CD8 T cell epitopes of this viral antigen. Vaccine 2009; 28:114-9. [DOI: 10.1016/j.vaccine.2009.09.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/28/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
30
|
Brosi H, Reiser M, Rajasalu T, Spyrantis A, Oswald F, Boehm BO, Schirmbeck R. Processing in the endoplasmic reticulum generates an epitope on the insulin A chain that stimulates diabetogenic CD8 T cell responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7187-95. [PMID: 19890053 DOI: 10.4049/jimmunol.0901573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RIP-B7.1 mice express the costimulator molecule B7.1 (CD80) on pancreatic beta cells and are a well-established model for studying de novo induction of diabetogenic CD8 T cells. Immunization of RIP-B7.1 mice with preproinsulin (ppins)-encoding plasmid DNA efficiently induces experimental autoimmune diabetes (EAD). EAD is associated with an influx of CD8 T cells specific for the K(b)/A(12-21) epitope into the pancreatic islets and the subsequent destruction of beta cells. In this study, we used this model to investigate how ppins-derived Ags are expressed and processed to prime diabetogenic, K(b)/A(12-21)-specific CD8 T cells. Targeting the K(b)/A(12-21) epitope, the insulin A chain, or the ppins to the endoplasmic reticulum (ER) (but not to the cytosol and/or nucleus) efficiently elicited K(b)/A(12-21)-specific CD8 T cell responses. The K(b)/A(12-21) epitope represents the COOH terminus of the ppins molecule and, hence, did not require COOH-terminal processing before binding its restriction element in the ER. However, K(b)/A(12-21)-specific CD8 T cells were also induced by COOH-terminally extended ppins-specific polypeptides expressed in the ER, indicating that the epitope position at the COOH terminus is less important for its diabetogenicity than is targeting the Ag to the ER. The K(b)/A(12-21) epitope had a low avidity for K(b) molecules. When epitopes of unrelated Ags were coprimed at the same site of Ag delivery, "strong" K(b)-restricted (but not D(b)-restricted) CD8 T cell responses led to the suppression of K(b)/A(12-21)-specific CD8 T cell priming and reduced EAD. Thus, direct expression and processing of the "weak" K(b)/A(12-21) epitope in the ER favor priming of autoreactive CD8 T cells.
Collapse
Affiliation(s)
- Helen Brosi
- Department of Internal Medicine I, University Hospital of Ulm, Ulm D-89081, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Tumor immunity against a simian virus 40 oncoprotein requires CD8+ T lymphocytes in the effector immune phase. J Virol 2009; 84:883-93. [PMID: 19889780 DOI: 10.1128/jvi.01512-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The required activities of CD4(+) T cells and antibody against the virally encoded oncoprotein simian virus 40 (SV40) Tag have previously been demonstrated by our laboratory to be mediators in achieving antitumor responses and tumor protection through antibody-dependent cell-mediated cytotoxicity (ADCC). In this study, we further characterize the necessary immune cell components that lead to systemic tumor immunity within an experimental pulmonary metastatic model as the result of SV40 Tag immunization and antibody production. Immunized animals depleted of CD8(+) T cells at the onset of experimental tumor cell challenge developed lung tumor foci and had an overall decreased survival due to lung tumor burden, suggesting a role for CD8(+) T cells in the effector phase of the immune response. Lymphocytes and splenocytes harvested from SV40 Tag-immunized mice experimentally inoculated with tumor cells synthesized increased in vitro levels of the Th1 cytokine gamma interferon (IFN-gamma), as assessed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry assays. CD8(+) T-cell activity was also heightened in SV40 Tag-immunized and tumor cell-challenged mice, based upon intracellular production of perforin, confirming the cytolytic properties of CD8(+) T cells against tumor cell challenge. Altogether, these data point to the role of recombinant SV40 Tag protein immunization in initiating a cytotoxic T-lymphocyte (CTL) response during tumor cell dissemination and growth. The downstream activity of CD8(+) T cells within this model is likely initiated from SV40 Tag-specific antibody mediating ADCC tumor cell destruction.
Collapse
|