1
|
Sasaki A, Sargen M, Maskey AR, Li XM. Scratching the surface: biomarkers and neurobiomarkers for improved allergic contact dermatitis management. FRONTIERS IN ALLERGY 2025; 6:1564528. [PMID: 40181807 PMCID: PMC11966390 DOI: 10.3389/falgy.2025.1564528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Allergic contact dermatitis (ACD), also known as allergic eczema, is a common inflammatory skin disorder that affects millions of Americans and imposes significant physical, psychological, and economic burdens. Differentiating ACD from other forms of dermatitis remains a challenge, with patch testing as the gold standard. Despite its utility, patch testing can lack diagnostic accuracy, highlighting the importance of molecular biomarkers to refine diagnosis and treatment. Advances in transcriptomics and machine-learning have enabled the identification of biomarkers involved in ACD, such as loricrin (LOR), ADAM8, CD47, BATF, SELE, and IL-37. Moreover, biomarkers such as LOR, NMF, and TEWL, may have prognostic value in evaluating therapeutic response. Emerging neurological biomarkers (neurobiomarkers), including IL-31 and TRPV1, target pathways involved in the pruritic and inflammatory responses, offering novel therapeutic targets as well. This mini review summarizes current ACD treatments, biomarkers for targeted therapies, and emphasizes the role of neurobiomarkers in ACD treatment. Additional research on the validity of the therapeutic potential of these biomarkers is necessary to improve ACD treatment and outcomes.
Collapse
Affiliation(s)
- Akimi Sasaki
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Manuel Sargen
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Anish R. Maskey
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology, & Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
- Department of Dermatology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
2
|
Maier P, Macht M, Beck S, Kolkhir P, Babina M, Kremer AE, Zahn D, Wolf K. MRGPRX2 ligandome: Molecular simulations reveal three categories of ligand-receptor interactions. J Struct Biol 2025; 217:108193. [PMID: 40086706 DOI: 10.1016/j.jsb.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Mas-related G protein-coupled receptor (MRGPR) X2 is a mast cell receptor known to be activated by a wide range of ligands of various size, charge and origin. Our aim is to gain a deeper understanding of the binding processes of the different MRGPRX2 ligands and the ligand-receptor interactions in order to identify crucial structural elements for receptor activation. MATERIALS AND METHODS We used the three-dimensional structure of MRGPRX2 described in Nature in 2021 by Cao et al. and Yang et al. to computationally model the interaction between MRGPRX2 and small molecule ligands under simulated physiological conditions. RESULTS Docking and post-docking samplings of the MRGPRX2 ligandome within the GPCR binding pocket led to the identification of key structural features for protein-ligand interactions. On the ligand side, we obtained an overlay of different molecular patterns or chemical groups by comparing different ligands plotted on the receptor. These key features include at least one protonated amine moiety of MRGPRX2 ligands contributing to one salt-bridge and one π-cation interaction, as well as an extended non-polar domain of the ligand surface that offer hydrophobic segregation and/or π-stacking interactions. In the receptor, we identified amino acids (GLU164, ASP184, PHE101, PHE170, TRP243, PHE244 and PHE257) that specifically interact via hydrogen bonding, salt-bridges, π-cation interactions and π-π stacking with the ligands to direct binding and ultimately receptor activation. DISCUSSION Our insights into ligand-receptor interaction obtained by molecular modeling can help to predict mast cell activation via MRGPRX2 including adverse reactions, and facilitate the development of MRGPRX2 antagonists for the treatment of mast cell-mediated diseases.
Collapse
Affiliation(s)
- Philip Maier
- Computer Chemistry Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Moritz Macht
- Computer Chemistry Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Silvan Beck
- Computer Chemistry Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Magda Babina
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Germany; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.
| | - Dirk Zahn
- Computer Chemistry Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Katharina Wolf
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Germany; Helmholtz Institute for Translational Oncology (HI-TRON Mainz)-a Helmholtz institute by DKFZ, Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Peng G, Zhao W, Abudouwanli A, Sun Q, Yang M, Wang S, Tan Y, Ikeda A, Ikeda S, Ogawa H, Okumura K, Niyonsaba F. Improvement of atopic dermatitis-like symptoms in a murine model via the chromogranin A-derived peptide catestatin. Allergol Int 2025:S1323-8930(25)00006-1. [PMID: 39986986 DOI: 10.1016/j.alit.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is characterized by compromised skin barrier and heightened immune responses. The study investigates the therapeutic efficacy of catestatin (CST), a chromogranin A-derived antimicrobial peptide, in mitigating AD-like symptoms. METHODS Utilizing both keratinocyte cultures and a C57BL/6 mouse model, we examined CST's impact on skin barrier proteins, tight junction (TJ) integrity, inflammatory cytokines, and AD-like symptoms. RESULTS CST administration led to a significant upregulation of skin barrier proteins and improved TJ function, counteracting the negative effects of Th2 cytokines on these parameters. In a 2,4-dinitrochlorobenzene-induced AD mouse model, CST treatment markedly reduced AD-like symptoms, including ear thickness, transepidermal water loss, and scratching behavior, and normalized barrier protein expression and TJ barrier function. Furthermore, CST was found to interact with the Notch1 receptor, activating the Notch1/PKC pathway, which may underlie its skin barrier-enhancing properties. CONCLUSIONS Collectively, these findings suggest CST as a promising therapeutic agent for AD, capable of enhancing skin barrier function, modulating immune responses, and targeting the Notch1/PKC pathway, offering a novel approach to AD treatment focusing on barrier restoration and immune modulation.
Collapse
Affiliation(s)
- Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Wanchen Zhao
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alafate Abudouwanli
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mengyao Yang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shan Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yi Tan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arisa Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
4
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
6
|
Lesiak A, Paprocka P, Wnorowska U, Mańkowska A, Król G, Głuszek K, Piktel E, Spałek J, Okła S, Fiedoruk K, Durnaś B, Bucki R. Significance of host antimicrobial peptides in the pathogenesis and treatment of acne vulgaris. Front Immunol 2024; 15:1502242. [PMID: 39744637 PMCID: PMC11688235 DOI: 10.3389/fimmu.2024.1502242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Acne vulgaris (AV) is a chronic inflammatory condition of the pilosebaceous units characterized by multiple immunologic, metabolic, hormonal, genetic, psycho-emotional dysfunctions, and skin microbiota dysbiosis. The latter is manifested by a decreased population (phylotypes, i.e., genetically distinct bacterial subgroups that play different roles in skin health and disease) diversity of the predominant skin bacterial commensal - Cutinbacterium acnes. Like in other dysbiotic disorders, an elevated expression of endogenous antimicrobial peptides (AMPs) is a hallmark of AV. AMPs, such as human β-defensins, cathelicidin LL-37, dermcidin, or RNase-7, due to their antibacterial and immunomodulatory properties, function as the first line of defense and coordinate the host-microbiota interactions. Therefore, AMPs are potential candidates for pharmaceutical prophylaxis or treating this condition. This study outlines the current knowledge regarding the importance of AMPs in AV pathomechanism in light of recent transcriptomic studies. In particular, their role in improving the tight junctions (TJs) skin barrier by activating the fundamental cellular proteins, such as PI3K, GSK-3, aPKC, and Rac1, is discussed. We hypothesized that the increased expression of AMPs and their patterns in AV act as a compensatory mechanism to protect the skin with an impaired permeability barrier. Therefore, AMPs could be key determinants in regulating AV development and progression, linking acne-associated immune responses and metabolic factors, like insulin/IGF-1 and PI3K/Akt/mTOR/FoxO1 signaling pathways or glucotoxicity. Research and development of anti-acne AMPs are also addressed.
Collapse
Affiliation(s)
- Agata Lesiak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Paulina Paprocka
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Angelika Mańkowska
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Otolaryngology, Holy-Cross Oncology Center of Kielce, Head and Neck Surgery, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
- Department of Clinical Microbiology, Holy-Cross Oncology Center of Kielce, Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
7
|
Nguyen CTH, Tran LVQ. Increased serum interleukin-31 levels correlate with pruritus in psoriatic patients: a cross-sectional study in Vietnam. Dermatol Reports 2024. [PMID: 39969072 DOI: 10.4081/dr.2024.10090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/24/2024] [Indexed: 02/20/2025] Open
Abstract
Psoriasis is recognized not only as a skin disease but also as a systemic disorder. Interleukin-31 (IL-31) may be associated with psoriasis and systemic inflammation. We aimed to quantify serum IL-31 levels in patients with psoriasis and explore their associations with specific clinical manifestations. 30 patients with psoriasis and 30 healthy controls were included in this study. Demographic information and clinical characteristics were obtained through physical examination and medical history review. Serum IL-31 levels were measured using an enzyme-linked immunosorbent assay. IL-31 concentration was significantly higher in patients with psoriasis than in the control group (p<0.001). Patients with psoriasis vulgaris, psoriasis erythroderma, and pustular psoriasis had significantly higher serum IL-31 levels than healthy controls. Additionally, serum IL-31 levels were associated with itch numerical rating scale (NRS) scores and body mass index (BMI) but not with disease severity as measured by the Psoriasis Area and Severity Index (PASI). In patients with psoriasis, increased serum IL-31 levels correlated with itch severity but not with PASI. This suggests that IL-31 may play a critical role in the pathogenesis of psoriasis and could be a valuable target for further studies and therapeutic interventions.
Collapse
Affiliation(s)
| | - Liem Viet Quoc Tran
- Department of Dermatology, University of Medicine and Pharmacy, Ho Chi Minh City.
| |
Collapse
|
8
|
Sidekli O, Oketch J, Fair S, Meade KG, Hollox EJ. β-Defensin gene copy number variation in cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241154. [PMID: 39479249 PMCID: PMC11521603 DOI: 10.1098/rsos.241154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
β-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance. In this study, we comprehensively catalogue 55 β-defensin genes in cattle. By constructing a phylogenetic tree to identify human orthologues and lineage-specific expansions, we identify 1 : 1 human orthologues for 35 bovine β-defensins. We also discover extensive β-defensin gene CNV across breeds, with DEFB103, in particular, showing extensive multi-allelic CNV. By comparing β-defensin expression levels in testis from calves and adult bulls, we find that 14 β-defensins, including DEFB103, increase in expression during sexual maturation. Analysis of β-defensin gene expression levels in the caput of adult bull epididymis, and β-defensin gene copy number, in 94 matched samples shows expression levels of four β-defensins are correlated with genomic copy numbers, including DEFB103. We therefore demonstrate extensive CNV in bovine β-defensin genes, in particular DEFB103, with potential functional consequences for fertility.
Collapse
Affiliation(s)
- Ozge Sidekli
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - John Oketch
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G. Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
9
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
10
|
Morariu SH, Cotoi OS, Tiucă OM, Ambros M, Ilcuș RI, Garaga L, Raluca A, Horea D, Bălan AB, Husariu M, Gînj A, Țiplic A, Hidi A, Szabo B, Stan RA, Nicolescu AC. Predicting Factors and Clinical Characteristics of Pruritus in Psoriasis: A Cross-Sectional Survey. Life (Basel) 2024; 14:827. [PMID: 39063581 PMCID: PMC11277965 DOI: 10.3390/life14070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Pruritus is an important symptom among patients affected by psoriasis. To date, no general agreement has been established regarding pruritus as a measure of psoriasis severity. This study aims to assess psoriatic pruritis prevalence and characteristics using a comprehensive itch questionnaire. A semi-structured questionnaire consisting of 48 questions was applied to patients diagnosed with psoriasis and admitted to the Dermatology Department of Mures Clinical County Hospital, Romania. A total of 163 patients were enrolled, out of which 115 (70.55%) reported itch. Patients with itch had higher PASI (p = 0.003) and DLQI scores (p < 0.001). The itch was most frequently described as a crawling sensation, mainly located in the lesional skin and aggravated by stress and temperature variation. It had a moderate intensity (6.18 ± 2.46). Emollients were the treatment preferred by most patients in alleviating itch, while biologics exerted a protective effect on itch development (OR = -0.24; p < 0.0001) and negatively correlated with itch intensity (r = -0.23; p < 0.0001). Advanced age, high BMI, and PASI scores were indicators of itch presence, while female gender, high PASI score, and frequent itch episodes indicate highly intense pruritus (≥7 on the VAS). A better understanding of itch and its clinical features will guide physicians toward the best treatment option and would, ultimately, benefit the patient.
Collapse
Affiliation(s)
- Silviu-Horia Morariu
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Oana Mirela Tiucă
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Mircea Ambros
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Roxana-Ioana Ilcuș
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Liuba Garaga
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Ailincăi Raluca
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Diana Horea
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | | | - Mădălina Husariu
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Anca Gînj
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Alexandra Țiplic
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Andrea Hidi
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Biborka Szabo
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Radu Alexandru Stan
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | | |
Collapse
|
11
|
Lee SG, Kim SE, Jeong IH, Lee SE. Mechanism underlying pruritus in recessive dystrophic epidermolysis bullosa: Role of interleukin-31 from mast cells and macrophages. J Eur Acad Dermatol Venereol 2024; 38:895-903. [PMID: 38084871 DOI: 10.1111/jdv.19738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 04/26/2024]
Abstract
BACKGROUND Pruritus is a highly burdensome symptom in patients with epidermolysis bullosa, especially recessive dystrophic epidermolysis bullosa (RDEB); however, only a few studies have assessed the molecular pathogenesis of RDEB-associated pruritus. Interleukin (IL)-31 is a key cytokine implicated in pruritus associated with dermatologic diseases such as atopic dermatitis and prurigo nodularis. OBJECTIVE To investigate the role and cellular source of IL-31 in RDEB-associated pruritus. METHODS Serum and skin samples were obtained from 11 RDEB patients and 11 healthy controls. Pruritus visual analogue scale scores were determined. Serum levels of IL-31 and thymic stromal lymphopoietin (TSLP) were examined by enzyme-linked immunosorbent assay (ELISA). The expression of IL-31 and other pruritus mediators in the skin were examined through immunofluorescence staining, and their correlation with pruritus severity was analysed. RESULTS Serum IL-31 and TSLP were elevated in RDEB patients. IL-31 expression was increased in RDEB skin and positively correlated with pruritus severity. Most of the IL-31-expressing cells were mast cells, and some were CD206(+) M2-like macrophages. The number of substance P(+) cells was also increased in the patients' skin, and most of them were mast cells. The number of substance P(+) mast cells was correlated with the number of IL-31(+) dermal infiltrates. The number of IL-4Rα- and IL-13-expressing cells and expression of TSLP and periostin increased in RDEB skin, but without a correlation to pruritus score. CONCLUSION The increased production of skin IL-31 from mast cells and M2-like macrophages may be the mechanism underlying pruritus in RDEB.
Collapse
Affiliation(s)
- Sang Gyun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Song-Ee Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - In-Hye Jeong
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Mohammad S, Karim MR, Iqbal S, Lee JH, Mathiyalagan R, Kim YJ, Yang DU, Yang DC. Atopic dermatitis: Pathophysiology, microbiota, and metabolome - A comprehensive review. Microbiol Res 2024; 281:127595. [PMID: 38218095 DOI: 10.1016/j.micres.2023.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. Genetics, environment, and defects in the skin barrier are only a few of the factors that influence how the disease develops. As human microbiota research has advanced, more scientific evidence has shown the critical involvement of the gut and skin bacteria in the pathogenesis of atopic dermatitis. Microbiome dysbiosis, defined by changed diversity and composition, as well as the development of pathobionts, has been identified as a potential cause for recurring episodes of atopic dermatitis. Gut dysbiosis causes "leaky gut syndrome" by disrupting the epithelial lining of the gut, which allows bacteria and other endotoxins to enter the bloodstream and cause inflammation. The same is true for the disruption of cutaneous homeostasis caused by skin dysbiosis, which enables bacteria and other pathogens to reach deeper skin layers or even systemic circulation, resulting in inflammation. Furthermore, it is now recognized that the gut and skin microbiota releases both beneficial and toxic metabolites. Here, this review covers a range of topics related to AD, including its pathophysiology, the microbiota-AD connection, commonly used treatments, and the significance of metabolomics in AD prevention, treatment, and management, recognizing its potential in providing valuable insights into the disease.
Collapse
Affiliation(s)
- Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi 6400, Bangladesh
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
13
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
14
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
16
|
Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front Med (Lausanne) 2024; 11:1342176. [PMID: 38590314 PMCID: PMC10999685 DOI: 10.3389/fmed.2024.1342176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Chisa Nakashima
- Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | | |
Collapse
|
17
|
Ma F, Gharaee-Kermani M, Tsoi LC, Plazyo O, Chaskar P, Harms P, Patrick MT, Xing X, Hile G, Piketty C, Lazzari A, Van Delm W, Maverakis E, Nakamura M, Modlin RL, Kahlenberg JM, Billi AC, Julia V, Krishnaswamy JK, Gudjonsson JE. Single-cell profiling of prurigo nodularis demonstrates immune-stromal crosstalk driving profibrotic responses and reversal with nemolizumab. J Allergy Clin Immunol 2024; 153:146-160. [PMID: 37506977 PMCID: PMC11231883 DOI: 10.1016/j.jaci.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Prurigo nodularis (PN) is a chronic neuroimmune skin disease characterized by bilaterally distributed pruritic hyperkeratotic nodules on extremities and trunk. Neuroimmune dysregulation and chronic scratching are believed to both induce and maintain the characteristic lesions. OBJECTIVES This study sought to provide a comprehensive view of the molecular pathogenesis of PN at the single-cell level to identify and outline key pathologic processes and the cell types involved. Features that distinguish PN skin from the skin of patients with atopic dermatitis were of particular interest. We further aimed to determine the impact of the IL31RA antagonist, nemolizumab, and its specificity at the single-cell level. METHODS Single-cell RNA-sequencing of skin from 15 healthy donors and nonlesional and lesional skin from 6 patients each with PN and atopic dermatitis, combined with spatial-sequencing using the 10x Visium platform. Integration with bulk RNA-sequencing data from patients treated with nemolizumab. RESULTS This study demonstrates that PN is an inflammatory skin disease characterized by both keratinocyte proliferation and activation of profibrotic responses. This study also demonstrates that the COL11A1+ fibroblast subset is a major contributor to fibrosis and is predominantly found in the papillary dermis of PN skin. Activation of fibrotic responses is the main distinguishing feature between PN and atopic dermatitis skin. This study further shows the broad effect of nemolizumab on PN cell types, with a prominent effect driving COL11A1+ fibroblast and keratinocyte responses toward normal. CONCLUSIONS This study provides a high-resolution characterization of the cell types and cellular processes activated in PN skin, establishing PN as a chronic fibrotic inflammatory skin disease. It further demonstrates the broad effect of nemolizumab on pathological processes in PN skin.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Biostatistics, University of Michigan, Ann Arbor, Mich; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Mich
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Paul Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Pathology, University of Michigan, Ann Arbor, Mich
| | | | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Grace Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | | | | | - Emanual Maverakis
- Department of Dermatology, University of California-Davis, Sacramento, Calif
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Robert L Modlin
- Department of Dermatology, University of California-Los Angeles, Calif
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich; Taubman Medical Research Institute, University of Michigan, Ann Arbor, Mich
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | | | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich; Taubman Medical Research Institute, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
18
|
Masadeh MM, Alshogran H, Alsaggar M, Sabi SH, Al Momany EM, Masadeh MM, Alrabadi N, Alzoubi KH. Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics. Curr Protein Pept Sci 2024; 25:826-843. [PMID: 38910428 DOI: 10.2174/0113892037291252240528110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity. METHODS The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood. RESULTS The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains. CONCLUSION The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Haneen Alshogran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
19
|
Schulman ES, Nishi H, Pelleg A. Degranulation of human mast cells: modulation by P2 receptors' agonists. Front Immunol 2023; 14:1216580. [PMID: 37868982 PMCID: PMC10585249 DOI: 10.3389/fimmu.2023.1216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.
Collapse
Affiliation(s)
- Edward S. Schulman
- Division of Pulmonary, Critical Care and Allergy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| |
Collapse
|
20
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
21
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
22
|
Bonzano L, Borgia F, Casella R, Miniello A, Nettis E, Gangemi S. Microbiota and IL-33/31 Axis Linkage: Implications and Therapeutic Perspectives in Atopic Dermatitis and Psoriasis. Biomolecules 2023; 13:1100. [PMID: 37509136 PMCID: PMC10377073 DOI: 10.3390/biom13071100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiome dysbiosis and cytokine alternations are key features of atopic dermatitis (AD) and psoriasis (PsO), two of the most prevalent and burdensome pruritic skin conditions worldwide. Interleukin (IL)-33 and IL-31 have been recognized to be major players who act synergistically in the pathogenesis and maintenance of different chronic inflammatory conditions and pruritic skin disorders, including AD and PsO, and their potential role as therapeutic targets is being thoroughly investigated. The bidirectional interplay between dysbiosis and immunological changes has been extensively studied, but there is still debate regarding which of these two factors is the actual causative culprit behind the aetiopathological process that ultimately leads to AD and PsO. We conducted a literature review on the Pubmed database assessing articles of immunology, dermatology, microbiology and allergology with the aim to strengthen the hypothesis that dysbiosis is at the origin of the IL-33/IL-31 dysregulation that contributes to the pathogenesis of AD and PsO. Finally, we discussed the therapeutic options currently in development for the treatment of these skin conditions targeting IL-31, IL-33 and/or the microbiome.
Collapse
Affiliation(s)
- Laura Bonzano
- Dermatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| | - Rossella Casella
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Eustachio Nettis
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70120 Bari, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
23
|
Deņisova A, Pilmane M, Kažoka D. Antimicrobial Peptides and Interleukins in Cleft Soft Palate. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1162. [PMID: 37508659 PMCID: PMC10378461 DOI: 10.3390/children10071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Cleft palate is one of the most common and well-studied congenital anomalies; however, the role of protective tissue factors in its pathophysiology is still debated. The aim of our study was to evaluate interleukin and antimicrobial peptide appearance and distribution in cleft palate. Eight soft palate samples were obtained during veloplasty procedures. Immunohistochemical staining was applied to detect HBD-2-, HBD-3-, HBD-4-, LL-37-, IL-10-, and CD-163-positive cells via light microscopy. For statistical evaluation, the Mann-Whitney U test and Spearman's rank correlation coefficient were used. A significant difference between study groups was observed for HBD-2 and IL-10 in epithelial and connective tissue as well as HBD-4 in connective tissue. The number of HBD-3-positive cells was moderate in the patients, and few were observed in the controls. The number of LL-37-positive cells varied from a moderate amount to a numerous amount in both study groups, whilst CD-163 marked a moderate number of positive cells in patients, and a few-to-moderate amount was observed in the controls. Numerous correlations between studied factors were revealed in cleft tissues. The increase in antimicrobial peptides HBD-2 and HBD-4 and anti-inflammatory cytokine IL-10 suggested a wide compensatory elevation of the local immune system against cleft-raised tissue changes. The correlations between the studied factors (HBD-2, HBD-3, HBD-4, LL-37, and IL-10) proved the synergistic involvement of common local defense factors in postnatal cleft palate morphopathogenesis.
Collapse
Affiliation(s)
- Arina Deņisova
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Dzintra Kažoka
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
24
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
25
|
Umehara Y, Trujillo-Paez JV, Yue H, Peng G, Nguyen HLT, Okumura K, Ogawa H, Niyonsaba F. Calcitriol, an Active Form of Vitamin D3, Mitigates Skin Barrier Dysfunction in Atopic Dermatitis NC/Nga Mice. Int J Mol Sci 2023; 24:ijms24119347. [PMID: 37298299 DOI: 10.3390/ijms24119347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Atopic dermatitis and psoriasis are prevalent chronic inflammatory skin diseases that are characterized by dysfunctional skin barriers and substantially impact patients' quality of life. Vitamin D3 regulates immune responses and keratinocyte differentiation and improves psoriasis symptoms; however, its effects on atopic dermatitis remain unclear. Here, we investigated the effects of calcitriol, an active form of vitamin D3, on an NC/Nga mouse model of atopic dermatitis. We observed that the topical application of calcitriol decreased the dermatitis scores and epidermal thickness of NC/Nga mice with atopic dermatitis compared to untreated mice. In addition, both stratum corneum barrier function as assessed by the measurement of transepidermal water loss and tight junction barrier function as evaluated by biotin tracer permeability assay were improved following calcitriol treatment. Moreover, calcitriol treatment reversed the decrease in the expression of skin barrier-related proteins and decreased the expression of inflammatory cytokines such as interleukin (IL)-13 and IL-33 in mice with atopic dermatitis. These findings suggest that the topical application of calcitriol might improve the symptoms of atopic dermatitis by repairing the dysfunctional epidermal and tight junction barriers. Our results suggest that calcitriol might be a viable therapeutic agent for the treatment of atopic dermatitis in addition to psoriasis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts Global Health Studies, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
26
|
Liu AW, Gillis JE, Sumpter TL, Kaplan DH. Neuroimmune interactions in atopic and allergic contact dermatitis. J Allergy Clin Immunol 2023; 151:1169-1177. [PMID: 37149370 PMCID: PMC10167546 DOI: 10.1016/j.jaci.2023.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.
Collapse
Affiliation(s)
- Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Jacob E Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
27
|
Sans-de San Nicolàs L, Figueras-Nart I, García-Jiménez I, Bonfill-Ortí M, Guilabert A, Curto-Barredo L, Bertolín-Colilla M, Ferran M, Serra-Baldrich E, Pujol RM, Santamaria-Babí LF. Allergen sensitization stratifies IL-31 production by memory T cells in atopic dermatitis patients. Front Immunol 2023; 14:1124018. [PMID: 36993985 PMCID: PMC10040786 DOI: 10.3389/fimmu.2023.1124018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundThe role of allergen sensitization in IL-31 production by T cells and specifically in the clinical context of atopic dermatitis (AD) has not been characterized.MethodsThe response to house dust mite (HDM) in purified memory T cells cocultured with epidermal cells from AD patients (n=58) and control subjects (n=11) was evaluated. AD-associated cytokines from culture supernatants, plasma proteins and mRNA expression from cutaneous lesions were assessed and related with the clinical features of the patients.ResultsHDM-induced IL-31 production by memory T cells defined two subsets of AD patients according to the presence or absence of IL-31 response. Patients in the IL-31 producing group showed a more inflammatory profile, and increased HDM-specific (sp) and total IgE levels compared to the IL-31 non-producing group. A correlation between IL-31 production and patient’s pruritus intensity, plasma CCL27 and periostin was detected. When the same patients were analyzed based on sp IgE and total IgE levels, an increased IL-31 in vitro response, as well as type 2 markers in plasma and cutaneous lesions, was found in patients with sp IgE levels > 100 kUA/L and total IgE levels > 1000 kU/L. The IL-31 response by memory T cells was restricted to the cutaneous lymphocyte-associated antigen (CLA)+ T-cell subset.ConclusionIgE sensitization to HDM allows stratifying IL-31 production by memory T cells in AD patients and relating it to particular clinical phenotypes of the disease.
Collapse
Affiliation(s)
- Lídia Sans-de San Nicolàs
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Ignasi Figueras-Nart
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain
| | - Irene García-Jiménez
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Montserrat Bonfill-Ortí
- Departament de Dermatologia, Hospital de Bellvitge, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain
| | - Antonio Guilabert
- Departament de Dermatologia, Hospital General de Granollers, Granollers, Spain
| | - Laia Curto-Barredo
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Bertolín-Colilla
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Ferran
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esther Serra-Baldrich
- Departament de Dermatologia, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ramon M. Pujol
- Departament de Dermatologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Luis F. Santamaria-Babí
- Immunologia Translacional, Departament de Biologia Cel•lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Parc Científic de Barcelona (PCB), Barcelona, Spain
- *Correspondence: Luis F. Santamaria-Babí,
| |
Collapse
|
28
|
Nguyen HLT, Peng G, Trujillo-Paez JV, Yue H, Ikutama R, Takahashi M, Umehara Y, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. The Antimicrobial Peptide AMP-IBP5 Suppresses Dermatitis-like Lesions in a Mouse Model of Atopic Dermatitis through the Low-Density Lipoprotein Receptor-Related Protein-1 Receptor. Int J Mol Sci 2023; 24:ijms24065200. [PMID: 36982275 PMCID: PMC10049508 DOI: 10.3390/ijms24065200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) exhibits antimicrobial activities and immunomodulatory functions in keratinocytes and fibroblasts. However, its role in regulating skin barrier function remains unclear. Here, we investigated the effects of AMP-IBP5 on the skin barrier and its role in the pathogenesis of atopic dermatitis (AD). 2,4-Dinitrochlorobenzene was used to induce AD-like skin inflammation. Transepithelial electrical resistance and permeability assays were used to investigate tight junction (TJ) barrier function in normal human epidermal keratinocytes and mice. AMP-IBP5 increased the expression of TJ-related proteins and their distribution along the intercellular borders. AMP-IBP5 also improved TJ barrier function through activation of the atypical protein kinase C and Rac1 pathways. In AD mice, AMP-IBP5 ameliorated dermatitis-like symptoms restored the expression of TJ-related proteins, suppressed the expression of inflammatory and pruritic cytokines, and improved skin barrier function. Interestingly, the ability of AMP-IBP5 to alleviate inflammation and improve skin barrier function in AD mice was abolished in mice treated with an antagonist of the low-density lipoprotein receptor-related protein-1 (LRP1) receptor. Collectively, these findings indicate that AMP-IBP5 may ameliorate AD-like inflammation and enhance skin barrier function through LRP1, suggesting a possible role for AMP-IBP5 in the treatment of AD.
Collapse
Affiliation(s)
- Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Risa Ikutama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
29
|
IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol 2023; 151:737-746.e6. [PMID: 36410530 DOI: 10.1016/j.jaci.2022.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/22/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND IL-31 is a type 2 cytokine involved in the itch sensation in atopic dermatitis (AD). The cellular origins of IL-31 are generally considered to be TH2 cells. Macrophages have also been implicated as cellular sources of IL-31. OBJECTIVE We sought to determine the expression of IL-31 by macrophages and to elucidate the productive mechanisms and contributions to itch in AD skin lesions. METHODS Expression of IL-31 by macrophages, expressions of thymic stromal lymphopoietin (TSLP) and periostin, and presence of infiltrating basophils in human AD lesions were examined through immunofluorescent staining, and correlations were assessed. Furthermore, mechanisms of inducing IL-31-expressing macrophages were analyzed in an MC903-induced murine model for AD in vivo and in mouse peritoneal macrophages ex vivo. RESULTS A significant population of IL-31+ cells in human AD lesions was that of CD68+ cells expressing CD163, an M2 macrophage marker. The number of IL-31+/CD68+ cells correlated with epidermal TSLP, dermal periostin, and the number of dermal-infiltrating basophils. In the MC903-induced murine AD model, significant scratching behaviors with enhanced expressions of TSLP and periostin were observed, accompanied by massive infiltration of basophils and IL-31+/MOMA-2+/Arg-1+ cells. Blockade of IL-31 signaling with anti-IL-31RA antibody or direct depletion of macrophages by clodronate resulted in attenuation of scratching behaviors. To effectively reduce lesional IL-31+ macrophages and itch, basophil depletion was essential in combination with TSLP- and periostin-signal blocking. Murine peritoneal macrophages produced IL-31 when stimulated with TSLP, periostin, and basophils. CONCLUSIONS A network comprising IL-31-expressing macrophages, TSLP, periostin, and basophils plays a significant role in AD itch.
Collapse
|
30
|
Hiroyasu S, Barit JVJG, Hiroyasu A, Tsuruta D. Pruritogens in pemphigoid diseases: Possible therapeutic targets for a burdensome symptom. J Dermatol 2023; 50:150-161. [PMID: 36477831 PMCID: PMC10108135 DOI: 10.1111/1346-8138.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.
Collapse
Affiliation(s)
- Sho Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Jay-V James G Barit
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aoi Hiroyasu
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
31
|
Roy S, Alkanfari I, Chaki S, Ali H. Role of MrgprB2 in Rosacea-Like Inflammation in Mice: Modulation by β-Arrestin 2. J Invest Dermatol 2022; 142:2988-2997.e3. [PMID: 35644498 PMCID: PMC9634617 DOI: 10.1016/j.jid.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Cathelicidin LL-37‒mediated activation of mast cells (MCs) has been implicated in the pathogenesis of rosacea, but the receptor involved and the mechanism of its activation and regulation remain unknown. We found that skin biopsies from patients with rosacea display higher frequencies of MCs expressing MRGPRX2 (mouse counterpart MrgprB2) than normal skin. Intradermal injection of LL-37 in wild-type mice resulted in MC recruitment, expression of inflammatory mediators, and development of rosacea-like inflammation. These responses were substantially reduced in MrgprB2‒/‒ mice and abolished in MC deficient Wsh/Wsh mice. β-arrestin 2 is an adaptor protein that regulates G protein-coupled receptor function by receptor desensitization and also by activation of downstream signaling. We found that LL-37‒induced rosacea-like inflammation was significantly reduced in mice with MC-specific deletion of β-arrestin 2 compared with that in control mice. Interestingly, the absence of β-arrestin 2 resulted in enhanced cofilin phosphorylation and substantial inhibition of LL-37‒induced chemotaxis of mouse peritoneal MCs. Furthermore, LL-37‒induced extracellular signal‒regulated kinase 1/2 phosphorylation, NF-κB activation, and proinflammatory cytokine/chemokine production were reduced in β-arrestin 2‒/‒ peritoneal MCs compared with those in wild-type cells. These findings suggest that MRGPRX2/B2 participates in rosacea and that β-arrestin 2 contributes to its pathogenesis by promoting cofilin dephosphorylation, extracellular signal‒regulated kinase 1/2 and NF-κB phosphorylation, MC chemotaxis, and chemokine/cytokine generation.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ibrahim Alkanfari
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaswati Chaki
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hydar Ali
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
The temperature-sensitive receptors TRPV4 and TRPM8 have important roles in the pruritus of rosacea. J Dermatol Sci 2022; 108:68-76. [PMID: 36517318 DOI: 10.1016/j.jdermsci.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Certain sensations are the secondary phenotypes of rosacea and affect patients' quality of life. Transient receptor potential (TRP) channels may be involved in its occurrence. However, there is a lack of research independently discussing itch in rosacea. OBJECTIVES Our study aimed to investigate risk factors for pruritus in rosacea patients and to discover the molecular mechanism of pruritus. METHODS A binary logistic regression model was used to identify significant variables affecting pruritus in 782 rosacea patients. The LL-37 was injected intradermally into the face of mice to establish the animal model. qRT-PCR, immunohistochemistry and immunofluorescence were used to analyse the expression differences in pruritus-related molecules in mouse skin and the corresponding trigeminal ganglion (TG) between pruritus and nonpruritus groups. RESULTS The incidence of pruritus in rosacea was 42.46%, and the incidence of other symptoms increased with pruritus. Temperature effects were prominently related to the itch sensation of rosacea. Intradermal injection of LL-37 not only caused rosacea-like facial lesions but also induced a behavioural pattern indicative of pruritus. Increased expression of the temperature-sensitive receptors TRPV4 and TRPM8 was found in pruritic mouse skin and TG and human skin samples. CONCLUSIONS In rosacea patients, pruritus occurs frequently along with burning, flushing and sensitivity, most likely due to changes in temperature. The temperature-sensitive receptors TRPV4 and TRPM8 are both involved in the mechanism of pruritus in rosacea.
Collapse
|
33
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
34
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
35
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
36
|
Umehara Y, Takahashi M, Yue H, Trujillo-Paez JV, Peng G, Nguyen HLT, Okumura K, Ogawa H, Niyonsaba F. The Antimicrobial Peptides Human β-Defensins Induce the Secretion of Angiogenin in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23158800. [PMID: 35955934 PMCID: PMC9368840 DOI: 10.3390/ijms23158800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/13/2022] Open
Abstract
The skin produces a plethora of antimicrobial peptides that not only show antimicrobial activities against pathogens but also exhibit various immunomodulatory functions. Human β-defensins (hBDs) are the most well-characterized skin-derived antimicrobial peptides and contribute to diverse biological processes, including cytokine production and the migration, proliferation, and differentiation of host cells. Additionally, hBD-3 was recently reported to promote wound healing and angiogenesis, by inducing the expression of various angiogenic factors and the migration and proliferation of fibroblasts. Angiogenin is one of the most potent angiogenic factors; however, the effects of hBDs on angiogenin production in fibroblasts remain unclear. Here, we investigated the effects of hBDs on the secretion of angiogenin by human dermal fibroblasts. Both in vitro and ex vivo studies demonstrated that hBD-1, hBD-2, hBD-3, and hBD-4 dose-dependently increased angiogenin production by fibroblasts. hBD-mediated angiogenin secretion involved the epidermal growth factor receptor (EGFR), Src family kinase, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) pathways, as evidenced by the inhibitory effects of specific inhibitors for these pathways. Indeed, we confirmed that hBDs induced the activation of the EGFR, Src, JNK, p38, and NF-κB pathways. This study identified a novel role of hBDs in angiogenesis, through the production of angiogenin, in addition to their antimicrobial activities and other immunomodulatory properties.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
37
|
Glycosaminoglycan, Antimicrobial Defence Molecule and Cytokine Appearance in Tracheal Hyaline Cartilage of Healthy Humans. J Funct Morphol Kinesiol 2022; 7:jfmk7030055. [PMID: 35893329 PMCID: PMC9326615 DOI: 10.3390/jfmk7030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaline cartilage is an important tracheal structure, yet little is known about its molecular composition, complicating investigation of pathologies and replacement options. Our aim was to research tracheal hyaline cartilage structure, protective tissue factors and variations in healthy humans. The tissue material was obtained from 10 cadavers obtained from the Riga Stradins University Institute of Anatomy and Anthropology archive. Tissues were stained with Bismarck brown and PAS for glycosaminoglycans, and immunohistochemistry was performed for HBD-2, HBD-3, HBD-4, IL-10 and LL-37. The slides were inspected by light microscopy and Spearman's rank correlation coefficient was calculated. The extracellular matrix was positive across hyaline cartilage for PAS, yet Bismarck brown marked positive proliferation and growth zones. Numerous positive cells for both factors were found in all zones. All of the antimicrobial defence molecules and cytokines were found in a moderate number of cells, except in the mature cell zone with few positive cells. Spearman's rank correlation coefficient revealed strong and moderate correlations between studied factors. Hyaline cartilage is a tracheal defence structure with a moderate number of antimicrobial defence protein and cytokine immunoreactive cells as well as numerous glycosaminoglycan positive cells. The extracellular matrix glycosaminoglycans provide structural scaffolding and intercellular signalling. The correlations between the studied factors confirm the synergistic activity of them.
Collapse
|
38
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
39
|
Tseng PY, Hoon MA. GPR15L is an epithelial inflammation-derived pruritogen. SCIENCE ADVANCES 2022; 8:eabm7342. [PMID: 35704588 PMCID: PMC9200282 DOI: 10.1126/sciadv.abm7342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 05/09/2023]
Abstract
Itch is an unpleasant sensation that often accompanies chronic dermatological conditions. Although many of the itch receptors and the neural pathways underlying this sensation are known, the identity of endogenous ligands is still not fully appreciated. Using an unbiased bioinformatic approach, we identified GPR15L as a candidate pruritogen whose expression is robustly up-regulated in psoriasis and atopic dermatitis. Although GPR15L was previously shown to be a cognate ligand of the receptor GPR15, expressed in dermal T cells, here we show that it also contributes to pruritogenesis by activating Mas-related G protein-coupled receptors (MRGPRs). GPR15L can selectively stimulate mouse dorsal root ganglion neurons that express Mrgpra3 and evokes intense itch responses. GPR15L causes mast cell degranulation through stimulation of MRGPRX2 and Mrgprb2. Genetic disruption of GPR15L expression attenuates scratch responses in a mouse model of psoriasis. Our study reveals unrecognized features of GRP15L, showing that it is a potent itch-inducing agent.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, 35 Convent Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
40
|
Allantoin Inhibits Compound 48/80-Induced Pseudoallergic Reactions In Vitro and In Vivo. Molecules 2022; 27:molecules27113473. [PMID: 35684410 PMCID: PMC9182162 DOI: 10.3390/molecules27113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Pseudoallergic reactions are hypersensitivity reactions mediated by an IgE-independent mechanism. Since allantoin (AT)-mediated pseudoallergy has not been studied, in this study, our objective is to investigate the anti-pseudoallergy effect of AT and its underlying mechanism. In vitro, β-hexosaminidase (β-Hex) and histamine (HIS) release assays, inflammatory cytokine assays, toluidine blue staining, and F-actin microfilament staining were used to evaluate the inhibitory effect of AT in RBL-2H3 cells stimulated with Compound 48/80 (C48/80). Western blot analysis is further performed to investigate intracellular calcium fluctuation-related signaling pathways. In vivo, Evans Blue extraction, paw swelling, and the diameter of Evans Blue extravasation were evaluated, and skin tissues are examined for histopathological examination in mice with passive cutaneous anaphylaxis (PCA) induced by C48/80. Body temperature is measured, and the levels of cytokines are further determined by ELISA kits in mice with active systemic anaphylaxis (ASA) induced by C48/80. The results show that AT dose-dependently inhibited degranulation in C48/80-stimulated RBL-2H3 cells by inhibiting β-Hex and HIS release, reducing the levels of TNF-α, IL-8, and MCP-1, inhibiting shape changes due to degranulation and disassembling the F-actin cytoskeleton. Furthermore, AT dose-dependently inhibits the phosphorylation of PLCγ and IP3R. In vivo, AT decreased Evans Blue extravasation, paw swelling, and the diameter of Evans Blue extravasation and significantly ameliorate pathological changes and mast cell degranulation in C48/80-induced PCA. Furthermore, AT help the mice recover from the C48/80-induced decrease in body temperature and decreased the levels of cytokines in C48/80-treated ASA mice. Our results indicate that allantoin inhibits compound 48/80-induced pseudoallergic reactions. AT has the potential to be used in IgE-independent anti-allergic and anti-inflammatory therapies.
Collapse
|
41
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Song P, Peng G, Yue H, Ogawa T, Ikeda S, Okumura K, Ogawa H, Niyonsaba F. Candidalysin, a Virulence Factor of Candida albicans, Stimulates Mast Cells by Mediating Cross-Talk Between Signaling Pathways Activated by the Dectin-1 Receptor and MAPKs. J Clin Immunol 2022; 42:1009-1025. [PMID: 35420364 DOI: 10.1007/s10875-022-01267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Although mast cells (MCs) modulate the activity of effector cells during Candida albicans infection, their role in the pathogenesis of candidiasis remains unclear. Candidalysin, a C. albicans-derived peptide toxin, is a crucial factor in fungal infections. We aimed to investigate the effect of candidalysin on MC activation and the underlying molecular mechanism. METHODS Serum from candidalysin-immunized mice was used to measure candidalysin expression in patients infected with C. albicans. MC degranulation and migration were evaluated by β-hexosaminidase release assay and chemotaxis assay, respectively. EIA and ELISA were used to evaluate the production of eicosanoids and cytokines/chemokines, respectively. The production of nitric oxide (NO) was measured with a DAF-FM diacetate kit, while reactive oxygen species (ROS) production was analyzed by flow cytometry. MAPK activation was evaluated by Western blotting. RESULTS We detected high candidalysin expression in the lesions of patients infected with C. albicans, and the MC number was increased in these lesions. LL-37 colocalized with MCs in the lesions of candidiasis patients. Candidalysin-enhanced MC accumulation in mice and treating LAD2 and HMC-1 cells with candidalysin induced their degranulation, migration, and production of pro- and anti-inflammatory cytokines/chemokines, eicosanoids, ROS, NO, and LL-37. Interestingly, C. albicans strains lacking candidalysin failed to induce MC activation. Moreover, candidalysin increased dectin-1 expression, and the inhibition of dectin-1 decreased MC activation. Downstream dectin-1 signaling involved the MAPK pathways. CONCLUSION The finding that candidalysin causes cutaneous MC activation may improve our understanding of the role of MCs in the pathology of cutaneous C. albicans infection.
Collapse
Affiliation(s)
- Pu Song
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
43
|
Das S, Pradhan C, Pillai D. β-Defensin: An adroit saviour in teleosts. FISH & SHELLFISH IMMUNOLOGY 2022; 123:417-430. [PMID: 35331882 DOI: 10.1016/j.fsi.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
β-Defensin (BD) is an important first line innate defense molecule with potent antimicrobial and immunomodulatory activities in fish. The signatures of β-defensins are the presence of a net cationic charge and three intramolecular disulfide bonds mediated by six conserved cysteines. It consists of three exons and two introns. The signal peptide is usually conserved and sequence divergence is mostly seen in mature peptide region. The diverse amino acid sequences of matured peptide contribute to a strong positive selection and broad-spectrum antimicrobial activity. It is constitutively expressed in both mucosal as well as systemic sites. Increased expression of β-defensin was mostly reported in bacterial and viral infections in fish. Its role during parasitic and fungal infections is yet to be investigated. β-Defensin isoforms such as BD-1, BD-2, BD-3, BD-4 and BD-5 can be witnessed even in early developmental days to different pathogenic exposure in fish. β-Defensins possess adjuvant properties to enhance antigen-specific immunity promoting both cellular and humoral immune response. It significantly reduces/increases bacterial colonization or viral copy numbers when overexpressed/knockdown. Based on its chemotactic and activating potentials, it can contribute to both innate and adaptive immune responses. With mediated expression, it can also control inflammation. It is potent governing resistance in early developmental days as well. Its expression in pituitary and testis suggests its participation in reproduction and endocrine regulation in fish. Overall, β-defensins is an important member of antimicrobial peptides (AMPs) with multifunctional role in general homeostasis and to pathogen exposure possessing tremendous therapeutic approaches.
Collapse
Affiliation(s)
- Sweta Das
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
44
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
45
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
46
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
47
|
Irie H, Kabashima K. The interaction between the immune system and the peripheral sensory nerves in pruritus. Int Immunol 2021; 33:737-742. [PMID: 34611710 DOI: 10.1093/intimm/dxab076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Pruritus is a skin-specific sensation that is observed in various skin diseases, especially in inflammatory skin diseases such as atopic dermatitis, and is deeply involved in their pathogenesis. Pruritus also adversely affects patients' sleep and mental health, placing a heavy burden on daily life. As such, pruritus control is important to the maintenance of health. The mechanism of pruritus has recently been clarified and the discovery of various pruritus mediators, the identification of specific nerves that transmit pruritus and the accumulation of knowledge on pruritus perception have led to a better understanding of all aspects of pruritus generation, transmission and recognition. In the case of pruritus caused by dermatitis, immune cells infiltrating the skin secrete inflammatory cytokines, which also act on peripheral nerves as pruritus mediators and induce an inflammatory response. Interestingly, there has been accumulating evidence that peripheral nerves are also involved in the inflammation via neuropeptides. In this article, we summarize the findings on pruritus mediators secreted by immune cells and the roles of peripheral nerves in pruritus in terms of their interactions with immunity.
Collapse
Affiliation(s)
- Hiroyuki Irie
- Department of Dermatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara, Sakyo, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara, Sakyo, Kyoto, Japan.,Singapore Immunology Network and Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
48
|
A New Era with the Development of Cytokine-Based Therapy for Pruritus. J Invest Dermatol 2021; 142:47-52. [PMID: 34801247 DOI: 10.1016/j.jid.2021.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Pruritus is a common dermatological condition and negatively impacts QOL. Persistent pruritus and excessive scratching behavior can lead to the itch-scratch cycle that exacerbates inflammatory skin diseases. Conventional antipruritic drugs, such as antihistamines, corticosteroids, or anticonvulsants, are sometimes insufficient. Recently, however, molecularly targeted drugs, such as IL-31 or IL-4 receptor-targeting antibodies, have become available or are under clinical trials, dramatically changing the clinical situation. In fact, some of these drugs can improve pruritus without the need for topical steroids. Taken together, these observations point to the importance of cytokine-mediated pruritus, further understanding of which may guide improved therapies.
Collapse
|
49
|
Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The "itchy" cytokine in inflammation and therapy. Allergy 2021; 76:2982-2997. [PMID: 33629401 DOI: 10.1111/all.14791] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
The cytokine interleukin-31 has been implicated in the pathophysiology of multiple atopic disorders such as atopic dermatitis (AD), allergic rhinitis, and airway hyper-reactivity. In AD, IL-31 has been identified as one of the main "drivers" of its cardinal symptom, pruritus. Here, we summarize the mechanisms by which IL-31 modulates inflammatory and allergic diseases. TH 2 cells play a central role in AD and release high levels of TH 2-associated cytokines including IL-31, thereby mediating inflammatory responses, initiating immunoregulatory circuits, stimulating itch, and neuronal outgrowth through activation of the heterodimeric receptor IL-31 receptor A (IL31RA)/Oncostatin M receptor (OSMRβ). IL31RA expression is found on human and murine dorsal root ganglia neurons, epithelial cells including keratinocytes and various innate immune cells. IL-31 is a critical cytokine involved in neuroimmune communication, which opens new avenues for cytokine modulation in neuroinflammatory diseases including AD/pruritus, as validated by recent clinical trials using an anti-IL-31 antibody. Accordingly, inhibition of IL-31-downstream signaling may be a beneficial approach for various inflammatory diseases including prurigo. However, as to whether downstream JAK inhibitors directly block IL-31-mediated-signaling needs to be clarified. Targeting the IL-31/IL31RA/OSMRβ axis appears to be a promising approach for inflammatory, neuroinflammatory, and pruritic disorders in the future.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics University Hospital Düsseldorf Düsseldorf Germany
| | - Martin Steinhoff
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
- Department of Dermatology Weill Cornell Medicine‐Qatar Doha Qatar
- Qatar UniversityCollege of Medicine Doha Qatar
| | - Fareed Ahmad
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Majid Alam
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology Hamad Medical Corporation Doha Qatar
- Translational Research InstituteAcademic Health SystemHamad Medical Corporation Doha Qatar
- Dermatology Institute Academic Health SystemHamad Medical Corporation Doha Qatar
| |
Collapse
|
50
|
Tsai TL, Wang SL, Hsieh CJ, Wen HJ, Kuo CC, Liu HJ, Sun CW, Chen ML, Wu MT. Association Between Prenatal Exposure to Metals and Atopic Dermatitis Among Children Aged 4 Years in Taiwan. JAMA Netw Open 2021; 4:e2131327. [PMID: 34705012 PMCID: PMC8552055 DOI: 10.1001/jamanetworkopen.2021.31327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPORTANCE The prevalence of atopic dermatitis has substantially increased in recent decades, and atopic dermatitis could lead to allergic airway inflammation later in life. A previous study found that inorganic arsenic exposure was associated with allergic airway inflammation in children aged 8 to 14 years. However, the association between prenatal exposure to arsenic and other metals and the risk of atopic dermatitis among young children remains unknown. OBJECTIVE To assess the association between prenatal exposure to arsenic and other metals and the occurrence of atopic dermatitis in children at age 4 years. DESIGN, SETTING, AND PARTICIPANTS In total, 1152 pregnant women were enrolled in the original Taiwan Maternal and Infant Cohort Study (TMICS), a multicenter birth cohort study conducted at 9 hospitals in northern, central, southern, and eastern Taiwan from October 2012 to May 2015. Of those, 586 mothers and children aged 4 years participated in follow-up questionnaire interviews from August 2016 to January 2019. After excluding 216 participants with missing data, the final statistical analysis of follow-up data included 370 mother and child pairs from the central and eastern regions of Taiwan. Data were analyzed from February 2 to August 12, 2021. EXPOSURES Arsenic, cadmium, lead, cobalt, copper, nickel, thallium, and zinc during pregnancy. MAIN OUTCOMES AND MEASURES The outcome was parent-reported atopic dermatitis history among children aged 4 years. The presence of atopic dermatitis was defined as a positive response to the question, "Has your child ever had atopic dermatitis diagnosed by a physician?" During the initial TMICS study period, concentrations of arsenic, cadmium, lead, cobalt, copper, nickel, thallium, and zinc were measured in maternal urine during the third trimester of pregnancy using an inductively coupled plasma mass spectrometer. Estimated total inorganic arsenic exposure was calculated using a model that included data on both total arsenic and arsenic species (arsenite, arsenate, monomethylarsonate, and dimethylarsenate) obtained from a previous TMICS cohort. RESULTS Among 370 children included in the analysis, the mean (SD) age was 3.94 (0.59) years; 208 children (56.2%) were male, and 267 children (72.2%) were from the central region of Taiwan. A total of 110 children (29.7%) had atopic dermatitis at age 4 years. Maternal estimated total inorganic arsenic exposure during pregnancy was associated with increased odds of atopic dermatitis among children at age 4 years (odds ratio [OR], 2.42 [95% CI, 1.33-4.39] for every doubled increase of total inorganic arsenic) after adjusting for parental allergies, child's sex, geographic area, maternal educational level, and exposure to tobacco smoke. Every increased unit in the weighted quantile sum index of maternal metal exposure was significantly associated with atopic dermatitis (OR, 1.63; 95% CI, 1.28-2.07). Arsenic (40.1%) and cadmium (20.5%) accounted for most of the metal mixture index. CONCLUSIONS AND RELEVANCE This cohort study found that prenatal exposure to inorganic arsenic and coexposure to inorganic arsenic and cadmium were associated with a higher risk of atopic dermatitis in young children. These findings suggest that prevention of exposure to inorganic arsenic and cadmium during pregnancy may be helpful for the control of atopic dermatitis and other potential allergies in children.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chin-Chi Kuo
- Big Data Center, China Medical University Hospital, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huei-Ju Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|