1
|
Hu J, Zhou G, Zhang L, Chen XM, Qi L, Sun L. Clinicopathological features of porto-sinusoidal vascular disorder with a novel GIMAP5 mutation in a pair of twin siblings. Dig Liver Dis 2025; 57:652-654. [PMID: 39818502 DOI: 10.1016/j.dld.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Affiliation(s)
- Junke Hu
- Department of Pathology, Beijing Ditan Hospital, Captial Medical University, Beijing 100015, PR China
| | - Guiqin Zhou
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, PR China
| | - Liang Zhang
- Department of Pathology, Beijing Ditan Hospital, Captial Medical University, Beijing 100015, PR China
| | - Xiang-Mei Chen
- Department of Pathology, Beijing Ditan Hospital, Captial Medical University, Beijing 100015, PR China
| | - Liming Qi
- Department of Pathology, Beijing Ditan Hospital, Captial Medical University, Beijing 100015, PR China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Captial Medical University, Beijing 100015, PR China.
| |
Collapse
|
2
|
Dunlap G, Wagner A, Meednu N, Wang R, Zhang F, Ekabe JC, Jonsson AH, Wei K, Sakaue S, Nathan A, Bykerk VP, Donlin LT, Goodman SM, Firestein GS, Boyle DL, Holers VM, Moreland LW, Tabechian D, Pitzalis C, Filer A, Raychaudhuri S, Brenner MB, Thakar J, McDavid A, Rao DA, Anolik JH. Clonal associations between lymphocyte subsets and functional states in rheumatoid arthritis synovium. Nat Commun 2024; 15:4991. [PMID: 38862501 PMCID: PMC11167034 DOI: 10.1038/s41467-024-49186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function. CD8 + T cells show higher oligoclonality than CD4 + T cells, with the largest synovial clones enriched in GZMK+ cells. CD8 + T cells with possibly virus-reactive TCRs are distributed across transcriptomic clusters. In the B cell compartment, NR4A1+ activated B cells, and plasma cells are enriched in the synovium and demonstrate substantial clonal expansion. We identify synovial plasma cells that share BCRs with synovial ABC, memory, and activated B cells. Receptor-ligand analysis predicted IFNG and TNFRSF members as mediators of synovial Tph-B cell interactions. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate the synovium of patients with RA.
Collapse
Affiliation(s)
- Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron Wagner
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruoqiao Wang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jabea Cyril Ekabe
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vivian P Bykerk
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Susan M Goodman
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego;, La Jolla, CA, USA
| | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego;, La Jolla, CA, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juilee Thakar
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
3
|
Park AY, Leney-Greene M, Lynberg M, Gabrielski JQ, Xu X, Schwarz B, Zheng L, Balasubramaniyam A, Ham H, Chao B, Zhang Y, Matthews HF, Cui J, Yao Y, Kubo S, Chanchu JM, Morawski AR, Cook SA, Jiang P, Ravell JC, Cheng YH, George A, Faruqi A, Pagalilauan AM, Bergerson JRE, Ganesan S, Chauvin SD, Aluri J, Edwards-Hicks J, Bohrnsen E, Tippett C, Omar H, Xu L, Butcher GW, Pascall J, Karakoc-Aydiner E, Kiykim A, Maecker H, Tezcan İ, Esenboga S, Heredia RJ, Akata D, Tekin S, Kara A, Kuloglu Z, Unal E, Kendirli T, Dogu F, Karabiber E, Atkinson TP, Cochet C, Filhol O, Bosio CM, Davis MM, Lifton RP, Pearce EL, Daumke O, Aytekin C, Şahin GE, Aksu AÜ, Uzel G, Koneti Rao V, Sari S, Dalgıç B, Boztug K, Cagdas D, Haskologlu S, Ikinciogullari A, Schwefel D, Vilarinho S, Baris S, Ozen A, Su HC, Lenardo MJ. GIMAP5 deficiency reveals a mammalian ceramide-driven longevity assurance pathway. Nat Immunol 2024; 25:282-293. [PMID: 38172257 PMCID: PMC11151279 DOI: 10.1038/s41590-023-01691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.
Collapse
Affiliation(s)
- Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Q Gabrielski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xijin Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arasu Balasubramaniyam
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hyoungjun Ham
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brittany Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen F Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Cui
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Michel Chanchu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron R Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yan H Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aiman Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison M Pagalilauan
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jahnavi Aluri
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Caroline Tippett
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Habib Omar
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leilei Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Raul Jimenez Heredia
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Deniz Akata
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saban Tekin
- Department of Basic Medical Sciences, Hamidiye Faculty of Medicine, Division of Medical Biology, University of Health Sciences, İstanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Zarife Kuloglu
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ankara University School of Medicine, Ankara, Türkiye
| | - Emel Unal
- Department of Pediatric Oncology, Ankara University Medical School, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatric Intensive Care Unit, Ankara University Medical School, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Esra Karabiber
- Department of Chest Diseases, Faculty of Medicine, Division of Adult Allergy-Immunology, Marmara University, Istanbul, Turkey
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claude Cochet
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Odile Filhol
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Catherine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Palo Alto, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Daumke
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinan Sari
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Boztug
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Hospital, Vienna, Austria
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - David Schwefel
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Helen C Su
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhong X, Moresco JJ, Diedrich JK, Pinto AM, SoRelle JA, Wang J, Keller K, Ludwig S, Moresco EMY, Beutler B, Choi JH. Essential role of MFSD1-GLMP-GIMAP5 in lymphocyte survival and liver homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2314429120. [PMID: 38055739 PMCID: PMC10723049 DOI: 10.1073/pnas.2314429120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Antonio M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Jeffrey A. SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
5
|
Greco F, Panunzio A, Tafuri A, Bernetti C, Pagliarulo V, Beomonte Zobel B, Scardapane A, Mallio CA. Radiogenomic Features of GIMAP Family Genes in Clear Cell Renal Cell Carcinoma: An Observational Study on CT Images. Genes (Basel) 2023; 14:1832. [PMID: 37895181 PMCID: PMC10606653 DOI: 10.3390/genes14101832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
GTPases of immunity-associated proteins (GIMAP) genes include seven functional genes and a pseudogene. Most of the GIMAPs have a role in the maintenance and development of lymphocytes. GIMAPs could inhibit the development of tumors by increasing the amount and antitumor activity of infiltrating immunocytes. Knowledge of key factors that affect the tumor immune microenvironment for predicting the efficacy of immunotherapy and establishing new targets in ccRCC is of great importance. A computed tomography (CT)-based radiogenomic approach was used to detect the imaging phenotypic features of GIMAP family gene expression in ccRCC. In this retrospective study we enrolled 193 ccRCC patients divided into two groups: ccRCC patients with GIMAP expression (n = 52) and ccRCC patients without GIMAP expression (n = 141). Several imaging features were evaluated on preoperative CT scan. A statistically significant correlation was found with absence of endophytic growth pattern (p = 0.049), tumor infiltration (p = 0.005), advanced age (p = 0.018), and high Fuhrman grade (p = 0.024). This study demonstrates CT imaging features of GIMAP expression in ccRCC. These results could allow the collection of data on GIMAP expression through a CT-approach and could be used for the development of a targeted therapy.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
| | - Andrea Panunzio
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Alessandro Tafuri
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Caterina Bernetti
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Pagliarulo
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Bruno Beomonte Zobel
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Arnaldo Scardapane
- Dipartimento Interdisciplinare di Medicina, Sezione di Diagnostica Per Immagini, Università degli Studi di Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70124 Bari, Italy;
| | - Carlo Augusto Mallio
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
6
|
Dunlap G, Wagner A, Meednu N, Zhang F, Jonsson AH, Wei K, Sakaue S, Nathan A, Bykerk VP, Donlin LT, Goodman SM, Firestein GS, Boyle DL, Holers VM, Moreland LW, Tabechian D, Pitzalis C, Filer A, Raychaudhuri S, Brenner MB, McDavid A, Rao DA, Anolik JH. Clonal associations of lymphocyte subsets and functional states revealed by single cell antigen receptor profiling of T and B cells in rheumatoid arthritis synovium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533282. [PMID: 36993527 PMCID: PMC10055242 DOI: 10.1101/2023.03.18.533282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, and clonally expanded Tph cells expressed an elevated transcriptomic effector signature compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate RA synovium.
Collapse
Affiliation(s)
- Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Aaron Wagner
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine; Aurora, CO, USA
| | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Saori Sakaue
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Vivian P Bykerk
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Susan M Goodman
- Hospital for Special Surgery; New York, NY, USA
- Weill Cornell Medicine; New York, NY, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy, and Immunology, University of California, San Diego; La Jolla, CA, USA
| | - David L Boyle
- Division of Rheumatology, Allergy, and Immunology, University of California, San Diego; La Jolla, CA, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine; Aurora, CO, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine; Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London; London, UK
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital; Birmingham, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital; Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester; Manchester, UK
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School; Boston, MA, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY, USA
| |
Collapse
|
7
|
Chen S, Tian D, Petersen L, Cao S, Quinn Z, Kan J, Zheng M, Mao W, Wan Y. Prognostic Value of GIMAP4 and Its Role in Promoting Immune Cell Infiltration into Tumor Microenvironment of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7440189. [PMID: 36246963 PMCID: PMC9560834 DOI: 10.1155/2022/7440189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
GIMAPs are recognized as an important regulator in the carcinogenesis and development of lung cancer, but the function of GIMAP4 in the tumor microenvironment (TME) of lung cancers is unclear. In this study, we investigated the expression and variation of GIMAP4 in lung adenocarcinoma (LUAD), to explore its association with infiltration of immune cells. The Cancer Genome Atlas (TCGA) data and Gene Expression Omnibus (GEO) data were analyzed. Infiltration of immune cells was identified with TIMER (Tumor Immune Estimation Resource) and TISIDB (an integrated repository portal for tumor-immune system interactions). GIMAP4 expression declined in non-small-cell lung cancer (NSCLC), correlated with a poor overall survival (OS) in LUAD, indicating that GIMAP4 was a promising prognostic biomarker in LUAD. GIMAP4 mutation frequency was 1.76% in TCGA cohort and was relevant to the expression of immune components. TIMER and CIBERSORT analysis further confirmed that high GIMAP4 expression possibly promoted immune cell infiltration into the TME, with low GIMAP4 impairing the efficacy of immunotherapies targeting common immune check point inhibitors (ICI). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed to provide insights into biological processes involved in LUAD. GIMAP4 was expected to be a prognostic biomarker in LUAD and provides potential adjuvant or neoadjuvant therapeutic strategies for targeting ICIs.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu 610041, China
| | - Lauren Petersen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Shuchang Cao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zachary Quinn
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Junyan Kan
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| |
Collapse
|
8
|
Yao Y, Du Jiang P, Chao BN, Cagdas D, Kubo S, Balasubramaniyam A, Zhang Y, Shadur B, NaserEddin A, Folio LR, Schwarz B, Bohrnsen E, Zheng L, Lynberg M, Gottlieb S, Leney-Greene MA, Park AY, Tezcan I, Akdogan A, Gocmen R, Onder S, Rosenberg A, Soilleux EJ, Johnson E, Jackson PK, Demeter J, Chauvin SD, Paul F, Selbach M, Bulut H, Clatworthy MR, Tuong ZK, Zhang H, Stewart BJ, Bosio CM, Stepensky P, Clare S, Ganesan S, Pascall JC, Daumke O, Butcher GW, McMichael AJ, Simon AK, Lenardo MJ. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med 2022; 219:213217. [PMID: 35551368 PMCID: PMC9111091 DOI: 10.1084/jem.20201405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6−/− mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6−/− mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Brittany N Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD.,Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Arasu Balasubramaniyam
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bella Shadur
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel.,The Garvan Institute of Medical Research, Immunology Division, Darlinghurst, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, Australia
| | - Adeeb NaserEddin
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Les R Folio
- Clinical Center, National Institutes of Health, Bethesda, MD
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Avi Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Peter K Jackson
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Janos Demeter
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Florian Paul
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Selbach
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haydar Bulut
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Polina Stepensky
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - John C Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| |
Collapse
|
9
|
A Promising Insight: The Potential Influence and Therapeutic Value of the Gut Microbiota in GI GVHD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2124627. [PMID: 35571252 PMCID: PMC9098338 DOI: 10.1155/2022/2124627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HSCT) is a reconstruction process of hematopoietic and immune functions that can be curative in patients with hematologic malignancies, but it carries risks of graft-versus-host disease (GVHD), thrombotic microangiopathy (TMA), Epstein–Barr virus (EBV) infection, cytomegalovirus infection, secondary hemophagocytic lymphohistiocytosis (sHLH), macrophage activation syndrome (MAS), bronchiolitis obliterans, and posterior reversible encephalopathy syndrome (PRES). Gastrointestinal graft-versus-host disease (GI GVHD), a common complication of allo-HSCT, is one of the leading causes of transplant-related death because of its high treatment difficulty, which is affected by preimplantation, antibiotic use, dietary changes, and intestinal inflammation. At present, human trials and animal studies have proven that a decrease in intestinal bacterial diversity is associated with the occurrence of GI GVHD. Metabolites produced by intestinal bacteria, such as lipopolysaccharides, short-chain fatty acids, and secondary bile acids, can affect the development of GVHD through direct or indirect interactions with immune cells. The targeted damage of GVHD on intestinal stem cells (ISCs) and Paneth cells results in intestinal dysbiosis or dysbacteriosis. Based on the effect of microbiota metabolites on the gastrointestinal tract, the clinical treatment of GI GVHD can be further optimized. In this review, we describe the mechanisms of GI GVHD and the damage it causes to intestinal cells and we summarize recent studies on the relationship between intestinal microbiota and GVHD in the gastrointestinal tract, highlighting the role of intestinal microbiota metabolites in GI GVHD. We hope to elucidate strategies for immunomodulatory combined microbiota targeting in the clinical treatment of GI GVHD.
Collapse
|
10
|
Nath P, Maiti D. A review of the mutagenic potential of N-ethyl-N-nitrosourea (ENU) to induce hematological malignancies. J Biochem Mol Toxicol 2022; 36:e23067. [PMID: 35393684 DOI: 10.1002/jbt.23067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
This review is intended to summarize the existing literature on the mutagenicity of N-ethyl-N-nitrosourea (ENU) in inducing hematological malignancies, including acute myeloid leukemia (AML) in mice. Blood or hematological malignancies are the most common malignant disorders seen in people of all age groups. Driven by a number of genetic alterations, leukemia rule out the normal proliferation and differentiation of hematopoietic stem cells (HSCs) and their progenitors in the bone marrow (BM) and severely affects blood functions. Out of all hematological malignancies, AML is the most aggressive type, with a high incidence and mortality rate. AML is found as either de novo or secondary therapeutic AML (t-AML). t-AML is a serious adverse consequence of alkylator chemotherapy to the cancer patient and alone constitutes about 10%-20% of all reported AML cases. Cancer patients who received alkylator chemotherapy are at an elevated risk of developing t-AML. ENU has a long history of use as a potent carcinogen that induces blood malignancies in mice and rats that are pathologically similar to human AML and t-AML. ENU, once entered into the body, circulates all over the body tissues and reaches BM. It creates an overall state of suppression within the BM by damaging the marrow cells, alkylating the DNA, and forming DNA adducts within the early and late hematopoietic stem and progenitor cells. The BM holds a weak DNA repair mechanism due to low alkyltransferase, and poly [ADP-ribose] polymerase (PARP) enzyme content often fails to obliterate those adducts, acting as a catalyst to bring genetic abnormalities, including point gene mutations as well as chromosomal alterations, for example, translocation and inversion. Taking advantage of ENU-induced immune-suppressed state and weak immune surveillance, these mutations remain viable and slowly give rise to transformed HSCs. This review also highlights the carcinogenic nature of ENU and the complex relation between the ENU's overall toxicity in the induction of hematological malignancies.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| |
Collapse
|
11
|
Ni G, Liu X, Li H, Fogarty CE, Chen S, Zhang P, Liu Y, Wu X, Wei MQ, Chen G, Zhang P, Wang T. Topical Application of Temperature-Sensitive Gel Containing Caerin 1.1 and 1.9 Peptides on TC-1 Tumour-Bearing Mice Induced High-Level Immune Response in the Tumour Microenvironment. Front Oncol 2021; 11:754770. [PMID: 34858827 PMCID: PMC8632150 DOI: 10.3389/fonc.2021.754770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
The development of topical cream drugs that increase the immune activation of tumour-infiltrating lymphocytes against tumour and chronic viral infection-associated lesions is of great immunotherapeutic significance. This study demonstrates that the topical application of a temperature-sensitive gel containing caerin 1.1 and 1.9 peptides reduces nearly 50% of the tumour weight of HPV16 E6/E7-transformed TC-1 tumour-bearing mice via improving the tumour microenvironment. Confocal microscopy confirms the time-dependent penetration of caerin 1.9 through the epidermal layer of the ear skin structure of mice. Single-cell transcriptomic analysis shows that the caerin 1.1/1.9 gel expands the populations with high immune activation level and largely stimulates the pro-inflammatory activity of NK and dendritic cells. Closely associated with INFα response, Cebpb seems to play a key role in altering the function of all Arg1hi macrophages in the caerin group. In addition, the caerin gel treatment recruits almost two-fold more activated CD8+ T cells to the TME, relative to the untreated tumour, which shows a synergistic effect derived from the regulation of S1pr1, Ccr7, Ms4a4b and Gimap family expression. The TMT10plex-labelling proteomic quantification further demonstrates the activation of interferon-alpha/beta secretion and response to cytokine stimulus by the caerin gel, while the protein contents of several key regulators were elevated by more than 30%, such as Cd5l, Gzma, Ifit1, Irf9 and Stat1. Computational integration of the proteome with the single-cell transcriptome consistently suggested greater activation of NK and T cells with the topical application of caerin peptide gel.
Collapse
Affiliation(s)
- Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Conor E Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Shu Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ying Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ming Q Wei
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ping Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| |
Collapse
|
12
|
Limoges MA, Cloutier M, Nandi M, Ilangumaran S, Ramanathan S. The GIMAP Family Proteins: An Incomplete Puzzle. Front Immunol 2021; 12:679739. [PMID: 34135906 PMCID: PMC8201404 DOI: 10.3389/fimmu.2021.679739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs and in peripheral circulation. In the BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of the immune associated nucleotide binding protein 5) results in profound peripheral T lymphopenia. This discovery heralded the identification of a new family of proteins initially called Immune-associated nucleotide binding protein (IAN) family. In this review we will use ‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins may interact with each other and also be involved in the movement of the cellular cargo along the cytoskeletal network. Here we will summarize the current knowledge on the characteristics and functions of GIMAP family of proteins.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Drzewiecki K, Choi J, Brancale J, Leney-Greene MA, Sari S, Dalgiç B, Ünlüsoy Aksu A, Evirgen Şahin G, Ozen A, Baris S, Karakoc-Aydiner E, Jain D, Kleiner D, Schmalz M, Radhakrishnan K, Zhang J, Hoebe K, Su HC, Pereira JP, Lenardo MJ, Lifton RP, Vilarinho S. GIMAP5 maintains liver endothelial cell homeostasis and prevents portal hypertension. J Exp Med 2021; 218:212076. [PMID: 33956074 PMCID: PMC8105721 DOI: 10.1084/jem.20201745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/20/2020] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
Portal hypertension is a major contributor to decompensation and death from liver disease, a global health problem. Here, we demonstrate homozygous damaging mutations in GIMAP5, a small organellar GTPase, in four families with unexplained portal hypertension. We show that GIMAP5 is expressed in hepatic endothelial cells and that its loss in both humans and mice results in capillarization of liver sinusoidal endothelial cells (LSECs); this effect is also seen when GIMAP5 is selectively deleted in endothelial cells. Single-cell RNA-sequencing analysis in a GIMAP5-deficient mouse model reveals replacement of LSECs with capillarized endothelial cells, a reduction of macrovascular hepatic endothelial cells, and places GIMAP5 upstream of GATA4, a transcription factor required for LSEC specification. Thus, GIMAP5 is a critical regulator of liver endothelial cell homeostasis and, when absent, produces portal hypertension. These findings provide new insight into the pathogenesis of portal hypertension, a major contributor to morbidity and mortality from liver disease.
Collapse
Affiliation(s)
- Kaela Drzewiecki
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Joseph Brancale
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT.,Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgiç
- Department of Pediatrics, Division of Gastroenterology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael Schmalz
- Department of Pediatrics, Division of Gastroenterology, Cleveland Clinic Children's Hospital, Cleveland, OH
| | - Kadakkal Radhakrishnan
- Department of Pediatrics, Division of Gastroenterology, Cleveland Clinic Children's Hospital, Cleveland, OH
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | | | - Helen C Su
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - João P Pereira
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY
| | - Sílvia Vilarinho
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT.,Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
14
|
覃 鸿, 郑 幽, 王 嫚, 张 峥, 牛 祖, 马 骊, 孙 强, 黄 红, 王 小. [Subcellular localization of GTPase of immunity-associated protein 2]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:221-226. [PMID: 32306002 PMCID: PMC7433440 DOI: 10.19723/j.issn.1671-167x.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study. METHODS In the study, we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM. RESULTS Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids, followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells. CONCLUSION GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.
Collapse
Affiliation(s)
- 鸿泉 覃
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 幽 郑
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 嫚娜 王
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 峥嵘 张
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 祖彪 牛
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 骊 马
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
| | - 强 孙
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 红艳 黄
- 首都医科大学附属北京世纪坛医院脑胶质瘤科,北京 100038Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing100038, China
| | - 小宁 王
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Zhang W, Xu S, Wu G, Liu Y, Wang Q, Man C. Exploring the expression and preliminary function of chicken Gimap5 gene. PeerJ 2019; 7:e7618. [PMID: 31579581 PMCID: PMC6766365 DOI: 10.7717/peerj.7618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
GTPase immune-associated protein 5 (Gimap5) plays a key role in maintaining T cell homeostasis, immunological tolerance and inflammatory processes. However, there are no reports on the chicken Gimap5 gene. In this study, the Gimap5 gene was first cloned from chicken and characterized its tissue expression characteristics in different developmental stages. The transcriptional activities of the Gimap5 gene in immune response were identified. The results showed that full-length cDNA sequence of Gimap5 contained 771 bp and encoded a 256-amino acid protein. The Gimap5 gene was transcribed in various tissues and different development stages. The transcriptional activities of Gimap5 gene in the most tissues increased with the development of chicken, but significantly up to peak in liver and large intestine of 10-month-old chicken. The Gimap5 gene exhibited differential transcriptional activities in immune-related tissues in immune responses, with down-regulated in liver (P < 0.01), spleen (P < 0.05) and bursa of Fabricius (P < 0.05), and up-regulated in thymus (P < 0.01). The results show that Gimap5 may be a multifunctional gene involved in tissue function, development and immune response in chicken. These data can provide the foundation for further study of Gimap5.
Collapse
Affiliation(s)
- Wanting Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Sifan Xu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Guanxian Wu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| |
Collapse
|
16
|
Arndt T, Jörns A, Wedekind D. Changes in immune cell frequencies in primary and secondary lymphatic organs of LEW.1AR1-iddm rats, a model of human type 1 diabetes compared to other MHC congenic LEW inbred strains. Immunol Res 2019; 66:462-470. [PMID: 30143971 DOI: 10.1007/s12026-018-9015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes, which arose through a spontaneous mutation in the Dock8 gene within the MHC congenic background strain LEW.1AR1. This mutation not only mediates diabetes development but also leads to a variable T cell frequency in peripheral blood. In this study, the immune cell frequencies of primary and secondary lymphatic organs of LEW.1AR1-iddm rats were analysed at days 40 and 60 and compared to other MHC congenic LEW rat strains. In LEW.1AR1-iddm rats, the secondary lymphatic organs such as lymph nodes and spleen showed a reduced, around 15% in comparison to all other strains, but very variable T cell frequency, mirroring the fluctuating T cell content in blood. On the other hand, the frequency of B cells was increased by 10% in the lymph nodes and by 5% in the spleen. Thus, the decreasing number of T cells in blood could not be caused by an increase of T cells in secondary lymphatic organs. The frequency of single- or double-positive T cells in the thymus was unaffected. The T cell frequencies in the other analysed strains were more stable and mostly higher in all secondary lymphatic organs. Obviously, the Dock8 mutation leads to variabilities of T cell frequencies in blood as well as in secondary lymphatic organs. In conclusion, the Dock8 mutation was responsible for changed immune cell frequencies in different compartments and together with the RT1B/Du haplotype causing immune imbalances and development of autoimmune diabetes.
Collapse
Affiliation(s)
- Tanja Arndt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Patterson AR, Bolcas P, Lampe K, Cantrell R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Khurana Hershey GK, Hoebe K. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4 + T-cell development and allergic airway disease. J Allergy Clin Immunol 2019; 143:245-257.e6. [PMID: 30616774 PMCID: PMC6327968 DOI: 10.1016/j.jaci.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-β, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-β. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paige Bolcas
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
18
|
|
19
|
Pascall JC, Webb LMC, Eskelinen EL, Innocentin S, Attaf-Bouabdallah N, Butcher GW. GIMAP6 is required for T cell maintenance and efficient autophagy in mice. PLoS One 2018; 13:e0196504. [PMID: 29718959 PMCID: PMC5931655 DOI: 10.1371/journal.pone.0196504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/13/2018] [Indexed: 11/19/2022] Open
Abstract
The GTPases of the immunity-associated proteins (GIMAP) GTPases are a family of proteins expressed strongly in the adaptive immune system. We have previously reported that in human cells one member of this family, GIMAP6, interacts with the ATG8 family member GABARAPL2, and is recruited to autophagosomes upon starvation, suggesting a role for GIMAP6 in the autophagic process. To study this possibility and the function of GIMAP6 in the immune system, we have established a mouse line in which the Gimap6 gene can be inactivated by Cre-mediated recombination. In mice bred to carry the CD2Cre transgene such that the Gimap6 gene was deleted within the T and B cell lineages there was a 50–70% reduction in peripheral CD4+ and CD8+ T cells. Analysis of splenocyte-derived proteins from these mice indicated increased levels of MAP1LC3B, particularly the lipidated LC3-II form, and S405-phosphorylation of SQSTM1. Electron microscopic measurements of Gimap6-/- CD4+ T cells indicated an increased mitochondrial/cytoplasmic volume ratio and increased numbers of autophagosomes. These results are consistent with autophagic disruption in the cells. However, Gimap6-/- T cells were largely normal in character, could be effectively activated in vitro and supported T cell-dependent antibody production. Treatment in vitro of CD4+ splenocytes from GIMAP6fl/flERT2Cre mice with 4-hydroxytamoxifen resulted in the disappearance of GIMAP6 within five days. In parallel, increased phosphorylation of SQSTM1 and TBK1 was observed. These results indicate a requirement for GIMAP6 in the maintenance of a normal peripheral adaptive immune system and a significant role for the protein in normal autophagic processes. Moreover, as GIMAP6 is expressed in a cell-selective manner, this indicates the potential existence of a cell-restricted mode of autophagic regulation.
Collapse
Affiliation(s)
- John C. Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Silvia Innocentin
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Noudjoud Attaf-Bouabdallah
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Geoffrey W. Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Patterson AR, Endale M, Lampe K, Aksoylar HI, Flagg A, Woodgett JR, Hildeman D, Jordan MB, Singh H, Kucuk Z, Bleesing J, Hoebe K. Gimap5-dependent inactivation of GSK3β is required for CD4 + T cell homeostasis and prevention of immune pathology. Nat Commun 2018; 9:430. [PMID: 29382851 PMCID: PMC5789891 DOI: 10.1038/s41467-018-02897-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
GTPase of immunity-associated protein 5 (Gimap5) is linked with lymphocyte survival, autoimmunity, and colitis, but its mechanisms of action are unclear. Here, we show that Gimap5 is essential for the inactivation of glycogen synthase kinase-3β (GSK3β) following T cell activation. In the absence of Gimap5, constitutive GSK3β activity constrains c-Myc induction and NFATc1 nuclear import, thereby limiting productive CD4+ T cell proliferation. Additionally, Gimap5 facilitates Ser389 phosphorylation and nuclear translocation of GSK3β, thereby limiting DNA damage in CD4+ T cells. Importantly, pharmacological inhibition and genetic targeting of GSK3β can override Gimap5 deficiency in CD4+ T cells and ameliorates immunopathology in mice. Finally, we show that a human patient with a GIMAP5 loss-of-function mutation has lymphopenia and impaired T cell proliferation in vitro that can be rescued with GSK3 inhibitors. Given that the expression of Gimap5 is lymphocyte-restricted, we propose that its control of GSK3β is an important checkpoint in lymphocyte proliferation. Loss of function GIMAP5 mutation is associated with lymphopenia, but how it mediates T cell homeostasis is unclear. Here the authors study Gimap5−/− mice and a patient with GIMAP5 deficiency to show how this GTPAse negatively regulates GSK3β activity to prevent DNA damage and cell death.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Mehari Endale
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Halil I Aksoylar
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Aron Flagg
- Pediatric Hematology/Oncology and Blood & Marrow Transplant, Cleveland Clinic Children's, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jim R Woodgett
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Harinder Singh
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA
| | - Zeynep Kucuk
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 231 Albert Sabin Way # E251n, Cincinnati, OH, 45267, USA. .,Department of Pediatrics, University of Cincinnati, College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|
21
|
Serrano D, Ghobadi F, Boulay G, Ilangumaran S, Lavoie C, Ramanathan S. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Front Immunol 2017; 8:94. [PMID: 28223986 PMCID: PMC5293772 DOI: 10.3389/fimmu.2017.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes.
Collapse
Affiliation(s)
- Daniel Serrano
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Université de Sherbrooke , Sherbrooke, QC , Canada
| | - Guylain Boulay
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
22
|
Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia 2016; 31:1798-1807. [PMID: 28028313 PMCID: PMC5529293 DOI: 10.1038/leu.2016.392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder resulting from leukemic transformation of thymus T-cell precursors. TAL1 is normally expressed in hematopoietic stem cells (HSCs) but is silenced in immature thymocytes. We hypothesize that TAL1 contributes to leukemogenesis by activating genes that are normally repressed in immature thymocytes. Herein, we identified a novel TAL1-regulated super-enhancer controlling the GIMAP locus, which resides within an insulated chromosomal locus in T-ALL cells. The GIMAP genes are expressed in HSCs and mature T-cells but are downregulated during the immature stage of thymocyte differentiation. The GIMAP enhancer is activated by TAL1, RUNX1 and GATA3 in human T-ALL cells but is repressed by E-proteins. Overexpression of human GIMAP genes in immature thymocytes alone does not induce tumorigenesis but accelerates leukemia development in zebrafish. Our results demonstrate that aberrant activation of the GIMAP enhancer contributes to T-cell leukemogenesis.
Collapse
|
23
|
Datta P, Webb LMC, Avdo I, Pascall J, Butcher GW. Survival of mature T cells in the periphery is intrinsically dependent on GIMAP1 in mice. Eur J Immunol 2016; 47:84-93. [PMID: 27792288 PMCID: PMC5244661 DOI: 10.1002/eji.201646599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
An effective immune system depends upon the survival of mature T cells in the periphery. Members of the GIMAP family of GTPases have been proposed to regulate this homeostasis, supported by the paucity of peripheral T cells in rodents deficient for either GIMAP1 or GIMAP5. It is unclear whether this lack of T cells is a consequence of an ontological defect, causing the thymus to generate and export T cells incapable of surviving in the periphery, or whether (alternatively or additionally) mature T cells intrinsically require GIMAP1 for survival. Using the ERT2 Cre+ transgene, we conditionally deleted Gimap1 in C57BL/6 mice and demonstrate that GIMAP1 is intrinsically required for the survival of mature T cells in the periphery. We show that, in contrast to GIMAP5, this requirement is independent of the T-cells' activation status. We investigated the nature of the survival defect in GIMAP1-deficient CD4+ T cells and show that the death occurring after GIMAP1 ablation is accompanied by mitochondrial depolarization and activation of the extrinsic apoptotic pathway. This study shows that GIMAP1 is critical for maintaining the peripheral T-cell pool in mice and offers a potent target for the treatment of T-cell-mediated diseases.
Collapse
Affiliation(s)
- Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Inxhina Avdo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
24
|
Abstract
As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function.
Collapse
Affiliation(s)
- Bruce Beutler
- Center for the Genetics of Host Defense, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8505, United States.
| |
Collapse
|
25
|
Chen XL, Serrano D, Ghobadi F, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. TCR and IL-7 Signaling Are Altered in the Absence of Functional GTPase of the Immune Associated Nucleotide Binding Protein 5 (GIMAP5). PLoS One 2016; 11:e0151837. [PMID: 27023180 PMCID: PMC4811415 DOI: 10.1371/journal.pone.0151837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/05/2016] [Indexed: 01/09/2023] Open
Abstract
GTPase of the immune associated nucleotide binding protein (GIMAP) family of proteins are expressed essentially in cells of the hematopoietic system. Mutation in the founding member of this gene family, Gimap5, results in the lymphopenic phenotype in Bio-Breeding diabetes prone rats. In mice, deletion of functional Gimap5 gene affects the survival and renewal of hematopoietic stem cells in addition to the defects observed in T cells. Here we show that T cells from OTII TCR-transgenic Gimap5sph/sph mice do not proliferate in response to its cognate antigen. Furthermore, T cells from Gimap5 mutant rats and mice show decreased phosphorylation of STAT5 following stimulation with IL-7. Our results suggest that functional Gimap5 is required for optimal signaling through TCR and IL-7R in T cells.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
26
|
Fischer HJ, Witte AK, Walter L, Gröne HJ, van den Brandt J, Reichardt HM. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity. FASEB J 2016; 30:1724-32. [PMID: 26740263 DOI: 10.1096/fj.15-277384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/17/2015] [Indexed: 01/28/2023]
Abstract
T-cell lymphopenia is a major risk factor for autoimmunity. Here we describe congenic Lewis (LEW) rats with a loss-of-function mutation in the Gimap5 gene, leading to a 92% reduction in peripheral T-cell numbers. Gimap5-deficient LEW rats developed eosinophilic autoimmune gastroenteritis accompanied by a 40-fold increase in IgE serum levels. This phenotype was ameliorated by antibiotic treatment, indicating a critical role of the microbial flora in the development of inflammatory bowel disease. Interestingly, Gimap5-deficient LEW rats showed strongly aggravated experimental autoimmune encephalomyelitis (EAE) after immunization with guinea pig myelin basic protein. This phenotype, however, persisted after antibiosis, confirming that the enhanced CNS autoimmune response in T-cell lymphopenic Gimap5-deficient LEW rats was unrelated to the composition of the microbial flora. Rather, it seems that it was caused by the 7-fold increase in the percentage of activated T cells producing IL-17 and IFN-γ, and the skewed T-cell receptor (TCR) repertoire, both of which were the result of T-cell lymphopenia and not affected by antibiosis. This notion was supported by the observation that adoptive T-cell transfer corrected the TCR repertoire and improved EAE. Collectively, our findings confirm a critical albeit differential role of T-cell lymphopenia in the susceptibility to organ-specific autoimmune responses.-Fischer, H. J., Witte, A.-K., Walter, L., Gröne, H.-J., van den Brandt, J., Reichardt, H. M. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ann-Kathrin Witte
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany; and
| | - Hermann-Josef Gröne
- Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany;
| |
Collapse
|
27
|
Webb LMC, Datta P, Bell SE, Kitamura D, Turner M, Butcher GW. GIMAP1 Is Essential for the Survival of Naive and Activated B Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 196:207-16. [PMID: 26621859 DOI: 10.4049/jimmunol.1501582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/30/2015] [Indexed: 12/30/2022]
Abstract
An effective immune system depends upon regulation of lymphocyte function and homeostasis. In recent years, members of the GTPases of the immunity associated protein (GIMAP) family were proposed to regulate T cell homeostasis. In contrast, little is known about their function and mode of action in B cells. We used a combination of transgenic mice and in vivo and in vitro techniques to conditionally and electively ablate GIMAP1 in resting and activated peripheral B cells. Our data suggest that GIMAP1 is absolutely essential for the survival of peripheral B cells, irrespective of their activation state. Together with recent data showing increased expression of GIMAP1 in B cell lymphomas, our work points to the possible potential of GIMAP1 as a target for manipulation in a variety of B cell-mediated diseases.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba 278-0022, Japan
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom; and
| |
Collapse
|
28
|
Mizoguchi A, Takeuchi T, Himuro H, Okada T, Mizoguchi E. Genetically engineered mouse models for studying inflammatory bowel disease. J Pathol 2015; 238:205-19. [PMID: 26387641 DOI: 10.1002/path.4640] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/05/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Takahito Takeuchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidetomo Himuro
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Toshiyuki Okada
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Emiko Mizoguchi
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
29
|
Chen XL, Serrano D, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS One 2015; 10:e0139019. [PMID: 26440416 PMCID: PMC4595448 DOI: 10.1371/journal.pone.0139019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs. In mice and in rats, the loss of functional GTPase of the immune associated nucleotide binding protein 5 (GIMAP5) causes peripheral T lymphopenia due to spontaneous death of T cells. The underlying mechanism responsible for the disruption of quiescence in Gimap5 deficient T cells remains largely unknown. In this study, we show that loss of functional Gimap5 results in increased basal activation of mammalian target of rapamycin (mTOR), independent of protein phosphatase 2A (PP2A) or AMP-activated protein kinase (AMPK). Our results suggest that the constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway may be one of the consequences of the absence of functional GIMAP5.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
30
|
Heinonen MT, Laine AP, Söderhäll C, Gruzieva O, Rautio S, Melén E, Pershagen G, Lähdesmäki HJ, Knip M, Ilonen J, Henttinen TA, Kere J, Lahesmaa R. GIMAP GTPase family genes: potential modifiers in autoimmune diabetes, asthma, and allergy. THE JOURNAL OF IMMUNOLOGY 2015; 194:5885-94. [PMID: 25964488 DOI: 10.4049/jimmunol.1500016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
GTPase of the immunity-associated protein (GIMAP) family members are differentially regulated during human Th cell differentiation and have been previously connected to immune-mediated disorders in animal studies. GIMAP4 is believed to contribute to the Th cell subtype-driven immunological balance via its role in T cell survival. GIMAP5 has a key role in BB-DR rat and NOD mouse lymphopenia. To elucidate GIMAP4 and GIMAP5 function and role in human immunity, we conducted a study combining genetic association in different immunological diseases and complementing functional analyses. Single nucleotide polymorphisms tagging the GIMAP haplotype variation were genotyped in Finnish type 1 diabetes (T1D) families and in a prospective Swedish asthma and allergic sensitization birth cohort. Initially, GIMAP5 rs6965571 was associated with risk for asthma and allergic sensitization (odds ratio [OR] 3.74, p = 0.00072, and OR 2.70, p = 0.0063, respectively) and protection from T1D (OR 0.64, p = 0.0058); GIMAP4 rs13222905 was associated with asthma (OR 1.28, p = 0.035) and allergic sensitization (OR 1.27, p = 0.0068). However, after false discovery rate correction for multiple testing, only the associations of GIMAP4 with allergic sensitization and GIMAP5 with asthma remained significant. In addition, transcription factor binding sites surrounding the associated loci were predicted. A gene-gene interaction in the T1D data were observed between the IL2RA rs2104286 and GIMAP4 rs9640279 (OR 1.52, p = 0.0064) and indicated between INS rs689 and GIMAP5 rs2286899. The follow-up functional analyses revealed lower IL-2RA expression upon GIMAP4 knockdown and an effect of GIMAP5 rs2286899 genotype on protein expression. Thus, the potential role of GIMAP4 and GIMAP5 as modifiers of immune-mediated diseases cannot be discarded.
Collapse
Affiliation(s)
- Mirkka T Heinonen
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland
| | - Cilla Söderhäll
- Department of Bioscience and Nutrition and Center for Innovative Medicine, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Sini Rautio
- Department of Information and Computer Science, Aalto University, 02150 Espoo, Finland
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden; Karolinska University Hospital, Astrid Lindgren Children's Hospital, 171 76 Solna, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Harri J Lähdesmäki
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland; Folkhälsan Research Institute, 00290 Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland; and
| | | | - Juha Kere
- Department of Bioscience and Nutrition and Center for Innovative Medicine, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden; Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Riitta Lahesmaa
- Turku Centre of Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | | |
Collapse
|
31
|
Central role of gimap5 in maintaining peripheral tolerance and T cell homeostasis in the gut. Mediators Inflamm 2015; 2015:436017. [PMID: 25944983 PMCID: PMC4405212 DOI: 10.1155/2015/436017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis is often precipitated by an abnormal immune response to microbiota due to host genetic aberrancies. Recent studies highlight the importance of the host genome and microflora interactions in the pathogenesis of mucosal inflammation including IBD. Specifically, genome-wide (GWAS) and also next-generation sequencing (NGS)—including whole exome or genome sequencing—have uncovered a large number of susceptibility loci that predispose to autoimmune diseases and/or the two phenotypes of IBD. In addition, the generation of “IBD-prone” animal models using both reverse and forward genetic approaches has not only helped confirm the identification of susceptibility loci but also shed critical insight into the underlying molecular and cellular pathways that drive colitis development. In this review, we summarize recent findings derived from studies involving a novel early-onset model of colitis as it develops in GTPase of immunity-associated protein 5- (Gimap5-) deficient mice. In humans, GIMAP5 has been associated with autoimmune diseases although its function is poorly defined. Here, we discuss how defects in Gimap5 function impair immunological tolerance and lymphocyte survival and ultimately drive the development of CD4+ T cell-mediated early-onset colitis.
Collapse
|
32
|
Quantitative changes in Gimap3 and Gimap5 expression modify mitochondrial DNA segregation in mice. Genetics 2015; 200:221-35. [PMID: 25808953 DOI: 10.1534/genetics.115.175596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 01/22/2023] Open
Abstract
Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment.
Collapse
|
33
|
Jokinen R, Junnila H, Battersby BJ. Gimap3: A foot-in-the-door to tissue-specific regulation of mitochondrial DNA genetics. Small GTPases 2014; 2:31-35. [PMID: 21686279 DOI: 10.4161/sgtp.2.1.14937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a multi-copy genome encoding for proteins essential for aerobic energy metabolism. Mutations in mtDNA can lead to a variety of human diseases, from mild metabolic syndromes to severe fatal encephalomyopathies. Most mtDNA mutations co-exist with wild type genomes in a state known as heteroplasmy. The segregation of these pathogenic mutants is tissue and mutation specific, and a key determinant in the onset and severity of human mitochondrial disorders. We used a forward genetic approach in mice to identify and demonstrate that Gimap3 (GTP ase of immunity associated protein) is a key regulator of mtDNA segregation in leukocytes. The Gimap gene cluster is found only in vertebrates and appear to be a class of nucleotide-dependent dimerization GTP ases. Gimap3 is a membrane-anchored GTP ase with a critical role in T cell development. Here, we summarize our genetic findings and postulate how Gimap3 might regulate mtDNA genetics.
Collapse
Affiliation(s)
- Riikka Jokinen
- Research Program of Molecular Neurology and Institute of Biomedicine; Biomedicum Helsinki; University of Helsinki; Helsinki, Finland
| | | | | |
Collapse
|
34
|
Webb LMC, Pascall JC, Hepburn L, Carter C, Turner M, Butcher GW. Generation and characterisation of mice deficient in the multi-GTPase domain containing protein, GIMAP8. PLoS One 2014; 9:e110294. [PMID: 25329815 PMCID: PMC4201521 DOI: 10.1371/journal.pone.0110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background GTPases of the immunity-associated protein family (GIMAPs) are predominantly expressed in mature lymphocytes. Studies of rodents deficient in GIMAP1, GIMAP4, or GIMAP5 have demonstrated that these GTPases regulate lymphocyte survival. In contrast to the other family members, GIMAP8 contains three potential GTP-binding domains (G-domains), a highly unusual feature suggesting a novel function for this protein. To examine a role for GIMAP8 in lymphocyte biology we examined GIMAP8 expression during lymphocyte development. We also generated a mouse deficient in GIMAP8 and examined lymphocyte development and function. Principal Findings We show that GIMAP8 is expressed in the very early and late stages of T cell development in the thymus, at late stages during B cell development, and peripheral T and B cells. We find no defects in T or B lymphocyte development in the absence of GIMAP8. A marginal decrease in the number of recirculating bone marrow B cells suggests that GIMAP8 is important for the survival of mature B cells within the bone marrow niche. We also show that deletion of GIMAP8 results in a delay in apoptotic death of mature T cell in vitro in response to dexamethasone or γ-irradiation. However, despite these findings we find that GIMAP8-deficient mice mount normal primary and secondary responses to a T cell dependent antigen. Conclusions Despite its unique structure, GIMAP8 is not required for lymphocyte development but appears to have a minor role in maintaining recirculating B cells in the bone marrow niche and a role in regulating apoptosis of mature T cells.
Collapse
Affiliation(s)
- Louise M. C. Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - John C. Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Hepburn
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Christine Carter
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W. Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
35
|
Tubulin- and actin-associating GIMAP4 is required for IFN-γ secretion during Th cell differentiation. Immunol Cell Biol 2014; 93:158-66. [PMID: 25287446 PMCID: PMC4355353 DOI: 10.1038/icb.2014.86] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 12/20/2022]
Abstract
Although GTPase of the immunity-associated protein (GIMAP) family are known to be most highly expressed in the cells of the immune system, their function and role remain still poorly characterized. Small GTPases in general are known to be involved in many cellular processes in a cell type-specific manner and to contribute to specific differentiation processes. Among GIMAP family, GIMAP4 is the only member reported to have true GTPase activity, and its transcription is found to be differentially regulated during early human CD4(+) T helper (Th) lymphocyte differentiation. GIMAP4 has been previously connected mainly with T- and B-cell development and survival and T-cell apoptosis. Here we show GIMAP4 to be localized into cytoskeletal elements and with the component of the trans golgi network, which suggests it to have a function in cellular transport processes. We demonstrate that depletion of GIMAP4 with RNAi results in downregulation of endoplasmic reticulum localizing chaperone VMA21. Most importantly, we discovered that GIMAP4 regulates secretion of cytokines in early differentiating human CD4(+) Th lymphocytes and in particular the secretion of interferon-γ also affecting its downstream targets.
Collapse
|
36
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|
37
|
Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLoS One 2014; 9:e98942. [PMID: 24915441 PMCID: PMC4051581 DOI: 10.1371/journal.pone.0098942] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Inclusion of prebiotics in the diet is known to be advantageous, with positive influences both on health and growth. The current study investigated the differences in the hepatic transcriptome profiles between chickens supplemented with inulin (a storage carbohydrate found in many plants) and controls. Liver is a major metabolic organ and has been previously reported to be involved in the modification of the lipid metabolism in chickens fed with inulin. A nutrigenomic approach through the analysis of liver RNA hybridized to the Affymetrix GeneChip Chicken Genome Array identified 148 differentially expressed genes among both groups: 104 up-regulated (≥ 1.4-fold) and 44 down-regulated (≤ 0.6-fold). Quantitative real-time PCR analysis validated the microarray expression results for five out of seven genes tested. The functional annotation analyses revealed a number of genes, processes and pathways with putative involvement in chicken growth and performance, while reinforcing the immune status of animals, and fostering the production of long chain fatty acids in broilers supplemented with 5 g of inulin kg(-1) diet. As far as we are aware, this is the first report of a microarray based gene expression study on the effect of dietary inulin supplementation, supporting further research on the use of this prebiotic on chicken diets as a useful alternative to antibiotics for improving performance and general immunity in poultry farming, along with a healthier meat lipid profile.
Collapse
|
38
|
Ciucci T, Bosselut R. Gimap and T cells: a matter of life or death. Eur J Immunol 2014; 44:348-51. [PMID: 24510500 DOI: 10.1002/eji.201344375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 12/29/2013] [Accepted: 01/13/2014] [Indexed: 11/08/2022]
Abstract
GTPase immune-associated proteins (Gimap) genes encode evolutionarily conserved GTP-binding proteins that are preferentially expressed in immune cells. Specific members have been shown to be involved in lymphocyte development, or are associated with inflammatory and autoimmune diseases. However, the function of these proteins remains poorly understood, both at the cellular and molecular levels. A new study in this issue of the European Journal of Immunology [Eur. J. Immunol. 2014. 44: 561-572] points to the distinct but partly overlapping functions of two members of this family, Gimap3 and Gimap5, and offers new insight into their potential functions in T cells.
Collapse
Affiliation(s)
- Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Thirunavukkarasu S, Plain KM, de Silva K, Begg D, Whittington RJ, Purdie AC. Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Vet Immunol Immunopathol 2014; 160:147-57. [PMID: 24930699 DOI: 10.1016/j.vetimm.2014.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/15/2022]
Abstract
Johne's disease (JD) is a chronic disease affecting ruminants and other species caused by the pathogenic mycobacterium, Mycobacterium avium subsp. paratuberculosis (MAP). MAP has developed a multitude of mechanisms to persist within the host, and these in turn are counteracted by the host through various immune pathways. Identifying and characterising the different strategies employed by MAP to alter the host immune system in its favour, and thereby persist intracellularly, could hold the key to developing strategies to fight this disease. In this study we analysed a subset of bovine microarray data derived from early time points after experimental infection with MAP. A specifically developed integrated approach was used to identify and validate host genes involved in cholesterol homeostasis (24DHCR, LDLR, SCD-1), calcium homeostasis and anti-bacterial defence mechanisms, (CD38, GIMAP6) which were downregulated in response to MAP exposure. A trend for upregulation of granulysin gene expression in MAP-exposed cattle in comparison to unexposed cattle was also observed. From these analyses, a model of potential pathogen-host interactions involving these novel pathways was developed which indicates an important role for host lipids in mycobacterial survival and persistence.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Karren M Plain
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Kumudika de Silva
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Douglas Begg
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Richard J Whittington
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia
| | - Auriol C Purdie
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden 2570, NSW, Australia.
| |
Collapse
|
40
|
Yano K, Carter C, Yoshida N, Abe T, Yamada A, Nitta T, Ishimaru N, Takada K, Butcher GW, Takahama Y. Gimap3 and Gimap5 cooperate to maintain T-cell numbers in the mouse. Eur J Immunol 2013; 44:561-72. [PMID: 24510501 DOI: 10.1002/eji.201343750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 12/29/2022]
Abstract
Gimap3 (IAN4) and Gimap5 (IAN5) are highly homologous GTP-binding proteins of the Gimap family. Gimap3 and Gimap5, whose transcripts are abundant in mature lymphocytes, can associate with antiapoptotic Bcl-2 family proteins. While it is established that Gimap5 regulates T-cell survival, the in vivo role of Gimap3 is unclear. Here we report the preparation and characteristics of mouse strains lacking Gimap3 and/or Gimap5. We found that the number of T cells was markedly reduced in mice deficient in both Gimap3 and Gimap5. The defects in T-cell cellularity were more severe in mice lacking both Gimap3 and Gimap5 than in mice lacking only Gimap5. No defects in the cellularity of T cells were detected in mice lacking only Gimap3, whereas bone marrow cells from Gimap3-deficient mice showed reduced T-cell production in a competitive hematopoietic environment. Moreover, retroviral overexpression and short hairpin RNAs-mediated silencing of Gimap3 in bone marrow cells elevated and reduced, respectively, the number of T cells produced in irradiated mice. These results suggest that Gimap3 is a regulator of T-cell numbers in the mouse and that multiple Gimap family proteins cooperate to maintain T-cell survival.
Collapse
Affiliation(s)
- Kouta Yano
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT, Butcher GW. The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes. PLoS One 2013; 8:e77782. [PMID: 24204963 PMCID: PMC3804274 DOI: 10.1371/journal.pone.0077782] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022] Open
Abstract
The GIMAPs (GTPases of the immunity-associated proteins) are a family of small GTPases expressed prominently in the immune systems of mammals and other vertebrates. In mammals, studies of mutant or genetically-modified rodents have indicated important roles for the GIMAP GTPases in the development and survival of lymphocytes. No clear picture has yet emerged, however, of the molecular mechanisms by which they perform their function(s). Using biotin tag-affinity purification we identified a major, and highly specific, interaction between the human cytosolic family member GIMAP6 and GABARAPL2, one of the mammalian homologues of the yeast autophagy protein Atg8. Chemical cross-linking studies performed on Jurkat T cells, which express both GIMAP6 and GABARAPL2 endogenously, indicated that the two proteins in these cells readily associate with one another in the cytosol under normal conditions. The GIMAP6-GABARAPL2 interaction was disrupted by deletion of the last 10 amino acids of GIMAP6. The N-terminal region of GIMAP6, however, which includes a putative Atg8-family interacting motif, was not required. Over-expression of GIMAP6 resulted in increased levels of endogenous GABARAPL2 in cells. After culture of cells in starvation medium, GIMAP6 was found to localise in punctate structures with both GABARAPL2 and the autophagosomal marker MAP1LC3B, indicating that GIMAP6 re-locates to autophagosomes on starvation. Consistent with this finding, we have demonstrated that starvation of Jurkat T cells results in the degradation of GIMAP6. Whilst these findings raise the possibility that the GIMAPs play roles in the regulation of autophagy, we have been unable to demonstrate an effect of GIMAP6 over-expression on autophagic flux.
Collapse
Affiliation(s)
- John C. Pascall
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Sergio Rotondo
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Aamir S. Mukadam
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - David Oxley
- Laboratory of Lymphocyte Signalling and Development, the Mass Spectrometry Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Judith Webster
- Laboratory of Lymphocyte Signalling and Development, the Mass Spectrometry Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Simon A. Walker
- The Imaging Facility, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Jerry Piron
- The Monoclonal Antibody Unit, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Carter
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Nicholas T. Ktistakis
- The Inositide Laboratory, the Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | | |
Collapse
|
42
|
Schwefel D, Arasu BS, Marino SF, Lamprecht B, Köchert K, Rosenbaum E, Eichhorst J, Wiesner B, Behlke J, Rocks O, Mathas S, Daumke O. Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure 2013; 21:550-9. [PMID: 23454188 DOI: 10.1016/j.str.2013.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
GTPases of immunity-associated proteins (GIMAPs) are regulators of lymphocyte survival and homeostasis. We previously determined the structural basis of GTP-dependent GIMAP2 scaffold formation on lipid droplets. To understand how its GTP hydrolysis is activated, we screened for other GIMAPs on lipid droplets and identified GIMAP7. In contrast to GIMAP2, GIMAP7 displayed dimerization-stimulated GTP hydrolysis. The crystal structure of GTP-bound GIMAP7 showed a homodimer that assembled via the G domains, with the helical extensions protruding in opposite directions. We identified a catalytic arginine that is supplied to the opposing monomer to stimulate GTP hydrolysis. GIMAP7 also stimulated GTP hydrolysis by GIMAP2 via an analogous mechanism. Finally, we found GIMAP2 and GIMAP7 expression differentially regulated in several human T cell lymphoma lines. Our findings suggest that GTPase activity in the GIMAP family is controlled by homo- and heterodimerization. This may have implications for the differential roles of some GIMAPs in lymphocyte survival.
Collapse
Affiliation(s)
- David Schwefel
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gene-expression signatures differ between different clinical forms of familial hemophagocytic lymphohistiocytosis. Blood 2012; 121:e14-24. [PMID: 23264592 DOI: 10.1182/blood-2012-05-425769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We performed gene-expression profiling of PBMCs obtained from patients with familial hemophagocytic lymphohistiocytosis (FHL) to screen for biologic correlates with the genetic and/or clinical forms of this disease. Unsupervised hierarchical clustering of 167 differentially expressed probe sets, representing 143 genes, identified 3 groups of patients corresponding to the genetic forms and clinical presentations of the disease. Two clusters of up- and down-regulated genes separated patients with perforin-deficient FHL from those with unidentified genetic cause(s) of the disease. The clusterscomprised genes involved in defense/immune responses, apoptosis, zinc homeostasis, and systemic inflammation. Unsupervised hierarchical clustering partitioned patients with unknown genetic cause(s) of FHL into 2 well-distinguished subgroups. Patterns of up- and down-regulated genes separated patients with “late-onset” and “relapsing” forms of FHL from patients with an “early onset and rapidly evolving” form of the disease. A cluster was identified in patients with “late onset and relapsing” form of FHL related to B- and T-cell differentiation/survival, T-cell activation, and vesicular transport. The resulting data suggest that unique gene-expression signatures can distinguish between genetic and clinical subtypes of FHL. These differentially expressed genes may represent biomarkers that can be used as predictors of disease progression.
Collapse
|
44
|
GTPase of the immune-associated nucleotide-binding protein 5 (GIMAP5) regulates calcium influx in T-lymphocytes by promoting mitochondrial calcium accumulation. Biochem J 2012; 449:353-64. [DOI: 10.1042/bj20120516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mature T-lymphocytes undergo spontaneous apoptosis in the biobreeding diabetes-prone strain of rats due to the loss of the functional GIMAP5 (GTPase of the immune-associated nucleotide-binding protein 5) protein. The mechanisms underlying the pro-survival function of GIMAP5 in T-cells have not yet been elucidated. We have previously shown that GIMAP5 deficiency in T-cells impairs Ca2+ entry via plasma membrane channels following exposure to thapsigargin or stimulation of the T-cell antigen receptor. In the present study we report that this reduced Ca2+ influx in GIMAP5-deficient T-cells is associated with the inability of their mitochondria to sequester Ca2+ following capacitative entry, which is required for sustained Ca2+ influx via the plasma membrane channels. Consistent with a role for GIMAP5 in regulating mitochondrial Ca2+, overexpression of GIMAP5 in HEK (human embryonic kidney)-293 cells resulted in increased Ca2+ accumulation within the mitochondria. Disruption of microtubules, but not the actin cytoskeleton, abrogated mitochondrial Ca2+ sequestration in primary rat T-cells, whereas both microtubules and actin cytoskeleton were needed for the GIMAP5-mediated increase in mitochondrial Ca2+ in HEK-293 cells. Moreover, GIMAP5 showed partial colocalization with tubulin in HEK-293 cells. On the basis of these findings, we propose that the pro-survival function of GIMAP5 in T-lymphocytes may be linked to its requirement to facilitate microtubule-dependent mitochondrial buffering of Ca2+ following capacitative entry.
Collapse
|
45
|
Abstract
The last decades have seen numerous approaches being used to decipher biological phenomena, notably the strategies we employ to defend ourselves against pathogenic attacks. From microarrays to genetics to computing technologies, all have supported a better but not yet comprehensive understanding of the pathways regulating our immune system. Limitations are notably exemplified by cases of immune deficiencies in humans that often result in high susceptibility to infections or even death, without the genetic cause being evident. To provide further insight into the mechanisms by which pathogen detection and eradication occur, several in vivo strategies can be used. The current review focuses on one of them, namely germline mutagenesis in the mouse. After describing the main technical aspects of this forward genetic approach, we will discuss particular germline mutants that have all been instrumental in deciphering innate or adaptive immune responses. Mutations in previously uncharacterized genes in the mouse, like Unc93B or Themis, have demonstrated the impartiality of forward genetics and led to the identification of new crucial immunity actors. Some mutants, like PanR1, have informed us on particular protein domains and their specific functions. Finally, certain mutations identified by this non-hypothesis-driven method have revealed previously unknown gene functions, as recently illustrated by memi, which links a particular nucleoside salvage enzyme to cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Onjee Choi
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
46
|
Wortham BW, Eppert BL, Motz GT, Flury JL, Orozco-Levi M, Hoebe K, Panos RJ, Maxfield M, Glasser SW, Senft AP, Raulet DH, Borchers MT. NKG2D mediates NK cell hyperresponsiveness and influenza-induced pathologies in a mouse model of chronic obstructive pulmonary disease. THE JOURNAL OF IMMUNOLOGY 2012; 188:4468-75. [PMID: 22467655 DOI: 10.4049/jimmunol.1102643] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by peribronchial and perivascular inflammation and largely irreversible airflow obstruction. Acute disease exacerbations, due frequently to viral infections, lead to enhanced disease symptoms and contribute to long-term progression of COPD pathology. Previously, we demonstrated that NK cells from cigarette smoke (CS)-exposed mice exhibit enhanced effector functions in response to stimulating cytokines or TLR ligands. In this article, we show that the activating receptor NKG2D is a key mediator for CS-stimulated NK cell hyperresponsiveness, because CS-exposed NKG2D-deficient mice (Klrk1(-/-)) did not exhibit enhanced effector functions as assessed by cytokine responsiveness. NK cell cytotoxicity against MHC class I-deficient targets was not affected in a COPD model. However, NK cells from CS-exposed mice exhibit greater cytotoxic activity toward cells that express the NKG2D ligand RAET1ε. We also demonstrate that NKG2D-deficient mice exhibit diminished airway damage and reduced inflammation in a model of viral COPD exacerbation, which do not affect viral clearance. Furthermore, adoptive transfer of NKG2D(+) NK cells into CS-exposed, influenza-infected NKG2D-deficient mice recapitulated the phenotypes observed in CS-exposed, influenza-infected wild-type mice. Our findings indicate that NKG2D stimulation during long-term CS exposure is a central pathway in the development of NK cell hyperresponsiveness and influenza-mediated exacerbations of COPD.
Collapse
Affiliation(s)
- Brian W Wortham
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Inter-ethnic differences in lymphocyte sensitivity to glucocorticoids reflect variation in transcriptional response. THE PHARMACOGENOMICS JOURNAL 2011; 13:121-9. [PMID: 22158329 PMCID: PMC3774530 DOI: 10.1038/tpj.2011.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucocorticoids (GCs) are steroid hormones widely used as pharmaceutical interventions, which act mainly by regulating gene expression levels. A large fraction of patients (~30%), especially those of African descent, show a weak response to treatment. To interrogate the contribution of variable transcriptional response to inter-ethnic differences, we measured in vitro lymphocyte GC sensitivity (LGS) and transcriptome-wide response to GCs in peripheral blood mononuclear cells (PBMCs) from African-American and European-American healthy donors. We found that transcriptional response after 8hrs treatment was significantly correlated with variation in LGS within and between populations. We found that NFKB1, a gene previously found to predict LGS within populations, was more strongly down-regulated in European-Americans on average. NFKB1 could not completely explain population differences, however, and we found an additional 177 genes with population differences in the average log2 fold change (FDR<0.05), most of which also showed a weaker transcriptional response in African-Americans. These results suggest that inter-ethnic differences in GC sensitivity reflect variation in transcriptional response at many genes, including regulators with large effects (e.g. NFKB1) and numerous other genes with smaller effects.
Collapse
|
48
|
Aksoylar HI, Lampe K, Barnes MJ, Plas DR, Hoebe K. Loss of immunological tolerance in Gimap5-deficient mice is associated with loss of Foxo in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:146-54. [PMID: 22106000 DOI: 10.4049/jimmunol.1101206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previously, we reported the abrogation of quiescence and reduced survival in lymphocytes from Gimap5(sph/sph) mice, an ENU germline mutant with a missense mutation in the GTPase of immunity-associated protein 5 (Gimap5). These mice showed a progressive loss of peripheral lymphocyte populations and developed spontaneous colitis, resulting in early mortality. In this study, we identify the molecular pathways that contribute to the onset of colitis in Gimap5(sph/sph) mice. We show that CD4(+) T cells become Th1/Th17 polarized and are critically important for the development of colitis. Concomitantly, regulatory T cells become reduced in frequency in the peripheral tissues, and their immunosuppressive capacity becomes impaired. Most importantly, these progressive changes in CD4(+) T cells are associated with the loss of Forkheadbox group O (Foxo)1, Foxo3, and Foxo4 expression. Our data establish a novel link between Gimap5 and Foxo expression and provide evidence for a regulatory mechanism that controls Foxo protein expression and may help to maintain immunological tolerance.
Collapse
Affiliation(s)
- H Ibrahim Aksoylar
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
49
|
Moresco EMY, Beutler B. Resisting viral infection: the gene by gene approach. Curr Opin Virol 2011; 1:513-8. [PMID: 22440911 DOI: 10.1016/j.coviro.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/18/2023]
Abstract
This review focuses on genes required for resistance to mouse cytomegalovirus (MCMV), as identified through unbiased genetic screening. Components of the developmental, sensing, and effector pathways, functioning in multiple cell types, were detected by infecting 22,000 G3 mutant mice with MCMV at an inoculum easily contained by WT animals. Merging these findings with discoveries from hypothesis-based studies, we present a cohesive picture of the essential elements utilized by the mouse innate immune system to counter MCMV. We believe that many breakthrough discoveries will yet be made using a classical genetic approach.
Collapse
Affiliation(s)
- Eva Marie Y Moresco
- Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K. Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 2011; 6:e21979. [PMID: 21760938 PMCID: PMC3131302 DOI: 10.1371/journal.pone.0021979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/14/2011] [Indexed: 01/22/2023] Open
Abstract
Using a small scale ENU mutagenesis approach we identified a recessive germline mutant, designated Lampe1 that exhibited growth retardation and spontaneous hepatosteatosis. Low resolution mapping based on 20 intercrossed Lampe1 mice revealed linkage to a ∼14 Mb interval on the distal site of chromosome 11 containing a total of 285 genes. Exons and 50 bp flanking sequences within the critical region were enriched with sequence capture microarrays and subsequently analyzed by next-generation sequencing. Using this approach 98.1 percent of the targeted DNA was covered with a depth of 10 or more reads per nucleotide and 3 homozygote mutations were identified. Two mutations represented intronic nucleotide changes whereas one mutation affected a splice donor site in intron 11–12 of Palmitoyl Acetyl-coenzyme A oxygenase-1 (Acox1), causing skipping of exon 12. Phenotyping of Acox1Lampe1 mutants revealed a progression from hepatosteatosis to steatohepatitis, and ultimately hepatocellular carcinoma. The current approach provides a highly efficient and affordable method to identify causative mutations induced by ENU mutagenesis and animal models relevant to human pathology.
Collapse
Affiliation(s)
- Rachel Sheridan
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristin Lampe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Shiva Kumar Shanmukhappa
- Division of Comparative Medicine and Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Patrick Putnam
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Mehdi Keddache
- Department of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Senad Divanovic
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Jorge Bezerra
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Kasper Hoebe
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|