1
|
Khandokar Y, Cheng TY, Wang CJH, Cao TP, Nagampalli RSK, Sivaraman KK, Van Rhijn I, Rossjohn J, Moody DB, Le Nours J. Molecular basis for presentation of N-myristoylated peptides by the chicken YF1*7.1 molecule. J Biol Chem 2025:110253. [PMID: 40412526 DOI: 10.1016/j.jbc.2025.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/27/2025] Open
Abstract
Major Histocompatibility Complex I (MHC-I) and MHC-I-like molecules play a central role in mediating immunity. Through their conservation across all taxa of jawed vertebrates, the MHC-I-like proteins have adapted to present non-peptidic antigens to distinct T cell populations. While our understanding of the structure-function relationship of MHC-I and MHC-I-like molecules in humans and mice is well established, the nature of the antigens presented by MHC-I- like molecules in 'non-model' species remains unclear. Here, using a mammalian recombinant expression system combined with mass spectrometry approaches, we identified N-myristoylated peptides as endogenous ligands for the chicken MHC-I-like protein YF1*7.1. Given the importance of N-myristoylation in viral pathogenesis, we determined the crystal structure of YF1*7.1 in complex with two N-myristoylated peptides derived from Marek's disease virus (MDV), demonstrating the molecular basis that underpins the presentation of N-myristoylated peptides from MDV, a highly contagious and fatal viral neoplastic disease in chickens. Thus, the identified ligands are distinct from unmodified peptides found in classical MHC-I and -II as well as diverse amphipathic lipids captured by CD1 proteins. Collectively, our study lays the foundation for further molecular and functional characterization of YF1*7.1 and more broadly of the role of the MHC-I encoded by the MHC-Y gene cluster in protection against highly contagious viral neoplastic diseases in chickens.
Collapse
Affiliation(s)
- Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Tan Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl J H Wang
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Thinh-Phat Cao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Raghavendra S K Nagampalli
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
2
|
Fries-Craft K, Graham D, Hargis BM, Bobeck EA. Evaluating a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens coinfection necrotic enteritis model in broiler chickens: repeatability, dosing, and immune outcomes. Poult Sci 2023; 102:103018. [PMID: 37651774 PMCID: PMC10480656 DOI: 10.1016/j.psj.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Coccidiosis and necrotic enteritis negatively impact poultry production, making challenge model repeatability important for evaluating mitigation strategies. Study objectives were: 1) evaluate Salmonella Typhimurium-Eimeria maxima-Clostridium perfringens necrotic enteritis coinfection model repeatability and 2) investigate E. maxima dose and early S. Typhimurium challenge on immune responses. Three trials using Ross 308 chicks assigned to 12 cages/trial (7 chicks/cage) in wire-floor brooders were completed. Trials 1 and 2 determined E. maxima dose for necrotic enteritis challenge in trial 3. Chicks in trials 1 and 2 were inoculated with 0 (control), 5, 15, or 25,000 sporulated E. maxima M6 oocysts on d 14 and jejunal lesion scores evaluated on d 20. In trial 3, chicks were assigned to control or necrotic enteritis challenge (42 chicks/group). Necrotic enteritis challenge chicks were inoculated with 1 × 105 colony forming units (CFU) S. Typhimurium on d 1, 15,000 E. maxima oocysts on d 14, and 1 × 108 CFU C. perfringens on d 19 and 20 with lesion scoring on d 22. Bird and feeder weights were recorded throughout each trial. Peripheral blood mononuclear cells (PBMC) were isolated from 1 chick/cage at baseline (all trials), 4 chicks/dose (trials 1 and 2) or 8 chicks/challenge (trial 3) 24 h post-inoculation (pi) with E. maxima for immunometabolic assays and immune cell profiling. Data were analyzed by mixed procedure (SAS 9.4) with challenge and timepoint fixed effects (P ≤ 0.05, trends 0.05 ≤ P ≤ 0.01). Inoculating chicks with 15,000 E. maxima oocysts increased d 14 to 20 FCR 79 points (trials 1 and 2; P = 0.009) vs. unchallenged chicks and achieved a target lesion score of 2. While C. perfringens challenge reduced trial 3 performance, average lesion scores were <1. Salmonella inoculation on d 1 tended to increase PBMC ATP production 41.6% 24 hpi with E. maxima vs. chicks challenged with E. maxima only (P = 0.06). These results provide insight for future model optimization and considerations regarding S. Typhimurium's effect on E. maxima immune response timelines.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Fries-Craft K, Arsenault R, Bobeck E. Basal diet composition contributes to differential performance, intestinal health, and immunological responses to a microalgae-based feed ingredient in broiler chickens. Poult Sci 2022; 102:102235. [PMID: 36371911 PMCID: PMC9661388 DOI: 10.1016/j.psj.2022.102235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Novel feed ingredients may improve poultry health, but functionality of these ingredients may vary across basal diet formulations. This study evaluated a proprietary algae ingredient's effects on broiler performance, intestinal health, systemic immunity, and metabolic/immune kinotypes between corn- or wheat-based diets. Ross 308 broilers were housed in 80 floor pens (14 birds/pen) and assigned to 1 of 4 corn or wheat-based diets ± 0.175% algae ingredient for 42 d. At the end of each 14 d starter, grower, and finisher period, 10 birds/treatment were euthanized for tissue collection to assess intestinal histomorphology, systemic immune cell populations by flow cytometry and kinotypes by peptide arrays. On d 28 and 29, forty-three birds/treatment underwent a 12 h feed restriction challenge followed by a fluorescein isothiocyanate-dextran intestinal permeability assay. For the entire 42 d study, wheat-based diets improved feed conversion rate (FCR) by 5 points compared to corn-based diets (P < 0.0001). Performance benefits related to algae inclusion were diet dependent, with algae inclusion improving 42 d FCR by 6 points only in corn-based diets (P = 0.006). Birds fed wheat-based diets had reduced splenic monocyte/macrophage, CD1.1+, and T cell populations in the first 14 d (P < 0.0001) and reduced serum fluorescence on d 28/29 (P = 0.0002). Algae inclusion in the corn-based diet increased villus height in the duodenum on d 28 and jejunum on d 42, while reducing splenic CD3+CD8α+ cytotoxic T cells 13.4 to 27.5% compared to the corn-based control at the same timepoints (P < 0.0001). Kinome results showed a significant innate immune toll-like receptor (TLR) response via MyD88 at d 14 in the small intestine of birds fed corn-based diets with algae that shifted to a more growth factor and adaptive immune-oriented response by d 42. Concurrent with immune changes, signaling changes indicative of lipid metabolism in the small intestine, ceca, and liver were seen in birds fed the corn-based diet with algae. The observed differential responses to basal diet composition and algae inclusion emphasize the need to comparatively evaluate feed ingredients in various diet formulations.
Collapse
Affiliation(s)
- K. Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R.J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - E.A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA,Corresponding author:
| |
Collapse
|
4
|
Some thoughts about what non-mammalian jawed vertebrates are telling us about antigen processing and peptide loading of MHC molecules. Curr Opin Immunol 2022; 77:102218. [PMID: 35687979 PMCID: PMC9586880 DOI: 10.1016/j.coi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) of mammals encodes highly polymorphic classical class I and class II molecules with crucial roles in immune responses, as well as various nonclassical molecules encoded by the MHC and elsewhere in the genome that have a variety of functions. These MHC molecules are supported by antigen processing and peptide loading pathways which are well-understood in mammals. This review considers what has been learned about the MHC, MHC molecules and the supporting pathways in non-mammalian jawed vertebrates. From the initial understanding from work with the chicken MHC, a great deal of diversity in the structure and function has been found. Are there underlying principles? The genomic organisation of the MHC varies enormously across jawed vertebrates. Total numbers of MHC genes vary among vertebrates, with only a few classical MHC genes. Some nonclassical MHC and classical pathway genes appear earlier than others. Obvious co-evolution within MHC pathways occurs in some species, but not others. The promiscuity of interactions may correlate with differences in genomic organisation.
Collapse
|
5
|
Halabi S, Kaufman J. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Front Immunol 2022; 13:886672. [PMID: 35967451 PMCID: PMC9372762 DOI: 10.3389/fimmu.2022.886672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Samer Halabi
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Jim Kaufman,
| |
Collapse
|
6
|
Fries-Craft K, Meyer MM, Sato Y, El-Gazzar M, Bobeck EA. Age and Staphylococcus aureus Inoculation Route Differentially Alter Metabolic Potential and Immune Cell Populations in Laying Hens. Front Vet Sci 2021; 8:653129. [PMID: 33842579 PMCID: PMC8032939 DOI: 10.3389/fvets.2021.653129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 01/13/2023] Open
Abstract
In 2018 and 2019, Staphylococcus aureus was isolated from multiple post-molt commercial laying hens with unusually high mortality. A challenge study was conducted to elucidate the role of S. aureus in this disease outbreak and the work herein represents the assessment of immunological responses in laying hens experimentally infected with S. aureus isolates from these cases. A total of 200 laying hens at 22 or 96 weeks of age (100/ age group) were assigned to 1 of 4 experimental inoculation groups (negative control, oral gavage, subcutaneous injection, or intravenous injection) after a 72 h acclimation period. Blood samples were taken prior to inoculation (baseline), 6 h post-inoculation (pi), 24 hpi, 3 dpi, and 7 dpi. Additional spleen samples to further assess systemic immunity were taken at baseline, 3 and 8 dpi. Metabolic phenotypes of peripheral blood mononuclear cells (PBMC) were isolated and assessed by Seahorse metabolic assay. Immune cell profiles in the spleen and PBMC were assessed by multicolor flow cytometry. At baseline, 96-week-old laying hens had 26.7% fewer PBMC-derived T cells compared to 22-week-old birds. Older hens had 28.9% increased helper T cell (TH) populations and 60.5% reduced γδ T cells (P = 0.03 and < 0.0001) which may contribute to variable clinical responses between age groups; however, no age-related differences in metabolic potential were observed. Metabolic outcomes showed that birds remained stressed from transport and re-housing past a 72 h acclimation period and through 24 h- 3 days post-inoculation. Inoculation with S. aureus generally reduced oxidative and glycolytic potentials compared to the control, with the greatest reductions observed in birds inoculated by intravenous injection (P < 0.05). Overall CD3+ T cell populations showed significant reductions in the intravenous group compared to other inoculation routes from 24 hpi to 7 dpi (23.6-39.0%; P ≤ 0.0001). These results suggest that age-related baseline differences in T cell populations and changes to T cell subpopulations and other immune cells due to inoculation route may have an additive effect on S. aureus- induced reductions in metabolic potential; however, further research linking metabolic potential and immune cell profiles is needed.
Collapse
Affiliation(s)
- Krysten Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Meaghan M. Meyer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Ranchod H, Ndlandla F, Lemmer Y, Beukes M, Niebuhr J, Al-Dulayymi J, Wemmer S, Fehrsen J, Baird M, Verschoor J. The antigenicity and cholesteroid nature of mycolic acids determined by recombinant chicken antibodies. PLoS One 2018; 13:e0200298. [PMID: 30092023 PMCID: PMC6084858 DOI: 10.1371/journal.pone.0200298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Mycolic acids (MA) are major, species-specific lipid components of Mycobacteria and related genera. In Mycobacterium tuberculosis, it is made up of alpha-, methoxy- and keto-MA, each with specific biological functions and conformational characteristics. Antibodies in tuberculosis (TB) patient sera respond differently towards the three MA classes and were reported to cross-react with cholesterol. To understand the antigenicity and cholesterol cross-reactivity of MA, we generated three different chicken -derived phage-displayed single-chain variable fragments (scFv) that reacted similarly towards the natural mixture of MA, but the first recognized all three classes of chemically synthetic MAs, the second only the two oxygenated types of MAs and the third only methoxy MA. The cholesterol cross-reactivity was investigated after grafting each of the three scFv types onto two configurations of constant chain domains–CH1-4 and CH2-4. Weak but significant cross-reactivity with cholesterol was found only with CH2-4 versions, notably those two that were also able to recognize the trans-keto MA. The cholesteroid nature of mycobacterial mycolic acids therefore seems to be determined by the trans-keto MA subclass. The significantly weaker binding to cholesterol in comparison to MA confirms the potential TB diagnostic application of these antibodies.
Collapse
Affiliation(s)
- Heena Ranchod
- Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department Biochemistry, University of Pretoria, Pretoria, South Africa
- * E-mail:
| | - Fortunate Ndlandla
- Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Yolandy Lemmer
- Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mervyn Beukes
- Department Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Johann Niebuhr
- Department Biochemistry, University of Pretoria, Pretoria, South Africa
| | | | - Susan Wemmer
- Serology and Immunochemistry, Vaccines and Diagnostics Development Programme, Agricultural Research Council—Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Jeanni Fehrsen
- Serology and Immunochemistry, Vaccines and Diagnostics Development Programme, Agricultural Research Council—Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Mark Baird
- School of Chemistry, Bangor University, Wales, United Kingdom
| | - Jan Verschoor
- Department Biochemistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Dijkstra JM, Yamaguchi T, Grimholt U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 2017; 70:459-476. [DOI: 10.1007/s00251-017-1050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023]
|
9
|
Jones A, Pitts M, Al Dulayymi JR, Gibbons J, Ramsay A, Goletti D, Gwenin CD, Baird MS. New synthetic lipid antigens for rapid serological diagnosis of tuberculosis. PLoS One 2017; 12:e0181414. [PMID: 28806423 PMCID: PMC5555574 DOI: 10.1371/journal.pone.0181414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/01/2017] [Indexed: 01/30/2023] Open
Abstract
Background During pulmonary tuberculosis (PTB) antibodies are generated to trehalose esters of mycolic acids which are cell wall lipids of Mycobacterium tuberculosis (Mtb). Attempts have been made to use these complex natural mixtures in serological tests for PTB diagnosis. Aim The aim of this work was to determine whether a serological test based on a panel of defined individual trehalose esters of characteristic synthetic mycolic acids has improved diagnostic accuracy in distinguishing patients with culture positive PTB from individuals who were Mtb culture negative. Method One hundred serum samples from well-characterized patients with presumptive tuberculosis, and diagnosed as having pulmonary smear and culture positive TB, or being culture and smear negative were evaluated by ELISA using different combinations of synthetic antigens and secondary antibodies. Using cut-off values determined from these samples, we validated this study blind in samples from a further 249 presumptive TB patients. Results With the first 100 samples, detailed responses depended both on the precise structure of the antigen and on the secondary antibody. Using a single antigen, a sensitivity/specificity combination for smear and culture positive PTB detection of 85 and 88% respectively was achieved; this increased to 96% and 95% respectively by a statistical combination of the results with seven antigens. In the blind study a sensitivity/specificity of 87% and 83% was reached with a single antigen. With some synthetic antigens, the responses from all 349 samples were significantly better than those with the natural mixture. Combining the results for seven antigens allowed a distinction between culture positive and negative with a ROC AUC of 0.95. Conclusion We have identified promising antigen candidates for serological assays that could be used to diagnose PTB and which could be the basis of a much-needed, simple, rapid diagnostic test that would bring care closer to communities.
Collapse
Affiliation(s)
- Alison Jones
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | - Mark Pitts
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | | | - James Gibbons
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | - Andrew Ramsay
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organisation, Geneva, Switzerland
- University of St Andrews Medical School, St. Andrews, Scotland, United Kingdom
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, ‘L. Spallanzani’ National Institute for Infectious Diseases, Rome, Italy
| | | | - Mark S. Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Rogers SL, Kaufman J. Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics 2016; 68:499-513. [PMID: 27457887 PMCID: PMC5002281 DOI: 10.1007/s00251-016-0938-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
CD1 genes encode cell surface molecules that present lipid antigens to various kinds of T lymphocytes of the immune system. The structures of CD1 genes and molecules are like the major histocompatibility complex (MHC) class I system, the loading of antigen and the tissue distribution for CD1 molecules are like those in the class II system, and phylogenetic analyses place CD1 between class I and class II sequences, altogether leading to the notion that CD1 is a third ancient system of antigen presentation molecules. However, thus far, CD1 genes have only been described in mammals, birds and reptiles, leaving major questions as to their origin and evolution. In this review, we recount a little history of the field so far and then consider what has been learned about the structure and functional attributes of CD1 genes and molecules in marsupials, birds and reptiles. We describe the central conundrum of CD1 evolution, the genomic location of CD1 genes in the MHC and/or MHC paralogous regions in different animals, considering the three models of evolutionary history that have been proposed. We describe the natural killer (NK) receptors NKR-P1 and ligands, also found in different genomic locations for different animals. We discuss the consequence of these three models, one of which includes the repudiation of a guiding principle for the last 20 years, that two rounds of genome-wide duplication at the base of the vertebrates provided the extra MHC genes necessary for the emergence of adaptive immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Sally L Rogers
- Department of Biosciences, University of Gloucestershire, Cheltenham, GL50 4AZ, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|
11
|
Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 2016; 68:561-76. [PMID: 27368414 DOI: 10.1007/s00251-016-0931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA. .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Abstract
The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC.
Collapse
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
14
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Zajonc DM, Girardi E. Recognition of Microbial Glycolipids by Natural Killer T Cells. Front Immunol 2015; 6:400. [PMID: 26300885 PMCID: PMC4523824 DOI: 10.3389/fimmu.2015.00400] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/21/2015] [Indexed: 11/18/2022] Open
Abstract
T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids.
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
16
|
Panicker VP, Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, Mannuthy, Thrissur, India, Uma R, Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, Mannuthy, Thrissur, India. Identification and sequence analysis of Tapasin gene in guinea fowl. Vet World 2014. [DOI: 10.14202/vetworld.2014.1099-1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 2012; 65:157-72. [PMID: 23229474 DOI: 10.1007/s00251-012-0667-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In major histocompatibility complex (MHC) class I molecules, monomorphic β(2)-microglobulin (β(2)m) is non-covalently bound to a heavy chain (HC) exhibiting a variable degree of polymorphism. β(2)M can stabilize a wide variety of complexes ranging from classical peptide binding to nonclassical lipid presenting MHC class I molecules as well as to MHC class I-like molecules that do not bind small ligands. Here we aim to assess the dynamics of individual regions in free as well as complexed β(2)m and to understand the evolution of the interfaces between β(2)m and different HC. Using human β(2)m and the HLA-B*27:09 complex as a model system, a comparison of free and HC-bound β(2)m by nuclear magnetic resonance spectroscopy was initially carried out. Although some regions retain their flexibility also after complex formation, these studies reveal that most parts of β(2)m gain rigidity upon binding to the HC. Sequence analyses demonstrate that some of the residues exhibiting flexibility participate in evolutionarily conserved β(2)m-HC contacts which are detectable in diverse vertebrate species or characterize a particular group of MHC class I complexes such as peptide- or lipid-binding molecules. Therefore, the spectroscopic experiments and the interface analyses demonstrate that β(2)m fulfills its role of interacting with diverse MHC class I HC as well as effector cell receptors not only by engaging in conserved intermolecular contacts but also by falling back upon key interface residues that exhibit a high degree of flexibility.
Collapse
|
18
|
Girardi E, Zajonc DM. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 2012; 250:167-79. [PMID: 23046129 PMCID: PMC3471380 DOI: 10.1111/j.1600-065x.2012.01166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Binding Sites
- Epitopes
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lipids/chemistry
- Lipids/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA, USA
| | | |
Collapse
|
19
|
Wang J, Guillaume J, Pauwels N, Van Calenbergh S, Van Rhijn I, Zajonc DM. Crystal structures of bovine CD1d reveal altered αGalCer presentation and a restricted A' pocket unable to bind long-chain glycolipids. PLoS One 2012; 7:e47989. [PMID: 23110152 PMCID: PMC3479135 DOI: 10.1371/journal.pone.0047989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/19/2012] [Indexed: 12/30/2022] Open
Abstract
NKT cells play important roles in immune surveillance. They rapidly respond to pathogens by detecting microbial glycolipids when presented by the non-classical MHC I homolog CD1d. Previously, ruminants were considered to lack NKT cells due to the lack of a functional CD1D gene. However, recent data suggest that cattle express CD1d with unknown function. In an attempt to characterize the function of bovine CD1d, we assessed the lipid binding properties of recombinant Bos taurus CD1d (boCD1d) in vitro. BoCD1d is able to bind glycosphingolipids (GSLs) with fatty acid chain lengths of C18, while GSLs with fatty acids of C24 do not bind. Crystal structures of boCD1d bound to a short-chain C12-di-sulfatide antigen, as well as short-chain C16-αGalCer revealed that the Á pocket of boCD1d is restricted in size compared to that of both mouse and human CD1d, explaining the inability of long chain GSL’s to bind to boCD1d. Moreover, while di-sulfatide is presented similarly compared to the presentation of sulfatide by mouse CD1d, αGalCer is presented differently at the cell surface, due to an amino acid Asp151Asn substitution that results in loss of intimate contacts between the αGalCer headgroup and CD1d. The altered αGalCer presentation by boCD1d also explains its lack of cross-activation of mouse iNKT cells and raises the interesting question of the nature and function of bovine lipid-reactive T cells.
Collapse
Affiliation(s)
- Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ghent, Belgium
| | - Nora Pauwels
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ghent, Belgium
| | | | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hee CS, Fabian H, Uchanska-Ziegler B, Ziegler A, Loll B. Comparative biophysical characterization of chicken β2-microglobulin. Biophys Chem 2012; 167:26-35. [PMID: 22695053 DOI: 10.1016/j.bpc.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/24/2023]
Abstract
β(2)-microglobulin (β(2)m) is the smallest building block of molecules belonging to the immunoglobulin superfamily. By comparing thermodynamic and structural characteristics of chicken β(2)m with those of other species, we seek to elucidate whether it is possible to pinpoint features that set the avian protein apart from other β(2)m. The thermodynamic assays revealed that chicken β(2)m exhibits a lower melting temperature than human β(2)m, and the H/D exchange behavior observed by infrared spectroscopy indicates a more flexible structure of the former protein. To understand these differences at a molecular level, we determined the structure of free chicken β(2)m by X-ray crystallography to a resolution of 2.0 Å. Our comparisons indicate that certain biophysical characteristics of the chicken protein, particularly its conformational flexibility, diverge considerably from those of the other β(2)m analyzed, although basic structural features have been retained through evolution.
Collapse
Affiliation(s)
- Chee-Seng Hee
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Zhang L, Katselis GS, Moore RE, Lekpor K, Goto RM, Hunt HD, Lee TD, Miller MM. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:446-456. [PMID: 22446732 DOI: 10.1016/j.dci.2012.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/08/2012] [Accepted: 03/11/2012] [Indexed: 05/31/2023]
Abstract
Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cell-free CD8αα(+), CD3(-) cells with natural killing activity. Cell-mediated cytotoxicity assays revealed complex NK cell discrimination of MHC class I, suggesting the presence of multiple NK cell receptors. Immunophenotyping of freshly isolated and recombinant chicken interleukin-2-stimulated d14E CD8αα(+) CD3(-) splenocytes provided further evidence for population heterogeneity. Complex patterns of expression were found for CD8α, chB6 (Bu-1), CD1-1, CD56 (NCAM), KUL01, CD5, and CD44. Mass spectrometry-based proteomics revealed an array of NK cell proteins, including the NKR2B4 receptor. DAVID and KEGG analyses and additional immunophenotyping revealed NK cell activation pathways and evidence for monocytes within the splenocyte cultures. This study provides an underpinning for further investigation into the specificity and function of NK cells in birds.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Towards multivalent CD1d ligands: synthesis and biological activity of homodimeric α-galactosyl ceramide analogues. Carbohydr Res 2012; 356:152-62. [PMID: 22445102 PMCID: PMC3413882 DOI: 10.1016/j.carres.2012.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/28/2012] [Indexed: 11/21/2022]
Abstract
A library of dimeric CD1d ligands, containing two α-galactosyl ceramide (α-GalCer) units linked by spacers of varying lengths has been synthesised. The key dimerisation reactions were carried out via copper-catalysed click reactions between a 6"-azido-6"-deoxy-α-galactosyl ceramide derivative and various diynes. Each α-GalCer dimer was tested for its ability to stimulate iNKT cells.
Collapse
|
23
|
Structure of a classical MHC class I molecule that binds "non-classical" ligands. PLoS Biol 2010; 8:e1000557. [PMID: 21151886 PMCID: PMC2998441 DOI: 10.1371/journal.pbio.1000557] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The chicken MHC YF1*7.1 X-ray structures reveal that this protein binds lipids and thus represents a "hybrid" class I complex with features of classical as well as non-classical MHC molecules. Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules. Proteins encoded by the major histocompatibility complex (MHC) play crucial roles in vertebrate immune systems, presenting pathogen-derived protein fragments to receptors on effector cells. In contrast, some non-classical MHC class I proteins such as CD1 molecules possess a hydrophobic groove that allows them to display lipids. Chicken MHC-Y is a genetic region outside the core MHC that harbors several immune-related genes, among them YF1*7.1, which encodes a protein whose structure we solved in this study. YF1*7.1 is an MHC class I molecule that exhibits the architecture typical of classical MHC class I antigens but possesses a hydrophobic binding groove that binds non-peptidic ligands. By using lipid-binding assays, we show that this molecule can indeed bind lipids. Therefore, YF1*7.1 bridges, at least in structural terms, the traditional gap between classical and non-classical MHC class I molecules. Lipid-binding YF1 proteins might serve the chicken to enlarge its otherwise very small repertoire of antigen-presenting MHC class I molecules. Furthermore, comparative analyses of the two protein subunits of classical MHC molecules revealed a structural feature in chickens that appears to be shared by non-mammalian but not by mammalian vertebrates. This unique feature is indicative of a structure-dependent co-evolution of two genetically unlinked genes in non-mammalian species.
Collapse
|
24
|
Beukes M, Lemmer Y, Deysel M, Al Dulayymi JR, Baird MS, Koza G, Iglesias MM, Rowles RR, Theunissen C, Grooten J, Toschi G, Roberts VV, Pilcher L, Van Wyngaardt S, Mathebula N, Balogun M, Stoltz AC, Verschoor JA. Structure-function relationships of the antigenicity of mycolic acids in tuberculosis patients. Chem Phys Lipids 2010; 163:800-8. [PMID: 20875402 PMCID: PMC3025329 DOI: 10.1016/j.chemphyslip.2010.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/17/2022]
Abstract
Cell wall mycolic acids (MA) from Mycobacterium tuberculosis (M.tb) are CD1b presented antigens that can be used to detect antibodies as surrogate markers of active TB, even in HIV coinfected patients. The use of the complex mixtures of natural MA is complicated by an apparent antibody cross-reactivity with cholesterol. Here firstly we report three recombinant monoclonal scFv antibody fragments in the chicken germ-line antibody repertoire, which demonstrate the possibilities for cross-reactivity: the first recognized both cholesterol and mycolic acids, the second mycolic acids but not cholesterol, and the third cholesterol but not mycolic acids. Secondly, MA structure is experimentally interrogated to try to understand the cross-reactivity. Unique synthetic mycolic acids representative of the three main functional classes show varying antigenicity against human TB patient sera, depending on the functional groups present and on their stereochemistry. Oxygenated (methoxy- and keto-) mycolic acid was found to be more antigenic than alpha-mycolic acids. Synthetic methoxy-mycolic acids were the most antigenic, one containing a trans-cyclopropane apparently being somewhat more antigenic than the natural mixture. Trans-cyclopropane-containing keto- and hydroxy-mycolic acids were also found to be the most antigenic among each of these classes. However, none of the individual synthetic mycolic acids significantly and reproducibly distinguished the pooled serum of TB positive patients from that of TB negative patients better than the natural mixture of MA. This argues against the potential to improve the specificity of serodiagnosis of TB with a defined single synthetic mycolic acid antigen from this set, although sensitivity may be facilitated by using a synthetic methoxy-mycolic acid.
Collapse
Affiliation(s)
- Mervyn Beukes
- Department of Biochemistry, University of Pretoria, South Africa
| | - Yolandy Lemmer
- Department of Biochemistry, University of Pretoria, South Africa
| | - Madrey Deysel
- Department of Biochemistry, University of Pretoria, South Africa
| | | | - Mark S. Baird
- School of Chemistry, University of Wales, Bangor, United Kingdom
| | - Gani Koza
- School of Chemistry, University of Wales, Bangor, United Kingdom
| | | | | | | | - Johan Grooten
- Department of Molecular Biomedical Research, Molecular Immunology Unit, Gent University, Belgium
| | - Gianna Toschi
- Department of Biochemistry, University of Pretoria, South Africa
| | | | - Lynne Pilcher
- Department of Chemistry, University of Pretoria, South Africa
| | | | - Nsovo Mathebula
- Department of Chemistry, University of Pretoria, South Africa
| | | | - Anton C. Stoltz
- Department of Infectious Diseases, University of Pretoria, South Africa
| | - Jan A. Verschoor
- Department of Biochemistry, University of Pretoria, South Africa
- Corresponding author. Tel.: +27 124202477; fax: +27 123625302.
| |
Collapse
|