1
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
3
|
Cebula A, Kuczma M, Szurek E, Pietrzak M, Savage N, Elhefnawy WR, Rempala G, Kraj P, Ignatowicz L. Dormant pathogenic CD4 + T cells are prevalent in the peripheral repertoire of healthy mice. Nat Commun 2019; 10:4882. [PMID: 31653839 PMCID: PMC6814812 DOI: 10.1038/s41467-019-12820-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Thymic central tolerance eliminates most immature T cells with autoreactive T cell receptors (TCR) that recognize self MHC/peptide complexes. Regardless, an unknown number of autoreactive CD4+Foxp3- T cells escape negative selection and in the periphery require continuous suppression by CD4+Foxp3+ regulatory cells (Tregs). Here, we compare immune repertoires of Treg-deficient and Treg-sufficient mice to find Tregs continuously constraining one-third of mature CD4+Foxp3- cells from converting to pathogenic effectors in healthy mice. These dormant pathogenic clones frequently express TCRs activatable by ubiquitous autoantigens presented by class II MHCs on conventional dendritic cells, including self-peptides that select them in the thymus. Our data thus suggest that identification of most potentially autoreactive CD4+ T cells in the peripheral repertoire is critical to harness or redirect these cells for therapeutic advantage.
Collapse
Affiliation(s)
- Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Natasha Savage
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Wessam R Elhefnawy
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
O’Sullivan BJ, Yekollu S, Ruscher R, Mehdi AM, Maradana MR, Chidgey AP, Thomas R. Autoimmune-Mediated Thymic Atrophy Is Accelerated but Reversible in RelB-Deficient Mice. Front Immunol 2018; 9:1092. [PMID: 29872433 PMCID: PMC5972300 DOI: 10.3389/fimmu.2018.01092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/01/2018] [Indexed: 01/28/2023] Open
Abstract
Polymorphisms impacting thymic function may decrease peripheral tolerance and hasten autoimmune disease. The NF-κB transcription factor subunit, RelB, is essential for the development and differentiation of medullary thymic epithelial cells (mTECs): RelB-deficient mice have reduced thymic cellularity and markedly fewer mTECs, lacking AIRE. The precise mechanism of this mTEC reduction in the absence of RelB is unclear. To address this, we studied mTECs and dendritic cells (DCs), which critically regulate negative selection, and thymic regulatory T-cells (tTreg) in RelB-/- mice, which have spontaneous multiorgan autoimmune disease. RelB-/- thymi were organized, with medullary structures containing AIRE- mTECs, DCs, and CD4+ thymocytes, but fewer tTreg. Granulocytes infiltrated the RelB-/- thymic cortex, capsule, and medulla, producing inflammatory thymic medullary atrophy, which could be treated by granulocyte depletion or RelB+ DC immunotherapy, with concomitant recovery of mTEC and tTreg numbers. These data indicate that central tolerance defects may be accelerated by autoimmune thymic inflammation where impaired RelB signaling impairs the medullary niche, and may be reversible by therapies enhancing peripheral Treg or suppressing inflammation.
Collapse
Affiliation(s)
- Brendan J. O’Sullivan
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Suman Yekollu
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Roland Ruscher
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Ahmed M. Mehdi
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Muralidhara Rao Maradana
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Ann P. Chidgey
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
7
|
Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity 2016; 44:1102-13. [PMID: 27130899 PMCID: PMC4871732 DOI: 10.1016/j.immuni.2016.02.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 10/21/2022]
Abstract
The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by autoimmune regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3(+) regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire(-/-) mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3(+) Treg cells in Aire(+/+) mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells.
Collapse
Affiliation(s)
- Sven Malchow
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | - Victoria Lee
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Saki Nishi
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Lin J, Yang L, Silva HM, Trzeciak A, Choi Y, Schwab SR, Dustin ML, Lafaille JJ. Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat Commun 2016; 7:10562. [PMID: 26923114 PMCID: PMC4773449 DOI: 10.1038/ncomms10562] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cell (Treg) selection in the thymus is essential to prevent autoimmune diseases. Although important rules for Treg selection have been established, there is controversy regarding the degree of self-reactivity displayed by T-cell receptors expressed by Treg cells. In this study we have developed a model of autoimmune skin inflammation, to determine key parameters in the generation of skin-reactive Treg cells in the thymus (tTreg). tTreg development is predominantly AIRE dependent, with an AIRE-independent component. Without the knowledge of antigen recognized by skin-reactive Treg cells, we are able to enhance skin-specific tTreg cell generation using three approaches. First, we increase medullary thymic epithelial cells by using mice lacking osteoprotegerin or by adding TRANCE (RANKL, Tnfsf11). Second, we inject intrathymically peripheral dendritic cells from skin-draining sites. Finally, we inject skin tissue lysates intrathymically. These findings have implications for enhancing the generation of organ-specific Treg cells in autoimmune diseases.
Collapse
Affiliation(s)
- Jiqiang Lin
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York 10016, USA
| | - Lu Yang
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York 10016, USA
| | - Hernandez Moura Silva
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | - Alissa Trzeciak
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Susan R. Schwab
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Juan J. Lafaille
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
10
|
Abstract
The autoimmune regulator (Aire) was initially identified as the gene causing multiorgan system autoimmunity in humans, and deletion of this gene in mice also resulted in organ-specific autoimmunity. Aire regulates the expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs), which play a critical role in the negative selection of autoreactive T cells and the generation of regulatory T cells. More recently, the role of Aire in the development of mTECs has helped elucidate its ability to present the spectrum of TSAs needed to prevent autoimmunity. Molecular characterization of the functional domains of Aire has revealed multiple binding partners that assist Aire's function in altering gene transcription and chromatin remodeling. These recent advances have further highlighted the importance of Aire in central tolerance.
Collapse
Affiliation(s)
- Alice Chan
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells. PLoS One 2015; 10:e0141161. [PMID: 26495986 PMCID: PMC4619666 DOI: 10.1371/journal.pone.0141161] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Helios transcription factor and semaphorin receptor Nrp-1 were originally described as constitutively expressed at high levels on CD4+Foxp3+ T regulatory cells of intrathymic origin (tTregs). On the other hand, CD4+Foxp3+ Tregs generated in the periphery (pTregs) or induced ex vivo (iTregs) were reported to express low levels of Helios and Nrp-1. Soon afterwards the reliability of Nrp-1 and Helios as markers discriminating between tTregs and pTregs was questioned and until now no consensus has been reached. Here, we used several genetically modified mouse strains that favor pTregs or tTregs formation and analyzed the TCR repertoire of these cells. We found that Tregs with variable levels of Nrp-1 and Helios were abundant in mice with compromised ability to support natural differentiation of tTregs or pTregs. We also report that TCR repertoires of Treg clones expressing high or low levels of Nrp-1 or Helios are similar and more alike repertoire of CD4+Foxp3+ than repertoire of CD4+Foxp3- thymocytes. These results show that high vs. low expression of Nrp-1 or Helios does not unequivocally identify Treg clones of thymic or peripheral origin.
Collapse
|
12
|
Treg Cell Differentiation: From Thymus to Peripheral Tissue. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:175-205. [PMID: 26615097 DOI: 10.1016/bs.pmbts.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of self-tolerance in the periphery. They differentiate in the thymus, where interactions with thymus-resident antigen-presenting cells, an instructive cytokine milieu, and stimulation of the T cell receptor lead to the selection into the Treg lineage and the induction of Foxp3 gene expression. Once mature, Treg cells leave the thymus and migrate into either the secondary lymphoid tissues, e.g., lymph nodes and spleen, or peripheral nonlymphoid tissues. There is growing evidence that Treg cells go beyond the classical modulation of immune responses and also play important functional roles in nonlymphoid peripheral tissues. In this review, we summarize recent findings about the thymic Treg lineage differentiation as well as the further specialization of Treg cells in the secondary lymphoid and in the peripheral nonlymphoid organs.
Collapse
|
13
|
Bergot AS, Chaara W, Ruggiero E, Mariotti-Ferrandiz E, Dulauroy S, Schmidt M, von Kalle C, Six A, Klatzmann D. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice. Eur J Immunol 2015; 45:1524-34. [PMID: 25726757 DOI: 10.1002/eji.201445269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Eliana Ruggiero
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Sophie Dulauroy
- CNRS, URA 1961 UPMC, Immunophysiopathologie Infectieuse, Institut Pasteur, Paris, France
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Adrien Six
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| |
Collapse
|
14
|
Perry JSA, Lio CWJ, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 2014; 41:414-426. [PMID: 25220213 PMCID: PMC4175925 DOI: 10.1016/j.immuni.2014.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 02/07/2023]
Abstract
The contribution of thymic antigen-presenting-cell (APC) subsets in selecting a self-tolerant T cell population remains unclear. We show that bone marrow (BM) APCs and medullary thymic epithelial cells (mTECs) played nonoverlapping roles in shaping the T cell receptor (TCR) repertoire by deletion and regulatory T (Treg) cell selection of distinct TCRs. Aire, which induces tissue-specific antigen expression in mTECs, affected the TCR repertoire in a manner distinct from mTEC presentation. Approximately half of Aire-dependent deletion or Treg cell selection utilized a pathway dependent on antigen presentation by BM APCs. Batf3-dependent CD8α⁺ dendritic cells (DCs) were the crucial BM APCs for Treg cell selection via this pathway, showing enhanced ability to present antigens from stromal cells. These results demonstrate the division of function between thymic APCs in shaping the self-tolerant TCR repertoire and reveal an unappreciated cooperation between mTECs and CD8α⁺ DCs for presentation of Aire-induced self-antigens to developing thymocytes.
Collapse
Affiliation(s)
- Justin S A Perry
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chan-Wang J Lio
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L Kau
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Katherine Nutsch
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhuo Yang
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kenneth M Murphy
- Howard Hughes Medical Institute and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Gratz IK, Campbell DJ. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol 2014; 5:333. [PMID: 25076948 PMCID: PMC4098124 DOI: 10.3389/fimmu.2014.00333] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Foxp3+ regulatory T cells (Treg cells) are essential for establishing and maintaining self-tolerance, and also inhibit immune responses to innocuous environmental antigens. Imbalances and dysfunction in Treg cells lead to a variety of immune-mediated diseases, as deficits in Treg cell function contribute to the development autoimmune disease and pathological tissue damage, whereas overabundance of Treg cells can promote chronic infection and tumorigenesis. Recent studies have highlighted the fact that Treg cells themselves are a diverse collection of phenotypically and functionally specialized populations, with distinct developmental origins, antigen-specificities, tissue-tropisms, and homeostatic requirements. The signals directing the differentiation of these populations, their specificities and the mechanisms by which they combine to promote organ-specific and systemic tolerance, and how they embody the emerging property of regulatory memory are the focus of this review.
Collapse
Affiliation(s)
- Iris K Gratz
- Department of Molecular Biology, University of Salzburg , Salzburg , Austria ; Department of Dermatology, University of California San Francisco , San Francisco, CA , USA ; Division of Molecular Dermatology and EB House Austria, Department of Dermatology, Paracelsus Medical University , Salzburg , Austria
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute , Seattle, WA , USA ; Department of Immunology, University of Washington School of Medicine , Seattle, WA , USA
| |
Collapse
|
16
|
Laan M, Peterson P. The many faces of aire in central tolerance. Front Immunol 2013; 4:326. [PMID: 24130560 PMCID: PMC3795325 DOI: 10.3389/fimmu.2013.00326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/24/2013] [Indexed: 11/13/2022] Open
Abstract
Although the role that Autoimmune Regulator (Aire) plays in the induction of central tolerance is well known, the precise cellular and molecular mechanisms are still unclear and debated. In the prevailing view, Aire serves mainly as a direct inducer of tissue-specific antigens. However, there is a growing amount of evidence suggesting that Aire modulates the differentiation program of medullary thymic epithelial cells, which may directly contribute to the negative selection of self-reactive thymocytes. In addition, Aire has been shown to regulate the expression of many intrathymic chemokines that are required for the proper localization of thymocytes and dendritic cells, and thus are potentially important for direct and indirect self-antigen presentation in the thymic medulla. Further, recent evidence suggests that the induction of certain antigen-specific regulatory T-cells that translocate to tumors and peripheral tissues can be Aire dependent and may contribute to tissue-specific tolerance. This review summarizes the current understanding of the effects of Aire on these alternative mechanisms for the induction of Aire-induced central tolerance.
Collapse
Affiliation(s)
- Martti Laan
- Molecular Pathology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, Tartu University , Tartu , Estonia
| | | |
Collapse
|
17
|
Okuno Y, Murakoshi A, Negita M, Akane K, Kojima S, Suzuki H. CD8+ CD122+ regulatory T cells contain clonally expanded cells with identical CDR3 sequences of the T-cell receptor β-chain. Immunology 2013; 139:309-17. [PMID: 23317140 PMCID: PMC3701177 DOI: 10.1111/imm.12067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 12/26/2012] [Accepted: 01/07/2013] [Indexed: 12/23/2022] Open
Abstract
We identified CD8(+) CD122(+) regulatory T cells (CD8(+) CD122(+) Treg cells) and reported their importance in maintaining immune homeostasis. The absence of CD8(+) CD122(+) Treg cells has been shown to lead to severe systemic autoimmunity in several mouse models, including inflammatory bowel diseases and experimental autoimmune encephalomyelitis. The T-cell receptors (TCRs) expressed on CD8(+) CD122(+) Treg cells recognize the target cells to be regulated. To aid in the identification of the target antigen(s) recognized by TCRs of CD8(+) CD122(+) Treg cells, we compared the TCR diversity of CD8(+) CD122(+) T cells with that of conventional, naive T cells in mice. We analysed the use of TCR-Vβ in the interleukin 10-producing population of CD8(+) CD122(+) T cells marked by high levels of CD49d expression, and found the significantly increased use of Vβ13 in these cells. Immunoscope analysis of the complementarity-determining region 3 (CDR3) of the TCR β-chain revealed remarkable skewing in a pair of Vβ regions, suggesting the existence of clonally expanded cells in CD8(+) CD122(+) T cells. Clonal expansion in Vβ13(+) cells was confirmed by determining the DNA sequences of the CDR3s. The characteristic TCR found in this study is an important building block for further studies to identify the target antigen recognized by CD8(+) CD122(+) Treg cells.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/physiopathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells/metabolism
- Complementarity Determining Regions/genetics
- Female
- Humans
- Interleukin-10/metabolism
- Interleukin-2 Receptor beta Subunit/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Analysis, DNA
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Yusuke Okuno
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Ayako Murakoshi
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Masashi Negita
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Kazuyuki Akane
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Seiji Kojima
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Haruhiko Suzuki
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
18
|
Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol 2012; 3:278. [PMID: 22969770 PMCID: PMC3432834 DOI: 10.3389/fimmu.2012.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022] Open
Abstract
Thymic epithelial cells (TECs) provide the microenvironment required for the development of T cells in the thymus. A unique property of medullary thymic epithelial cells (mTECs) is their expression of a wide range of tissue-restricted self-antigens, critically regulated by the nuclear protein AIRE, which contributes to the selection of the self-tolerant T cell repertoire, thereby suppressing the onset of autoimmune diseases. The TNF receptor family (TNFRF) protein receptor activator of NF-κB (RANK), CD40 and lymphotoxin β receptor (LtβR) regulate the development and functions of mTECs. The engagement of these receptors with their specific ligands results in the activation of the NF-κB family of transcription factors. Two NF-κB activation pathways, the classical and non-classical pathways, promote the development of mature mTECs induced by these receptors. Consistently, TNF receptor-associated factor (TRAF6), the signal transducer of the classical pathway, and NF-κB inducing kinase (NIK), the signal transducer of the non-classical pathway, are essential for the development of mature mTECs. This review summarizes the current understanding of how the signaling by the TNF receptor family controls the development and functions of mTEC.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
19
|
Hwang S, Song KD, Lesourne R, Lee J, Pinkhasov J, Li L, El-Khoury D, Love PE. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. ACTA ACUST UNITED AC 2012; 209:1781-95. [PMID: 22945921 PMCID: PMC3457736 DOI: 10.1084/jem.20120058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TCR signal attenuation selectively favors Foxp3 expression and T reg cell lineage commitment. Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability.
Collapse
Affiliation(s)
- Sujin Hwang
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The generation of regulatory T (T(Reg)) cells in the thymus is crucial for immune homeostasis and self-tolerance. Recent discoveries have revealed the cellular and molecular mechanisms that govern the differentiation of a subset of developing thymocytes into natural T(Reg) cells. Several models, centred on the self-reactivity of the T cell receptor (TCR), have been proposed to explain the generation of a T(Reg) cell population that is cognizant of self. Several molecular pathways link TCR and cytokine signalling with the expression of the T(Reg) cell-associated transcription factor forkhead box P3 (FOXP3). Moreover, interplay between thymocytes and thymic antigen-presenting cells is also involved in T(Reg) cell generation.
Collapse
|
21
|
Pomié C, Vicente R, Vuddamalay Y, Lundgren BA, van der Hoek M, Enault G, Kagan J, Fazilleau N, Scott HS, Romagnoli P, van Meerwijk JPM. Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis. Proc Natl Acad Sci U S A 2011; 108:12437-42. [PMID: 21746930 PMCID: PMC3145727 DOI: 10.1073/pnas.1107136108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the gene encoding the transcription factor autoimmune regulator (AIRE) are responsible for autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome. AIRE directs expression of tissue-restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE deficiency leads to impaired deletion of autospecific T-cell precursors. However, a potential role for AIRE in the function of regulatory T-cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8(+)CD28(low) phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. Here we show that CD8(+)CD28(low) regulatory T lymphocytes from AIRE-deficient mice are transcriptionally and phenotypically normal and exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T-cell population.
Collapse
Affiliation(s)
- Céline Pomié
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Rita Vicente
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Yirajen Vuddamalay
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Brita Ardesjö Lundgren
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Mark van der Hoek
- Adelaide Microarray Centre, SA Pathology, Adelaide, South Australia 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Geneviève Enault
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Jérémy Kagan
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Nicolas Fazilleau
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Hamish S. Scott
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia; and
| | - Paola Romagnoli
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
| | - Joost P. M. van Meerwijk
- Institut National de la Santé et de la Recherche Médicale, U1043, Toulouse F-31300, France
- Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France
- Centre de Physiopathologie de Toulouse Purpan, Université Paul Sabatier, Université de Toulouse, Toulouse F-31300, France
- Institut Universitaire de France, Paris F-75000, France
| |
Collapse
|
22
|
Kekäläinen E, Lehto MK, Smeds E, Miettinen A, Meri S, Jarva H, Arstila TP. Defective central tolerance in Aire-deficient mice is not sufficient to induce symptomatic autoimmunity during lymphopenia-induced T cell proliferation. Scand J Immunol 2011; 74:71-9. [PMID: 21352256 DOI: 10.1111/j.1365-3083.2011.02543.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcriptional regulator autoimmune regulator (AIRE) controls thymic negative selection but it is also expressed in secondary lymphoid organs. The relative contribution of AIRE's central and peripheral function to the maintenance of tolerance is unclear. We transferred mature lymphocytes from Aire(-/-) or wild-type donors to Aire(+/+) lymphopenic recipients, which allowed us to gauge the autoreactivity inherent in the cells originating in an Aire(-/-) thymus. In the ensuing lymphopenia-induced proliferation (LIP), the recipients of cells from Aire(-/-) showed definite T cell hyperproliferation and developed autoantibodies at a higher frequency than the recipients of wild-type cells. However, neither of the recipient groups developed clinical symptoms, and pathological tissue infiltrates were also absent. The recipients of Aire(-/-) cells showed hyperproliferation and increased accumulation of regulatory T cells (Tregs), especially in tissues susceptible to inflammation triggered by LIP. These data are consistent with the view that T cells developing in the absence of Aire are autoreactive. However, overt autoimmunity was prevented, most likely by the suppressive function of Treg cells in the Aire-sufficient recipients. Our results support the importance of the peripheral AIRE expression in the maintenance of immunological tolerance.
Collapse
Affiliation(s)
- E Kekäläinen
- Department of Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The negative selection of self-reactive thymocytes depends on the expression of tissue-specific antigens by medullary thymic epithelial cells. The autoimmune regulator (Aire) protein plays an important role in turning on these antigens, and the absence of even one Aire-induced tissue-specific antigen in the thymus can lead to autoimmunity in the antigen-expressing target organ. Recently, Aire protein has been detected in peripheral lymphoid organs, suggesting that peripheral Aire plays a complementary role here. In these peripheral sites, Aire was found to regulate the expression of a group of tissue-specific antigens that is distinct from those expressed in the thymus. Furthermore, transgenic antigen expression in extrathymic Aire-expressing cells (eTACs) can mediate deletional tolerance, but the immunological relevance of Aire-dependent, endogenous tissue-specific antigens remains to be determined.
Collapse
Affiliation(s)
- Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
24
|
Abstract
In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self-antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a crucial role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified.
Collapse
Affiliation(s)
- Mark S. Anderson
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Maureen A. Su
- Inflammatory Diseases Institute and Department of Pediatrics, University of North Carolina, Chapel Hill, Chapel Hill, NC
| |
Collapse
|
25
|
Abstract
The development of regulatory T (Treg) cells is essential for the maintenance of immune tolerance and homeostasis. Here, we review recent studies that have advanced our understanding of Treg cell differentiation. In the thymus, TCR specificity to self-antigen appears to be a primary determinant for Treg cell lineage commitment, with c-Rel being an important factor that links T cell receptor (TCR) engagement and Foxp3 expression, along with cytokines and costimulatory molecules. It is also clear that postthymic events shape the peripheral Treg cell population. This includes preferential maintenance of Treg cells specific to self-antigens presented in the periphery, as well as the de novo generation of Treg cells from conventional Foxp3(-) T cells. The process of peripheral Treg cell differentiation shares some features with thymic Treg cell development, but there are notable differences. Together, thymic and peripheral Treg cell differentiation appear to generate an "imprint" of both self- and foreign antigens in the peripheral Treg cell population to provide dominant tolerance.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Department of Internal Medicine, Division of Rheumatology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | |
Collapse
|
26
|
Abstract
In his clonal selection theory, Frank Macfarlane Burnet predicted that autoreactive lymphocytes are deleted to prevent autoimmunity. This and other principles of lymphocyte behavior outlined by Burnet guided many studies that lead to our current understanding of thymic selection. Thus, when the genetic mutation responsible for autoimmune polyglandular syndrome type 1 was mapped to the autoimmune regulator (AIRE) gene, and Aire was found to be highly expressed in thymic epithelium, studying the role of Aire in negative selection made sense in the context of modern models of thymic selection. We now know Aire is a transcription factor required for the expression of many tissue-specific antigens (TSAs) in the thymus. In the absence of functional Aire, human patients and mice develop multi-organ autoimmune disease because of a defect in thymic negative selection. In addition to its role in the thymus, recent work in our lab suggests that extrathymic Aire-expressing cells have an important role in the clonal deletion of autoreactive CD8+ T cells. In this review, we summarize the latest studies on thymic and peripheral Aire-expressing cells, as well as other TSA-expressing stromal cell populations in peripheral lymphoid organs. We also discuss theoretical differences in thymic and peripheral Aire function that warrant further studies.
Collapse
Affiliation(s)
- Ruth T Taniguchi
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0540, USA
| | | |
Collapse
|
27
|
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are of special interest in immunology because of their potent inhibitory function. Many fundamental aspects of Tregs, including their antigenic profile, development and peripheral homeostasis, remain highly controversial. Here, we propose a Treg-centered antigen-non-specific immunoregulation model focused on the T-cell system, particularly on CD4(+) T cells. The T-cell pool consists of naive T cells (Tnais), Tregs and effector T cells (Teffs). Regardless of antigen specificity, the ratio of the activated T-cell subsets (Treg/Teff/Tnai) and their temporal and spatial uniformity dictate the differentiation of Tnais. Activated Tregs inhibit the activation, proliferation, induction and activity of Teffs; in contrast, activated Teffs inhibit the induction of Tregs from Tnais but cooperate with Treg-specific antigens to promote the proliferation and activity of Tregs. In many cases, these interactions are antigen-non-specific, whereas the activation of both Tregs and Teffs is antigen-specific. Memory T-cell subsets are essential for the maintenance of adaptive immune responses, but the antigen-non-specific interactions among T-cell subsets may be more important during the establishment of the adaptive immune system to a newly encountered antigen. This is especially important when new and memory antigens are presented closely-both temporally and spatially-to T cells, because there are always baseline levels of activated Tregs, which are usually higher than levels of memory T cells for new antigens. Based on this hypothesis, we further infer that, under physiological conditions, Tregs in lymph nodes mainly recognize antigens frequently released from draining tissues, and that these self-reactive Tregs are commonly involved in the establishment of adaptive immunity to new antigens and in the feedback control of excessive responses to pathogens.
Collapse
|