1
|
Zhao Y, Vartak SV, Conte A, Wang X, Garcia DA, Stevens E, Kyoung Jung S, Kieffer-Kwon KR, Vian L, Stodola T, Moris F, Chopp L, Preite S, Schwartzberg PL, Kulinski JM, Olivera A, Harly C, Bhandoola A, Heuston EF, Bodine DM, Urrutia R, Upadhyaya A, Weirauch MT, Hager G, Casellas R. "Stripe" transcription factors provide accessibility to co-binding partners in mammalian genomes. Mol Cell 2022; 82:3398-3411.e11. [PMID: 35863348 PMCID: PMC9481673 DOI: 10.1016/j.molcel.2022.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Regulatory elements activate promoters by recruiting transcription factors (TFs) to specific motifs. Notably, TF-DNA interactions often depend on cooperativity with colocalized partners, suggesting an underlying cis-regulatory syntax. To explore TF cooperativity in mammals, we analyze ∼500 mouse and human primary cells by combining an atlas of TF motifs, footprints, ChIP-seq, transcriptomes, and accessibility. We uncover two TF groups that colocalize with most expressed factors, forming stripes in hierarchical clustering maps. The first group includes lineage-determining factors that occupy DNA elements broadly, consistent with their key role in tissue-specific transcription. The second one, dubbed universal stripe factors (USFs), comprises ∼30 SP, KLF, EGR, and ZBTB family members that recognize overlapping GC-rich sequences in all tissues analyzed. Knockouts and single-molecule tracking reveal that USFs impart accessibility to colocalized partners and increase their residence time. Mammalian cells have thus evolved a TF superfamily with overlapping DNA binding that facilitate chromatin accessibility.
Collapse
Affiliation(s)
- Yongbing Zhao
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA.
| | - Supriya V Vartak
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Andrea Conte
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Xiang Wang
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20893, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Evan Stevens
- Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Seol Kyoung Jung
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | | | - Laura Vian
- Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA
| | - Timothy Stodola
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francisco Moris
- EntreChem S.L., Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Laura Chopp
- Laboratory of Immune Cell Biology, NCI, NIH, Bethesda, MD 20892, USA
| | - Silvia Preite
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Joseph M Kulinski
- Mast cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Ana Olivera
- Mast cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Christelle Harly
- Laboratory of Genome Integrity, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | - David M Bodine
- Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gordon Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, NIH, Bethesda, MD 20893, USA
| | - Rafael Casellas
- The NIH Regulome Project, National Institutes of Health, Bethesda, MD 20892, USA; Lymphocyte Nuclear Biology, NIAMS-NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
3
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Ungefroren H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets 2019; 23:679-693. [PMID: 31232607 DOI: 10.1080/14728222.2019.1636034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant tumors often escape surveillance and eventual destruction by the host immune system through a variety of strategies including production of transforming growth factor (TGF)-β. Because of its generally immunosuppressive role, TGF-β has emerged as a promising therapeutic target in cancer immunotherapy. Areas covered: This article looks at specific mechanisms of how TGF-β controls the function of various immune cell subsets in the tumor microenvironment and focusses on T-cells. Various inhibition tools of TGF-β signaling and potential targets of therapeutic intervention are assessed along with the recent progress in combining TGF-β blockade and immune-mediated therapies. To round off the article, a summary of results from clinical trials is provided in which TGF-β blockade has shown therapeutic benefit for patients. Expert opinion: Data from preclinical models have shown that blocking TGF-β signaling can overcome resistance mechanisms and in combination with immune-checkpoint therapies, can yield additive or synergistic anti-tumor responses. The future of immunooncology will therefore be based on combination trials. Since response rates may critically depend on both cancer type and stage, selection of only those patients who can benefit from combinatorial immunotherapy regimens is of utmost importance.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- a First Department of Medicine , University Hospital Schleswig-Holstein, Campus Lübeck, and University of Lübeck , Lübeck , Germany.,b Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| |
Collapse
|
5
|
Tu E, Chia CPZ, Chen W, Zhang D, Park SA, Jin W, Wang D, Alegre ML, Zhang YE, Sun L, Chen W. T Cell Receptor-Regulated TGF-β Type I Receptor Expression Determines T Cell Quiescence and Activation. Immunity 2019; 48:745-759.e6. [PMID: 29669252 DOI: 10.1016/j.immuni.2018.03.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
It is unclear how quiescence is enforced in naive T cells, but activation by foreign antigens and self-antigens is allowed, despite the presence of inhibitory signals. We showed that active transforming growth factor β (TGF-β) signaling was present in naive T cells, and T cell receptor (TCR) engagement reduced TGF-β signaling during T cell activation by downregulating TGF-β type 1 receptor (TβRI) through activation of caspase recruitment domain-containing protein 11 (CARD11) and nuclear factor κB (NF-κB). TGF-β prevented TCR-mediated TβRI downregulation, but this was abrogated by interleukin-6 (IL-6). Mitigation of TCR-mediated TβRI downregulation through overexpression of TβRI in naive and activated T cells rendered T cells less responsive and suppressed autoimmunity. Naive T cells in autoimmune patients exhibited reduced TβRI expression and increased TCR-driven proliferation compared to healthy subjects. Thus, TCR-mediated regulation of TβRI-TGF-β signaling acts as a crucial criterion to determine T cell quiescence and activation.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Cheryl P Z Chia
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dunfang Zhang
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sang A Park
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Amina Dahmani
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Centre de Recherche de L'hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, QC H1T 2M4, Canada.
- Hematology-Oncology service, Hôpital Maisonneuve-Rosemont, Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
7
|
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018; 10:cancers10060194. [PMID: 29891791 PMCID: PMC6025055 DOI: 10.3390/cancers10060194] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy.
Collapse
|
8
|
Ibrahim M, Scozzi D, Toth KA, Ponti D, Kreisel D, Menna C, De Falco E, D'Andrilli A, Rendina EA, Calogero A, Krupnick AS, Gelman AE. Naive CD4 + T Cells Carrying a TLR2 Agonist Overcome TGF-β-Mediated Tumor Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2017; 200:847-856. [PMID: 29212908 DOI: 10.4049/jimmunol.1700396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
TLR agonists are effective at treating superficial cancerous lesions, but their use internally for other types of tumors remains challenging because of toxicity. In this article, we report that murine and human naive CD4+ T cells that sequester Pam3Cys4 (CD4+ TPam3) become primed for Th1 differentiation. CD4+ TPam3 cells encoding the OVA-specific TCR OT2, when transferred into mice bearing established TGF-β-OVA-expressing thymomas, produce high amounts of IFN-γ and sensitize tumors to PD-1/programmed cell death ligand 1 blockade-induced rejection. In contrast, naive OT2 cells without Pam3Cys4 cargo are prone to TGF-β-dependent inducible regulatory Foxp3+ CD4+ T cell conversion and accelerate tumor growth that is largely unaffected by PD-1/programmed cell death ligand 1 blockade. Ex vivo analysis reveals that CD4+ TPam3 cells are resistant to TGF-β-mediated gene expression through Akt activation controlled by inputs from the TCR and a TLR2-MyD88-dependent PI3K signaling pathway. These data show that CD4+ TPam3 cells are capable of Th1 differentiation in the presence of TGF-β, suggesting a novel approach to adoptive cell therapy.
Collapse
Affiliation(s)
- Mohsen Ibrahim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63108.,Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63108.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Kelsey A Toth
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63108
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Rome, Italy
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63108.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108; and
| | - Cecilia Menna
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Rome, Italy
| | - Antonio D'Andrilli
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Erino A Rendina
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Rome, Italy
| | - Alexander S Krupnick
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22098
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63108; .,Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108; and
| |
Collapse
|
9
|
Tsuda M, Tone Y, Ogawa C, Nagaoka Y, Katsumata M, Necula A, Howie D, Masuda E, Waldmann H, Tone M. A Bacterial Artificial Chromosome Reporter System for Expression of the Human FOXP3 Gene in Mouse Regulatory T-Cells. Front Immunol 2017; 8:279. [PMID: 28348568 PMCID: PMC5346934 DOI: 10.3389/fimmu.2017.00279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
The transcription factor FOXP3 plays key roles in the development and function of regulatory T cells (Treg) capable of preventing and correcting immunopathology. There has been much interest in exploiting Treg as adoptive cell therapy in man, but issues of lack of nominal antigen-specificity and stability of FoxP3 expression in the face of pro-inflammatory cytokines have been a concern. In order to enable fundamental studies of human FOXP3 (hFOXP3) gene regulation and to provide preclinical tools to guide the selection of drugs that might modulate hFOXP3 expression for therapeutic purposes, we generated hFOXP3/AmCyan bacterial artificial chromosome (BAC) transgenic mice and transfectants, wherein hFOXP3 expression was read out as AmCyan expression. Using the transgenic mice, one can now investigate hFOXP3 gene expression under defined experimental conditions used for mouse Foxp3 (mFoxp3) studies. Here, we demonstrate that hFOXP3 gene expression in BAC transgenic mice is solely restricted to CD4+ T-cells, as for mFoxp3 gene expression, showing that hFOXP3 expression in Treg cells depends on fundamentally similar processes to mFoxp3 expression in these cells. Similarly, hFOXP3 expression could be observed in mouse T-cells through TCR stimulation in the presence of TGF-β. These data suggest that, at least in part, cell type-specific human and mouse foxp3 gene expression is regulated by common regulatory regions which for the human, are located within the 110-kb human FOXP3 BAC DNA. To investigate hFOXP3 gene expression further and to screen potential therapeutics in modulating hFOXP3 gene expression in vitro, we also generated hFOXP3/AmCyan expression reporter cell lines. Using the reporter cells and transcription factor inhibitors, we showed that, just as for mFoxp3 expression, inhibitors of NF-κB, AP1, STAT5, Smad3, and NFAT also block hFOXP3 expression. hFOXP3 induction in the reporter cells was also TGF-β dependent, and substantially enhanced by an mTOR inhibitor, Torin1. In both the reporter transgenic mice and cell lines, histone H4 molecules in the hFOXP3 promoter and enhancers located in human CNS1 and CNS2 regions were highly acetylated in natural Treg and TCR/TGF-β-induced Treg, indicating hFOXP3 gene expression is regulated by mechanisms similar to those previously identified for the mFoxp3 gene.
Collapse
Affiliation(s)
- Masato Tsuda
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Yukiko Tone
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Chihiro Ogawa
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Yoshiko Nagaoka
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Makoto Katsumata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Andra Necula
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Duncan Howie
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | | | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Masahide Tone
- Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| |
Collapse
|
10
|
Reinherz EL. αβ TCR-mediated recognition: relevance to tumor-antigen discovery and cancer immunotherapy. Cancer Immunol Res 2016; 3:305-12. [PMID: 25847967 DOI: 10.1158/2326-6066.cir-15-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
αβ T lymphocytes sense perturbations in host cellular body components induced by infectious pathogens, oncogenic transformation, or chemical or physical damage. Millions to billions of these lymphocytes are generated through T-lineage development in the thymus, each endowed with a clonally restricted surface T-cell receptor (TCR). An individual TCR has the capacity to recognize a distinct "foreign" peptide among the myriad of antigens that the mammalian host must be capable of detecting. TCRs explicitly distinguish foreign from self-peptides bound to major histocompatibility complex (MHC) molecules. This is a daunting challenge, given that the MHC-linked peptidome consists of thousands of distinct peptides with a relevant nonself target antigen often embedded at low number, among orders of magnitude higher frequency self-peptides. In this Masters of Immunology article, I review how TCR structure and attendant mechanobiology involving nonlinear responses affect sensitivity as well as specificity to meet this requirement. Assessment of human tumor-cell display using state-of-the-art mass spectrometry physical detection methods that quantify epitope copy number can help to provide information about requisite T-cell functional avidity affording protection and/or therapeutic immunity. Future rational CD8 cytotoxic T-cell-based vaccines may follow, targeting virally induced cancers, other nonviral immunogenic tumors, and potentially even nonimmunogenic tumors whose peptide display can be purposely altered by MHC-binding drugs to stimulate immune attack.
Collapse
Affiliation(s)
- Ellis L Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Arumugam V, Bluemn T, Wesley E, Schmidt AM, Kambayashi T, Malarkannan S, Riese MJ. TCR signaling intensity controls CD8+ T cell responsiveness to TGF-β. J Leukoc Biol 2015; 98:703-12. [PMID: 26153417 DOI: 10.1189/jlb.2hima1214-578r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
DGK-ζ is a negative regulator of TCR signaling that causes degradation of the second messenger DAG, terminating DAG-mediated activation of Ras and PKCθ. Cytotoxic T cells deficient in DGK-ζ demonstrate enhanced effector functions in vitro and antitumor activity in vivo, perhaps because of insensitivity to inhibitory cytokines. We sought to determine whether the enhanced responsiveness of DGK-ζ-deficient T cells renders them insensitive to the inhibitory cytokine TGF-β and to determine how the loss of DGK-ζ facilitates this insensitivity. We identified decreased transcriptional and functional responses to TGF-β in CD8(+) DGK-ζ(-/-) T cells but preserved TGF-β-mediated conversion of naïve DGK-ζ(-/-) CD4(+) T cells to a regulatory T cell phenotype. Decreased CD8(+) T cell responsiveness to TGF-β did not result from impaired canonical TGF-β signal transduction, because similar levels of TGF-β-R and intracellular Smad components were identified in WT and DGK-ζ(-/-) CD8(+) T cells, and TGF-β-mediated activation of Smad2 was unchanged. Instead, an enhanced TCR signal strength was responsible for TGF-β insensitivity, because (i) loss of DGK-ζ conferred resistance to TGF-β-mediated inhibition of Erk phosphorylation, (ii) TGF-β insensitivity could be recapitulated by exogenous addition of the DAG analog PMA, and (iii) TGF-β sensitivity could be observed in DGK-ζ-deficient T cells at limiting dilutions of TCR stimulation. These data indicate that enhanced TCR signal transduction in the absence of DGK-ζ makes T cells relatively insensitive to TGF-β, in a manner independent of Smads, a finding with practical implications in the development of immunotherapies that target TGF-β.
Collapse
Affiliation(s)
- Vidhyalakshmi Arumugam
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theresa Bluemn
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin Wesley
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda M Schmidt
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taku Kambayashi
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Subramaniam Malarkannan
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew J Riese
- *Blood Research Institute, Department of Microbiology and Molecular Genetics, and Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; and Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Delisle JS, Giroux M, Boucher G, Landry JR, Hardy MP, Lemieux S, Jones RG, Wilhelm BT, Perreault C. The TGF-β-Smad3 pathway inhibits CD28-dependent cell growth and proliferation of CD4 T cells. Genes Immun 2013; 14:115-26. [PMID: 23328844 DOI: 10.1038/gene.2012.63] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor-β (TGF-β) maintains self-tolerance through a constitutive inhibitory effect on T-cell reactivity. In most physiological situations, the tolerogenic effects of TGF-β depend on the canonical signaling molecule Smad3. To characterize how TGF-β/Smad3 signaling contributes to maintenance of T-cell tolerance, we characterized the transcriptional landscape downstream of TGF-β/Smad3 signaling in resting or activated CD4 T cells. We report that in the presence of TGF-β, Smad3 modulates the expression of >400 transcripts. Notably, we identified 40 transcripts whose expression showed Smad3 dependence in both resting and activated cells. This 'signature' confirmed the non-redundant role of Smad3 in TGF-β biology and identified both known and putative immunoregulatory genes. Moreover, we provide genomic and functional evidence that the TGF-β/Smad3 pathway regulates T-cell activation and metabolism. In particular, we show that TGF-β/Smad3 signaling dampens the effect of CD28 stimulation on T-cell growth and proliferation. The impact of TGF-β/Smad3 signals on T-cell activation was similar to that of the mTOR inhibitor Rapamycin. Considering the importance of co-stimulation on the outcome of T-cell activation, we propose that TGF-β-Smad3 signaling may maintain T-cell tolerance by suppressing co-stimulation-dependent mobilization of anabolic pathways.
Collapse
Affiliation(s)
- J-S Delisle
- Centre de recherche, Hôpital Maisonneuve-Rosemont, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carli C, Giroux M, Delisle JS. Roles of Transforming Growth Factor-β in Graft-versus-Host and Graft-versus-Tumor Effects. Biol Blood Marrow Transplant 2012; 18:1329-40. [DOI: 10.1016/j.bbmt.2012.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/27/2012] [Indexed: 01/07/2023]
|
14
|
Mirandola P, Gobbi G, Masselli E, Micheloni C, Di Marcantonio D, Queirolo V, Chiodera P, Meschi T, Vitale M. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4721-32. [PMID: 21964026 DOI: 10.4049/jimmunol.1003258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the functional role of protein kinase Cε (PKCε) in the control of human CD4(+) T cell proliferation and in their response to TGF-1β. We demonstrate that PKCε sustains CD4(+) T cell proliferation triggered in vitro by CD3 stimulation. Transient knockdown of PKCε expression decreases IL-2R chain transcription, and consequently cell surface expression levels of CD25. PKCε silencing in CD4 T cells potentiates the inhibitory effects of TGF-1β, whereas in contrast, the forced expression of PKCε virtually abrogates the inhibitory effects of TGF-1β. Being that PKCε is therefore implicated in the response of CD4 T cells to both CD3-mediated proliferative stimuli and TGF-1β antiproliferative signals, we studied it in Hashimoto thyroiditis (HT), a pathology characterized by abnormal lymphocyte proliferation and activation. When we analyzed CD4 T cells from HT patients, we found a significant increase of PKCε expression, accounting for their enhanced survival, proliferation, and decreased sensitivity to TGF-1β. The increased expression of PKCε in CD4(+) T cells of HT patients, which is described for the first time, to our knowledge, in this article, viewed in the perspective of the physiological role of PKCε in normal Th lymphocytes, adds knowledge to the molecular pathophysiology of HT and creates potentially new pharmacological targets for the therapy of this disease.
Collapse
Affiliation(s)
- Prisco Mirandola
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Parma, 43126 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zloza A, Jagoda MC, Lyons GE, Graves MC, Kohlhapp FJ, O'Sullivan JA, Lacek AT, Nishimura MI, Guevara-Patiño JA. CD8 co-receptor promotes susceptibility of CD8+ T cells to transforming growth factor-β (TGF-β)-mediated suppression. Cancer Immunol Immunother 2010; 60:291-7. [PMID: 21193909 DOI: 10.1007/s00262-010-0962-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/15/2010] [Indexed: 12/26/2022]
Abstract
CD8+ T cell function depends on a finely orchestrated balance of activation/suppression signals. While the stimulatory role of the CD8 co-receptor and pleiotropic capabilities of TGF-β have been studied individually, the influence of CD8 co-receptor on TGF-β function in CD8+ T cells is unknown. Here, we show that while CD8 enhances T cell activation, it also enhances susceptibility to TGF-β-mediated immune suppression. Using Jurkat cells expressing a full-length, truncated or no αβCD8 molecule, we demonstrate that cells expressing full-length αβCD8 were highly susceptible, αβCD8-truncated cells were partially susceptible, and CD8-deficient cells were completely resistant to suppression by TGF-β. Additionally, we determined that inhibition of Lck rendered mouse CD8+ T cells highly resistant to TGF-β suppression. Resistance was not associated with TGF-β receptor expression but did correlate with decreased Smad3 and increased Smad7 levels. These findings highlight a previously unrecognized third role for CD8 co-receptor which appears to prepare activated CD8+ T cells for response to TGF-β. Based on the important role which TGF-β-mediated suppression plays in tumor immunology, these findings unveil necessary considerations in formulation of CD8+ T cell-related cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Andrew Zloza
- Department of Surgery, Committee on Immunology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
SMAD3 prevents graft-versus-host disease by restraining Th1 differentiation and granulocyte-mediated tissue damage. Blood 2010; 117:1734-44. [PMID: 21119112 DOI: 10.1182/blood-2010-05-287649] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gene expression profiling of human donor T cells before allogeneic hematopoietic cell transplantation revealed that expression of selected genes correlated with the occurrence of graft-versus-host disease (GVHD) in recipients. The gene with the best GVHD predictive accuracy was SMAD3, a core component of the transforming growth factor-β signaling pathway, whose expression levels vary more than a 6-fold range in humans. The putative role of SMAD3 in the establishment of graft-host tolerance remained elusive. We report that SMAD3-KO mice present ostensibly normal lymphoid and myeloid cell subsets. However, the lack of SMAD3 dramatically increased the frequency and severity of GVHD after allogeneic hematopoietic cell transplantation into major histocompatibility complex-identical recipients. Lethal GVHD induced by SMAD3-KO donors affected mainly the intestine and resulted from massive tissue infiltration by T-bet(+) CD4 T cells and granulocytes that caused tissue damage by in situ release of Th1 cytokines and oxidative-nitrosative mediators, respectively. Our report reveals the nonredundant roles of SMAD3 in the development of tolerance to the host. Furthermore, our data support the concept that SMAD3 levels in donor cells dictate the risk of GVHD and that SMAD3 agonists would be attractive for prevention of GVHD.
Collapse
|