1
|
Tran MT. Identification of TIMP1-induced dysregulation of epithelial-mesenchymal transition as a key pathway in inflammatory bowel disease and small intestinal neuroendocrine tumors shared pathogenesis. Front Genet 2024; 15:1376123. [PMID: 39233736 PMCID: PMC11371700 DOI: 10.3389/fgene.2024.1376123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal Neuroendocrine Tumors (SI-NET) development; however, the molecular relationship between IBD and SI-NET has yet to be elucidated. In this study, we use a systems biology approach to uncover such relationships. We identified a more similar transcriptomic-wide expression pattern between Crohn's Disease (CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that extracellular matrix remodeling, particularly in epithelial-mesenchymal transition and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated pathway among upregulated genes shared between both IBD subtypes and SI-NET. However, this remodeling occurs through distinct regulatory molecular mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated through immune cells like macrophages and the NCAM signaling pathway, a potential gut-brain axis in the context of these two diseases. In both IBD and SI-NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty acid and glucose to an inflammatory- and cancer-inducing state. This altered metabolic state, revealed through enrichment analysis of downregulated genes, showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to enrichment analysis results, network construction and subsequent topological analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1 transcription factor related to extracellular matrix accumulation and metabolic reprogramming that are candidate biomarkers in both IBD and SI-NET. Together, these biological pathways and candidate biomarkers may serve as potential therapeutic targets for these diseases.
Collapse
|
2
|
Bongartz H, Bradfield C, Gross J, Fraser I, Nita-Lazar A, Meier-Schellersheim M. IL-10 dependent adaptation allows macrophages to adjust inflammatory responses to TLR4 stimulation history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587272. [PMID: 38654826 PMCID: PMC11037870 DOI: 10.1101/2024.03.28.587272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During an infection, innate immune cells must adjust nature and strength of their responses to changing pathogen abundances. To determine how stimulation of the pathogen sensing TLR4 shapes subsequent macrophage responses, we systematically varied priming and restimulation concentrations of its ligand KLA. We find that different priming strengths have very distinct effects at multiple stages of the signaling response, including receptor internalization, MAPK activation, cytokine and chemokine production, and nuclear translocation and chromatin association of NFκB and IκB members. In particular, restimulation-induced TNF-α production required KLA doses equal to or greater than those used for prior exposure, indicating that macrophages can detect and adaptively respond to changing TLR4 stimuli. Interestingly, while such adaptation was dependent on the anti-inflammatory cytokine IL-10, exogenous concentrations of IL-10 corresponding to those secreted after strong priming did not exert suppressive effects on TNF-α without such prior priming, confirming the critical role of TLR4 stimulation history.
Collapse
Affiliation(s)
- H. Bongartz
- Computational Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C. Bradfield
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J. Gross
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I.D.C. Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A. Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M. Meier-Schellersheim
- Computational Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
4
|
Papoutsopoulou S, Morris L, Bayliff A, Mair T, England H, Stagi M, Bergey F, Alam MT, Sheibani-Tezerji R, Rosenstiel P, Müller W, Martins Dos Santos VAP, Campbell BJ. Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses. Biomedicines 2022; 10:biomedicines10040757. [PMID: 35453507 PMCID: PMC9027775 DOI: 10.3390/biomedicines10040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
- Correspondence: (S.P.); (B.J.C.)
| | - Lorna Morris
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Andrew Bayliff
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Thomas Mair
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Hazel England
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Massimiliano Stagi
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - François Bergey
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, P.O. Box 8033, 6700 EJ Wageningen, The Netherlands
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
- Correspondence: (S.P.); (B.J.C.)
| |
Collapse
|
5
|
Tang K, Su W, Huang C, Wu Y, Wu X, Lu H. Notoginsenoside R1 suppresses inflammatory response and the pyroptosis of nucleus pulposus cells via inactivating NF-κB/NLRP3 pathways. Int Immunopharmacol 2021; 101:107866. [PMID: 34588155 DOI: 10.1016/j.intimp.2021.107866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of low back pain. Notoginsenoside R1 (NR1) is widely applied in the treatment of bone disorders, including IVDD. The present study aimed to investigate the effects of NR1 on the development of IVDD and the potential mechanisms. AF puncture was performed to establish IVDD rat model. Histology changes were analyzed by hematoxylin and eosin (H&E) staining. mRNA expressions were determined using qRT-PCR. Protein expressions were detected with western blot. Cellular functions were detected by MTT, EdU, flow cytometry, and TUNEL assays. The results showed that NR1 suppressed AF puncture induced IVDD, restored intervertebral disc (IVD) function, and suppressed mechanical hyperalgesia and thermal hyperalgesia. Moreover, NR1 promoted the release of extracellular matrix (ECM) in vivo and in vitro, and decreased the mRNA expressions of proinflammation cytokines. Additionally, NR1 inactivated NF-κB/NLRP3 pathways, improved cellular functions of nucleus pulposus cells (NPCs), and suppressed cell pyroptosis, which was reversed by NLRP3 activation. Taken together, NR1 may protect against IVDD via suppressing NF-κB/NLRP3 pathways. This may provide a novel therapy for IVDD.
Collapse
Affiliation(s)
- Kai Tang
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Wanhan Su
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Chunhui Huang
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Yiqi Wu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Xiuming Wu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China
| | - Haichuan Lu
- Department of Spinal Surgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian Province 364000, China.
| |
Collapse
|
6
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Wang WW, Wu L, Lu W, Chen W, Yan W, Qi C, Xuan S, Shang A. Lipopolysaccharides increase the risk of colorectal cancer recurrence and metastasis due to the induction of neutrophil extracellular traps after curative resection. J Cancer Res Clin Oncol 2021; 147:2609-2619. [PMID: 34115241 DOI: 10.1007/s00432-021-03682-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Intra-abdominal infection after curative surgery for colorectal cancer is a serious complication associated with an increased risk of recurrence. Lipopolysaccharides (LPS)-an essential component of the cell wall of Gram-negative bacteria-were found to exert a protumorigenic effect by stimulating the inflammatory pathology and formation of neutrophil extracellular traps (NETs). This study was conducted to test whether LPS-induced formation of NETs promotes the development of cancer and metastasis. METHODS The clinical characteristics, incidence of relapse, and serum myeloperoxidase-DNA complexes of 40 patients with infection and 40 patients without infection after curative surgery were analyzed. The effects of LPS on the induction of NETs were evaluated in a mouse model of colorectal cancer and liver metastasis. The toll-like receptor 9 (TLR9)-a DNA receptor-was knocked down to assess its effect on the mitogen-activated protein kinase pathway and activities implicated in the formation of NETs. RESULTS Analysis of the clinical data obtained from these patients showed the significant relation of the formation of NETs and incidence of metastasis and survival rates. Subsequent in vitro experiments revealed an increased level of citrullinated-histone H3 and myeloperoxidase-DNA in LPS-injected mice with colorectal cancer. In the mimic metastatic model, injection of LPS enhanced the metastatic capacity, which was then attenuated by DNase I. This suggested that the formation of NETs was activated by LPS. Injection of TLR9-knockdown HCT116 cells in mice, followed by induction through LPS, mitigated the level of citrullinated-histone H3 and myeloperoxidase-DNA. This finding implied that the formation of NETs was suppressed. CONCLUSION These findings shed light on the mechanism underlying the relationship between the elevated rate of colorectal cancer recurrence in patients who underwent surgery and the incidence of infection. This mechanism involves the protumorigenic activities of LPS-induced formation of NETs. The NETs which could be mediated by the TLR9 and the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Pathology, Tinghu People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Lipei Wu
- Department of Laboratory Medicine, Dongtai People's Hospital, Dongtai, 224200, Jiangsu, People's Republic of China
| | - Wenying Lu
- Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Wei Chen
- Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Wenhui Yan
- Department of Laboratory Medicine, Tinghu People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Chunrun Qi
- Department of Pathology, Tinghu People's Hospital, Yancheng, 224001, Jiangsu, People's Republic of China
| | - Shihai Xuan
- Department of Laboratory Medicine, Dongtai People's Hospital, Dongtai, 224200, Jiangsu, People's Republic of China.
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
8
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
9
|
Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens. Vaccine 2020; 38:1630-1642. [PMID: 31932136 DOI: 10.1016/j.vaccine.2019.12.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/23/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Successful colonization of the mucosal epithelial cells is the key early step for Campylobacter jejuni (C. jejuni) pathogenesis in humans. A set of Surface Exposed Colonization Proteins (SECPs) are known to take leading role in bacterial adhesion and subsequent host pathogenesis. Among the major SECPs, the constitutively expressed C. jejuni surface lipoprotein Jejuni lipoprotein A (JlpA), interacts with intestinal heat shock protein 90α (Hsp90α) and contributes in disease progression by triggering pro-inflammatory responses via activation of NF-κB and p38 MAP kinase pathways. In addition to its ability to express on the surface, high sequence conservation of JlpA protein among different Campylobacter spp make it a suitable vaccine target against C. jejuni. Given that chickens are the primary source for C. jejuni infection in humans and persistent cecal colonization significantly contribute in pathogen transmission, we explicitly used chickens as a model to test the immune-protective efficacy of JlpA protein. Taking into account that gastro-intestinal tract is the major site for C. jejuni colonization, we chose to use mucosal (intragastric) route as mode for JlpA antigen delivery. To deliver JlpA via mucosal route, we engineered a food grade Lactic acid producing bacteria, Lactococcus lactis (L. lactis) to express functionally active JlpA protein in the surface. Further, we demonstrated its ability to substantially improve the antigen specific local immune responses in the intestine along with significant immune-protection against enteric colonization of C. jejuni in chickens.
Collapse
|
10
|
Tsuchihashi R, Sawano T, Watanabe F, Yamaguchi N, Yamaguchi W, Niimi K, Shibata S, Furuyama T, Tanaka H, Inagaki S. Upregulation of IFN-β induced by Sema4D-dependent partial Erk1/2 inhibition promotes NO production in microglia. Biochem Biophys Res Commun 2019; 521:827-832. [PMID: 31708102 DOI: 10.1016/j.bbrc.2019.10.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
Abstract
Interactions between Sema4D and its receptors, PlexinB1 and CD72, induce various functions, including axon guidance, angiogenesis, and immune activation. Our previous study revealed that Sema4D is involved in the upregulation of nitric oxide production in microglia after cerebral ischemia. In this study, we investigated the underlying mechanisms of the enhancement of microglial nitric oxide production by Sema4D. Primary microglia expressed PlexinB1 and CD72, and cortical microglia expressed CD72. Sema4D promoted nitric oxide production and slightly inhibited Erk1/2 phosphorylation in microglia. Partial Erk1/2 inhibition enhanced microglial nitric oxide production. Inhibition of Erk1/2 phosphorylation induced the expression of Ifn-β mRNA, and IFN-β promoted nitric oxide production in microglia. In the ischemic cortex, the expression of Ifn-β mRNA was downregulated by Sema4D deficiency. These findings indicated that the enhancement of nitric oxide production by Sema4D is involved in partial Erk1/2 inhibition and upregulation of IFN-β.
Collapse
Affiliation(s)
- Ryo Tsuchihashi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Natsumi Yamaguchi
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Kenta Niimi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuo Furuyama
- Kagawa Prefectural College of Health Sciences, Takamatsu, Japan
| | - Hidekazu Tanaka
- Laboratory of Pharmacology, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan.
| |
Collapse
|
11
|
Collao N, Rada I, Francaux M, Deldicque L, Zbinden-Foncea H. Anti-Inflammatory Effect of Exercise Mediated by Toll-Like Receptor Regulation in Innate Immune Cells – A Review. Int Rev Immunol 2019; 39:39-52. [DOI: 10.1080/08830185.2019.1682569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Collao
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Isabel Rada
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Marc Francaux
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro de Salud Deportivo, Clínica Santa María, Santiago, Chile
| |
Collapse
|
12
|
Yang L, Ding JL. MEK1/2 Inhibitors Unlock the Constrained Interferon Response in Macrophages Through IRF1 Signaling. Front Immunol 2019; 10:2020. [PMID: 31507609 PMCID: PMC6718554 DOI: 10.3389/fimmu.2019.02020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophages are immune sentinels essential for pathogen recognition and immune defense. Nucleic acid-sensing toll-like receptors like TLR7 activate tailored proinflammatory and interferon responses in macrophages. Here we found that TLR7 activation constrained itself and other TLRs from inducing interferon response genes in macrophages through MAPK kinase 1/2 (MEK1/2)-dependent IRF1 inhibition. Downstream of the MEK1/2-ERK pathway, TLR7-activated macrophages induced interleukin-10 (IL-10), a signal transducer and activator of transcription 3 (STAT3) signaling axis, which constrained the expression of interferon response genes, immunomodulatory cytokines, and chemokines. Nevertheless, MEK1/2 inhibitors unlocked an IRF1-interferon signature response in an NF-κB-dependent manner. Deficiency in interferon regulatory factor 1 (Irf1) completely abrogated the interferon response and prevented the reprogramming of macrophages into an immunostimulatory phenotype. As a proof of concept, combination treatment with a TLR7 agonist and MEK1/2 inhibitor synergistically extended the survival of wild-type but not Irf1-deficient melanoma-bearing mice. In a retrospective study, higher expression of Irf1 and interferon response genes correlated with more favorable prognosis in patients with cutaneous melanoma. Our findings demonstrated how MEK1/2 inhibitor unlocks IRF1-mediated interferon signature response in macrophages, and the therapeutic potentials of combination therapy with MEK1/2 inhibitor and TLR7 agonist.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Advancement in TPL2-regulated innate immune response. Immunobiology 2019; 224:383-387. [PMID: 30853309 DOI: 10.1016/j.imbio.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022]
Abstract
Tumor progression locus 2 (TPL2) is a serine/threonine kinase that belongs to the MAP3K family. The activated TPL2 regulates the innate immune-relevant signaling pathways, such as ERK, JNK, and NF-κB, and the differentiation of immune cells, for example, CD4+ T and NK cells. Therefore, TPL2 plays a critical role in regulating the innate immune response. The present review summarizes the recent advancements in the TPL2-regulated innate immune response.
Collapse
|
14
|
O'Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A, Preaudet A, Herold MJ, Yaprianto K, Tai L, Kueh A, Pacini G, Ferrero RL, Gugasyan R, Hu Y, Christie M, Wilcox S, Grumont R, Griffin MDW, O'Connor L, Smyth GK, Ernst M, Waring P, Gerondakis S, Strasser A. Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity 2018; 48:570-583.e8. [PMID: 29562203 DOI: 10.1016/j.immuni.2018.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/04/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Polymorphisms in NFKB1 that diminish its expression have been linked to human inflammatory diseases and increased risk for epithelial cancers. The underlying mechanisms are unknown, and the link is perplexing given that NF-κB signaling reportedly typically exerts pro-tumorigenic activity. Here we have shown that NF-κB1 deficiency, even loss of a single allele, resulted in spontaneous invasive gastric cancer (GC) in mice that mirrored the histopathological progression of human intestinal-type gastric adenocarcinoma. Bone marrow chimeras revealed that NF-κB1 exerted tumor suppressive functions in both epithelial and hematopoietic cells. RNA-seq analysis showed that NF-κB1 deficiency resulted in aberrant JAK-STAT signaling, which dysregulated expression of effectors of inflammation, antigen presentation, and immune checkpoints. Concomitant loss of STAT1 prevented these immune abnormalities and GC development. These findings provide mechanistic insight into how polymorphisms that attenuate NFKB1 expression predispose humans to epithelial cancers, highlighting the pro-tumorigenic activity of STAT1 and identifying targetable vulnerabilities in GC.
Collapse
Affiliation(s)
- Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelvin Yaprianto
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guido Pacini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Richard L Ferrero
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Raffi Gugasyan
- Healthy Ageing, Life Sciences Discipline, The Burnet Institute, Melbourne, Victoria 3004, Australia; Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Michael Christie
- Centre for Translational Pathology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Raelene Grumont
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Liam O'Connor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mathias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Paul Waring
- Department of Pathology, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Steve Gerondakis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Victoria, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Athale S, Banchereau R, Thompson-Snipes L, Wang Y, Palucka K, Pascual V, Banchereau J. Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets. Sci Transl Med 2017; 9:9/382/eaaf9194. [PMID: 28330867 DOI: 10.1126/scitranslmed.aaf9194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022]
Abstract
Human dendritic cells (DCs) play a fundamental role in the initiation of long-term adaptive immunity during vaccination against influenza. Understanding the early response of human DCs to vaccine exposure is thus essential to determine the nature and magnitude of maturation signals that have been shown to strongly correlate with vaccine effectiveness. In 2009, the H1N1 influenza epidemics fostered the commercialization of the nonadjuvanted monovalent H1N1 California vaccine (MIV-09) to complement the existing nonadjuvanted trivalent Fluzone 2009-2010 vaccine (TIV-09). In retrospective studies, MIV-09 displayed lower effectiveness than TIV-09. We show that TIV-09 induces monocyte-derived DCs (moDCs), blood conventional DCs (cDCs), and plasmacytoid DCs (pDCs) to express CD80, CD83, and CD86 and secrete cytokines. TIV-09 stimulated the secretion of type I interferons (IFNs) IFN-α and IFN-β and type III IFN interleukin-29 (IL-29) by moDC and cDC subsets. The vaccine also induced the production of IL-6, tumor necrosis factor, and the chemokines IFN-γ-inducible protein 10 (IP-10) and macrophage inflammatory protein-1β (MIP-1β). Conversely, MIV-09 did not induce the production of type I IFNs in moDCs and blood cDCs. Furthermore, it inhibited the TIV-09-induced secretion of type I IFNs by these DCs. However, both vaccines induced pDCs to secrete type I IFNs, indicating that different influenza vaccines activate distinct molecular signaling pathways in DC subsets. These results suggest that subtypes of nonadjuvanted influenza vaccines trigger immunity through different mechanisms and that the ability of a vaccine to induce an IFN response in DCs may offset the absence of adjuvant and increase vaccine efficacy.
Collapse
Affiliation(s)
- Shruti Athale
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | - Yuanyuan Wang
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | - Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
16
|
Jayesh K, Helen LR, Vysakh A, Binil E, Latha M. Ethyl acetate fraction of Terminalia bellirica (Gaertn.) Roxb. fruits inhibits proinflammatory mediators via down regulating nuclear factor-κB in LPS stimulated Raw 264.7 cells. Biomed Pharmacother 2017; 95:1654-1660. [DOI: 10.1016/j.biopha.2017.09.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
|
17
|
The NF-κB1 is a key regulator of acute but not chronic renal injury. Cell Death Dis 2017; 8:e2883. [PMID: 28617440 PMCID: PMC5584573 DOI: 10.1038/cddis.2017.233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
The NF-κB family of transcription factors is important for many cellular functions, in particular initiation and propagation of inflammatory and immune responses. However, recent data has suggested that different subunits of the NF-κB family can suppress the inflammatory response. NF-κB1, from the locus nfκb1, can inhibit transcription, acting as a brake to the recognised pro-inflammatory activity of other NF-κB subunits. We tested the function of NF-κB1 in an acute (nephrotoxic serum (NTS) nephritis) and a chronic (unilateral ureteric obstruction (UUO)) model of renal injury using NF-κB1 (nfκb1−/−) knockout mice. Deficiency in NF-κB1 increased the severity of glomerular injury in NTS-induced nephritis and was associated with greater proteinuria and persistent pro-inflammatory gene expression. Induction of disease in bone marrow chimeric mice demonstrated that the absence of NF-κB1 in either bone marrow or glomerular cells increased the severity of injury. Early after UUO (day 3) there was more severe histological injury in the nfκb1−/− mice but by day 10, disease severity was equivalent in wild type and nfκb1−/− mice. In conclusion, NF-κB1 modifies acute inflammatory renal injury but does not influence chronic fibrotic injury.
Collapse
|
18
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
19
|
Coordinated Regulation of Signaling Pathways during Macrophage Activation. Microbiol Spectr 2016; 4. [PMID: 27780013 DOI: 10.1128/microbiolspec.mchd-0025-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional and phenotypic diversity of macrophages has long been appreciated, and it is now clear that it reflects a complex interplay between hard-wired differentiation pathways and instructive signals in specific tissues (Lawrence T, Natoli G. 2011, Nat Rev Immunol11:750-761). Recent studies have begun to unravel the molecular basis for the integration of these intrinsic developmental pathways with extracellular signals from the tissue microenvironment that confer the distinct phenotypes of tissue-resident macrophages (Lavin Y et al. 2014. Cell159:1312-1326; Gosselin D et al. 2014. Cell159:1327-1340). Macrophage phenotype and function is particularly dynamic during inflammation or infection, as blood monocytes are recruited into tissues and differentiate into macrophages, and depending on the nature of the inflammatory stimulus, they may acquire distinct functional phenotypes (Xue J et al. 2014. Immunity40:274-288; Murray PJ et al. 2014. Immunity41:14-20). Furthermore, these functional activation states can be rapidly modified in response to a changing microenvironment. Here we will discuss several key signaling pathways that drive macrophage activation during the inflammatory response and discuss how these pathways are integrated to "fine-tune" macrophage phenotype and function.
Collapse
|
20
|
Mattiola I, Pesant M, Tentorio PF, Molgora M, Marcenaro E, Lugli E, Locati M, Mavilio D. Priming of Human Resting NK Cells by Autologous M1 Macrophages via the Engagement of IL-1β, IFN-β, and IL-15 Pathways. THE JOURNAL OF IMMUNOLOGY 2015; 195:2818-28. [PMID: 26276870 DOI: 10.4049/jimmunol.1500325] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/19/2015] [Indexed: 12/30/2022]
Abstract
The cross talk between NK cells and macrophages is emerging as a major line of defense against microbial infections and tumors. This study reveals a complex network of soluble mediators and cell-to-cell interactions allowing human classically activated (M1) macrophages, but not resting (M0) or alternatively activated (M2) macrophages, to prime resting autologous NK cells. In this article, we show that M1 increase NK cell cytotoxicity by IL-23 and IFN-β-dependent upregulation of NKG2D, IL-1β-dependent upregulation of NKp44, and trans-presentation of IL-15. Moreover, both IFN-β-dependent cis-presentation of IL-15 on NK cells and engagement of the 2B4-CD48 pathway are used by M1 to trigger NK cell production of IFN-γ. The disclosure of these synergic cellular mechanisms regulating the M1-NK cell cross talk provides novel insights to better understand the role of innate immune responses in the physiopathology of tumor biology and microbial infections.
Collapse
Affiliation(s)
- Irene Mattiola
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Matthieu Pesant
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Paolo F Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Martina Molgora
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, I-16132 Genoa, Italy
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy
| | - Massimo Locati
- Leukocyte Biology Unit, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, I-20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, I-20089 Rozzano, Milan, Italy; and
| |
Collapse
|
21
|
Martínez-Neri PA, López-Rincón G, Mancilla-Jiménez R, del Toro-Arreola S, Muñoz-Valle JF, Fafutis-Morris M, Bueno-Topete MR, Estrada-Chávez C, Pereira-Suárez AL. Prolactin modulates cytokine production induced by culture filtrate proteins of M. bovis through different signaling mechanisms in THP1 cells. Cytokine 2015; 71:38-44. [DOI: 10.1016/j.cyto.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/31/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
22
|
Schmid S, Sachs D, tenOever BR. Mitogen-activated protein kinase-mediated licensing of interferon regulatory factor 3/7 reinforces the cell response to virus. J Biol Chem 2013; 289:299-311. [PMID: 24275658 DOI: 10.1074/jbc.m113.519934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of the intrinsic antiviral defense in mammals relies on the accumulation of foreign genetic material. As such, complete engagement of this response is limited to replication-competent viruses. Interferon regulatory factors (IRFs) are mediators of this defense with shared enhancer elements but display a spectrum of transcriptional potential. Here we describe a mechanism designed to enhance this response should a pathogen not be successfully inhibited. We find that activation of IRF7 results in the induction of MAP3K8 and restructuring of the antiviral transcriptome. MAP3K8 mediates the phosphorylation and repression of IRF3 homodimers to promote greater transcriptional activity through utilization of IRF3:IRF7 heterodimers. Among the genes influenced by the MAP3K8/IRF7 signaling axis are members of the SP100 gene family that serve as general transcriptional enhancers of the antiviral defense. We propose that this feed forward loop serves to reinforce the cellular response and is reserved for imminent threats to the host.
Collapse
|
23
|
Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 2013; 32:116-33. [PMID: 23570313 DOI: 10.3109/08830185.2013.774391] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) play critical roles in host defense against microbes. In the past decade, growing numbers of in vitro, in vivo and in silico studies have been performed and revealed the physiological significance and structural basis of their ligands and signal transduction, which involves various extracellular, membrane-bound, cytoplasmic and nuclear signaling molecules for the activation of TLR signaling. However, negative regulation of TLR-mediated responses is also essential for the prevention of autoimmunity and is mediated by a number of molecules. In this review, we will introduce recent advances in the understanding of TLR biology in terms of their ligands and signaling pathways.
Collapse
Affiliation(s)
- Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
24
|
Gavala ML, Liu YP, Lenertz LY, Zeng L, Blanchette JB, Guadarrama AG, Denlinger LC, Bertics PJ, Smith JA. Nucleotide receptor P2RX7 stimulation enhances LPS-induced interferon-β production in murine macrophages. J Leukoc Biol 2013; 94:759-68. [PMID: 23911869 PMCID: PMC3774844 DOI: 10.1189/jlb.0712351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 05/22/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Stimulation of P2RX(7) with extracellular ATP potentiates numerous LPS-induced proinflammatory events, including cytokine induction in macrophages, but the molecular mechanisms underlying this process are not well defined. Although P2RX(7) ligation has been proposed to activate several transcription factors, many of the LPS-induced mediators affected by P2RX(7) activation are not induced by P2RX(7) agonists alone, suggesting a complementary role for P2RX(7) in transcriptional regulation. Type I IFN production, whose expression is tightly controlled by multiple transcription factors that form an enhanceosome, is critical for resistance against LPS-containing bacteria. The effect of purinergic receptor signaling on LPS-dependent type I IFN is unknown and would be of great relevance to a diverse array of inflammatory conditions. The present study demonstrates that stimulation of macrophages with P2RX(7) agonists substantially enhances LPS-induced IFN-β expression, and this enhancement is ablated in macrophages that do not express functional P2RX(7) or when the MAPK MEK1/2 pathways are inhibited. Potentiation of LPS-induced IFN-β expression following P2RX(7) stimulation is likely transcriptionally regulated, as this enhancement is observed at the IFN-β promoter level. Furthermore, P2RX(7) stimulation is able to increase the phosphorylation and subsequent IFN-β promoter occupancy of IRF-3, a transcription factor that is critical for IFN-β transcription by TLR agonists. This newly discovered role for P2RX(7) in IFN regulation may have implications in antimicrobial defense, which has been linked to P2RX(7) activation in other studies.
Collapse
Affiliation(s)
- M L Gavala
- 2.University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., CSC H4/472, Madison, WI 53792-9988, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yi PF, Wu YC, Dong HB, Guo Y, Wei Q, Zhang C, Song Z, Qin QQ, Lv S, Wu SC, Fu BD. Peimine impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-κB and MAPK in LPS-induced RAW264.7 macrophages. Immunopharmacol Immunotoxicol 2013; 35:567-72. [PMID: 23944357 DOI: 10.3109/08923973.2013.822508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the previous study, we found that peimine has good anti-inflammatory effects in vivo. However, the anti-inflammatory mechanism of peimine remains unclear. We, therefore, assessed the effects of peimine on inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that peimine (0-25 mg/L) significantly inhibited tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and increased IL-10 production. Furthermore, peimine significantly inhibited the phosphorylation of p38, ERK and c-jun N-terminal kinase (JNK) as well as decreased p65 and IκB. The present results indicate that peimine inhibits the production of inflammatory cytokines induced by LPS through blocking MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University , Changchun, Jilin , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
McNab FW, Ewbank J, Rajsbaum R, Stavropoulos E, Martirosyan A, Redford PS, Wu X, Graham CM, Saraiva M, Tsichlis P, Chaussabel D, Ley SC, O'Garra A. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. THE JOURNAL OF IMMUNOLOGY 2013; 191:1732-43. [PMID: 23842752 DOI: 10.4049/jimmunol.1300146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of mortality and morbidity worldwide, causing ≈ 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1, and TNF-α, as well as IFN-γ and CD4(+) Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I IFN have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to M. tuberculosis in murine models through the negative regulation of key proinflammatory cytokines and the subsequent Th1 response. We show in this study, using a combination of transcriptomic analysis, genetics, and pharmacological inhibitors, that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I IFN production. The TPL-2-ERK1/2 signaling pathway regulated production by macrophages of several cytokines important in the immune response to M. tuberculosis as well as regulating induction of a large number of additional genes, many in a type I IFN-dependent manner. In the absence of TPL-2 in vivo, excess type I IFN promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I IFN may promote susceptibility to this important disease.
Collapse
Affiliation(s)
- Finlay W McNab
- Division of Immunoregulation, Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Toll-like receptors (TLRs) are pivotal components of the innate immune response, which is responsible for eradicating invading microorganisms through the induction of inflammatory molecules. These receptors are also involved in responding to harmful endogenous molecules and have crucial roles in the activation of the innate immune system and shaping the adaptive immune response. However, TLR signaling pathways must be tightly regulated because undue TLR stimulation may disrupt the fine balance between pro- and anti-inflammatory responses. Such disruptions may harm the host through the development of autoimmune and inflammatory diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Several studies have investigated the regulatory pathways of TLRs that are essential for modulating proinflammatory responses. These studies reported several pathways and molecules that act individually or in combination to regulate immune responses. In this review, we have summarized recent advancements in the elucidation of the negative regulation of TLR signaling. Moreover, this review covers the modulation of TLR signaling at multiple levels, including adaptor complex destabilization, phosphorylation and ubiquitin-mediated degradation of signal proteins, manipulation of other receptors, and transcriptional regulation. Lastly, synthetic inhibitors have also been briefly discussed to highlight negative regulatory approaches in the treatment of inflammatory diseases.
Collapse
|
28
|
A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PLoS One 2013; 8:e51243. [PMID: 23405061 PMCID: PMC3566169 DOI: 10.1371/journal.pone.0051243] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/05/2012] [Indexed: 02/04/2023] Open
Abstract
Toll-like Receptors (TLR) are phylogenetically conserved transmembrane proteins responsible for detection of pathogens and activation of immune responses in diverse animal species. The stimulation of TLR by pathogen-derived molecules leads to the production of pro-inflammatory mediators including cytokines and nitric oxide. Although TLR-induced events are critical for immune induction, uncontrolled inflammation can be life threatening and regulation is a critical feature of TLR biology. We used an avian macrophage cell line (HD11) to determine the relationship between TLR agonist-induced activation of inflammatory responses and the transcriptional regulation of TLR. Exposure of macrophages to specific TLR agonists induced upregulation of cytokine and nitric oxide pathways that were inhibited by blocking various components of the TLR signalling pathways. TLR activation also led to changes in the levels of mRNA encoding the TLR responsible for recognising the inducing agonist (cognate regulation) and cross-regulation of other TLR (non-cognate regulation). Interestingly, in most cases, regulation of TLR mRNA was independent of NFκB activity but dependent on one or more of the MAPK pathway components. Moreover, the relative importance of ERK, JNK and p38 was dependent upon both the stimulating agonist and the target TLR. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR, immune induction and inflammation. Manipulation of these pathways during vaccination or management of acute inflammatory disease may lead to improved clinical outcome or enhanced vaccine efficacy.
Collapse
|
29
|
IκB kinase 2 regulates TPL-2 activation of extracellular signal-regulated kinases 1 and 2 by direct phosphorylation of TPL-2 serine 400. Mol Cell Biol 2012; 32:4684-90. [PMID: 22988300 DOI: 10.1128/mcb.01065-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tumor progression locus 2 (TPL-2) functions as a MEK-1/2 kinase, which is essential for Toll-like receptor 4 (TLR4) activation of extracellular signal-regulated kinase 1 and 2 (ERK-1/2) mitogen-activated protein (MAP) kinases in lipopolysaccharide (LPS)-stimulated macrophages and for inducing the production of the proinflammatory cytokines tumor necrosis factor and interleukin-1β. In unstimulated cells, association of TPL-2 with NF-κB1 p105 prevents TPL-2 phosphorylation of MEK-1/2. LPS stimulation of TPL-2 MEK-1/2 kinase activity requires TPL-2 release from p105. This is triggered by IκB kinase 2 (IKK-2) phosphorylation of the p105 PEST region, which promotes p105 ubiquitination and degradation by the proteasome. LPS activation of ERK-1/2 additionally requires transphosphorylation of TPL-2 on serine 400 in its C terminus, which controls TPL-2 signaling to ERK-1/2 independently of p105. However, the identity of the protein kinase responsible for TPL-2 serine 400 phosphorylation remained unknown. In the present study, we show that TPL-2 serine 400 phosphorylation is mediated by IKK2. The IKK complex therefore regulates two of the key regulatory steps required for TPL-2 activation of ERK-1/2, underlining the close linkage of ERK-1/2 MAP kinase activation to upregulation of NF-κB-dependent transcription.
Collapse
|
30
|
Fang G, Song D, Ye X, Mao SZ, Liu G, Liu SF. Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1530-9. [PMID: 22940439 DOI: 10.1016/j.ajpath.2012.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 01/12/2023]
Abstract
Current animal models of chronic intermittent hypoxia (CIH)-induced atherosclerosis have limitations. Mechanisms of CIH-induced atherosclerosis are poorly understood. This study tested new mouse models of CIH-induced atherosclerosis and defined the role of NF-κB p50 in CIH-induced atherosclerosis. Mice deficient in apolipoprotein E (ApoE-KO) or in both ApoE and p50 genes (ApoE-p50-DKO) were exposed to sham or CIH. Atherosclerotic lesions on aortic preparations were analyzed. CIH exposure caused atherosclerosis in ApoE-KO mice fed a normal chow diet and with no preexisting atherosclerotic condition in an exposure time-dependent manner. CIH caused more pronounced atherosclerotic lesions in ApoE-p50-DKO mice on a normal chow diet without preexisting atherosclerosis. ApoE-KO and ApoE-p50-DKO mice exposed to CIH for 30 and 9 weeks, respectively, displayed similar areas of atherosclerotic lesions on cross sections of aortic root. P50 gene deletion in ApoE-p50-DKO mice significantly augmented CIH-induced serum levels of tumor necrosis factor-α and IL-6, aortic tumor necrosis factor-α, and inducible nitric oxide synthase expression and aortic infiltration of Mac3-positive macrophages. CIH caused a greater elevation in serum cholesterol level in ApoE-p50-DKO than in ApoE-KO mice. CIH down-regulated hepatic low-density lipoprotein receptor and HMG-CoA reductase expression in ApoE-p50-DKO but not in ApoE-KO mice. We found two new mouse models that are useful for studying mechanisms and pathways of CIH-induced atherosclerosis. We showed that NF-κB p50 protects against CIH-induced atherosclerosis by inhibiting vascular inflammation and hypercholesterolemia.
Collapse
Affiliation(s)
- Guoqiang Fang
- Centers for Heart and Lung Research, and Pulmonary and Sleep Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | |
Collapse
|
31
|
Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer's disease. J Neuroinflammation 2012; 9:105. [PMID: 22642812 PMCID: PMC3416679 DOI: 10.1186/1742-2094-9-105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human intravenous immunoglobulin (hIVIG) preparation is indicated for treating primary immunodeficiency disorders associated with impaired humoral immunity. hIVIG is known for its anti-inflammatory properties and a decent safety profile. Therefore, by virtue of its constituent natural anti-amyloid beta antibodies and anti-inflammatory effects, hIVIG is deemed to mediate beneficial effects to patients of Alzheimer's disease (AD). Here, we set out to explore the effects of hIVIG in a mouse model of AD. METHODS We treated APP/PS1dE9 transgenic and wild-type mice with weekly injections of a high hIVIG dose (1 g/kg) or saline for 3 or 8 months. Treatment effect on brain amyloid pathology and microglial reactivity was assessed by ELISA, immunohistochemistry, RT-PCR, and confocal microscopy. RESULTS We found no evidence for reduction in Aβ pathology; instead 8 months of hIVIG treatment significantly increased soluble levels of Aβ40 and Aβ42. In addition, we noticed a significant reduction in CD45 and elevation of Iba-1 markers in specific sub-populations of microglial cells. Long-term hIVIG treatment also resulted in significant suppression of TNF-α and increase in doublecortin positive adult-born neurons in the dentate gyrus. CONCLUSIONS Our data indicate limited ability of hIVIG to impact amyloid burden but shows changes in microglia, pro-inflammatory gene expression, and neurogenic effects. Immunomodulation by hIVIG may account for its beneficial effect in AD patients.
Collapse
Affiliation(s)
- Lakshman Puli
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IκB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev 2012; 246:168-82. [DOI: 10.1111/j.1600-065x.2012.01104.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Zhao X, Ross EJ, Wang Y, Horwitz BH. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms. PLoS One 2012; 7:e32811. [PMID: 22427889 PMCID: PMC3299705 DOI: 10.1371/journal.pone.0032811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb) and IL-12 p40 (Il12b) gene expression in macrophages following LPS stimulation have not been directly compared. Methodology/Principal Findings We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN) in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A) that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. Conclusions These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.
Collapse
Affiliation(s)
- Xixing Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Erik J. Ross
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yanyan Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bruce H. Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Emergency Medicine, Children's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|