1
|
Abstract
Species differences in IgG Fc–Fcγ receptor (FcγR) interactions have made humanized mouse models an attractive strategy to evaluate the efficacy and toxicity of human antibodies. We previously published a humanized FcγR mouse model that fully recapitulates the expression and function of these receptors in vivo. However, the immunogenicity of exogenous human IgG has made long-term assessment of antibody function challenging, since endogenous mouse anti-human IgG responses limit the duration and success of these studies. Here, we present a mouse strain that expresses human IgG1 and FcγRs, thereby conferring tolerance to chronic administration of human IgG and enabling functional assessment of antibodies. Because this strain is appropriate for chronic disease models, we expect that researchers will benefit from its use. Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex–mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.
Collapse
|
2
|
Shen CR, Jia XY, Luo W, Olaru F, Cui Z, Zhao MH, Borza DB. Laminin-521 is a Novel Target of Autoantibodies Associated with Lung Hemorrhage in Anti-GBM Disease. J Am Soc Nephrol 2021; 32:1887-1897. [PMID: 33893224 PMCID: PMC8455270 DOI: 10.1681/asn.2020101431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Antiglomerular basement membrane (anti-GBM) disease is characterized by GN and often pulmonary hemorrhage, mediated by autoantibodies that typically recognize cryptic epitopes within α345(IV) collagen-a major component of the glomerular and alveolar basement membranes. Laminin-521 is another major GBM component and a proven target of pathogenic antibodies mediating GN in animal models. Whether laminin-521 is a target of autoimmunity in human anti-GBM disease is not yet known. METHODS A retrospective study of circulating autoantibodies from 101 patients with anti-GBM/Goodpasture's disease and 85 controls used a solid-phase immunoassay to measure IgG binding to human recombinant laminin-521 with native-like structure and activity. RESULTS Circulating IgG autoantibodies binding to laminin-521 were found in about one third of patients with anti-GBM antibody GN, but were not detected in healthy controls or in patients with other glomerular diseases. Autoreactivity toward laminin-521 was significantly more common in patients with anti-GBM GN and lung hemorrhage, compared with those with kidney-limited disease (51.5% versus 23.5%, P=0.005). Antilaminin-521 autoantibodies were predominantly of IgG1 and IgG4 subclasses and significantly associated with lung hemorrhage (P=0.005), hemoptysis (P=0.008), and smoking (P=0.01), although not with proteinuria or serum creatinine at diagnosis. CONCLUSIONS Besides α345(IV) collagen, laminin-521 is another major autoantigen targeted in anti-GBM disease. Autoantibodies to laminin-521 may have the potential to promote lung injury in anti-GBM disease by increasing the total amount of IgG bound to the alveolar basement membranes.
Collapse
Affiliation(s)
- Cong-rong Shen
- Renal Division, Institute of Nephrology, Peking University First Hospital, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Xiao-yu Jia
- Renal Division, Institute of Nephrology, Peking University First Hospital, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Wentian Luo
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Florina Olaru
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhao Cui
- Renal Division, Institute of Nephrology, Peking University First Hospital, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Institute of Nephrology, Peking University First Hospital, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Dorin-Bogdan Borza
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee,Correspondence: Dr. Dorin-Bogdan Borza, Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 Dr. D. B. Todd, Jr. Boulevard, Nashville, TN 37208.
| |
Collapse
|
3
|
Manral P, Colon S, Bhave G, Zhao MH, Jain S, Borza DB. Peroxidasin Is a Novel Target of Autoantibodies in Lupus Nephritis. Kidney Int Rep 2019; 4:1004-1006. [PMID: 31317122 PMCID: PMC6611989 DOI: 10.1016/j.ekir.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Pallavi Manral
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Selene Colon
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gautam Bhave
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dorin-Bogdan Borza
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Luo W, Olaru F, Miner JH, Beck LH, van der Vlag J, Thurman JM, Borza DB. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Front Immunol 2018; 9:1433. [PMID: 29988342 PMCID: PMC6023961 DOI: 10.3389/fimmu.2018.01433] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/15/2023] Open
Abstract
Membranous nephropathy is an immune kidney disease caused by IgG antibodies that form glomerular subepithelial immune complexes. Proteinuria is mediated by complement activation, as a result of podocyte injury by C5b-9, but the role of specific complement pathways is not known. Autoantibodies-mediating primary membranous nephropathy are predominantly of IgG4 subclass, which cannot activate the classical pathway. Histologic evidence from kidney biopsies suggests that the lectin and the alternative pathways may be activated in membranous nephropathy, but the pathogenic relevance of these pathways remains unclear. In this study, we evaluated the role of the alternative pathway in a mouse model of membranous nephropathy. After inducing the formation of subepithelial immune complexes, we found similar glomerular IgG deposition in wild-type mice and in factor B-null mice, which lack a functional alternative pathway. Unlike wild-type mice, mice lacking factor B did not develop albuminuria nor exhibit glomerular deposition of C3c and C5b-9. Albuminuria was also reduced but not completely abolished in C5-deficient mice. Our results provide the first direct evidence that the alternative pathway is necessary for pathogenic complement activation by glomerular subepithelial immune complexes and is, therefore, a key mediator of proteinuria in experimental membranous nephropathy. This knowledge is important for the rational design of new therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States
| | - Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, United States
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Laurence H Beck
- Division of Nephrology, Boston University Medical Center, Boston, MA, United States
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dorin-Bogdan Borza
- Vanderbilt Center for Kidney Disease, Vanderbilt Division of Nephrology, Nashville, TN, United States.,Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
5
|
Pedchenko V, Kitching AR, Hudson BG. Goodpasture's autoimmune disease - A collagen IV disorder. Matrix Biol 2018; 71-72:240-249. [PMID: 29763670 DOI: 10.1016/j.matbio.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/10/2018] [Indexed: 02/04/2023]
Abstract
Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease. These advances provide further insights into molecular mechanisms of initiation and progression of GP disease and serve as a basis for developing of novel diagnostic tools and therapies for treatment of Goodpasture's disease.
Collapse
Affiliation(s)
- Vadim Pedchenko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States; Center for Matrix Biology, Department of Biochemistry, Department of Pathology, Microbiology and Immunology, Department of Cell and Developmental Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - A Richard Kitching
- Centre for inflammatory diseases, Monash University Department of Medicine, 246 Clayton Rd, Clayton, VIC 3168, Australia; Department of Nephrology, Monash Health, 246 Clayton Rd, Clayton, VIC 3168, Australia; Department and Pediatric Nephrology, Monash Health, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States; Center for Matrix Biology, Department of Biochemistry, Department of Pathology, Microbiology and Immunology, Department of Cell and Developmental Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Abstract
Basement membrane components are targets of autoimmune attack in diverse diseases that destroy kidneys, lungs, skin, mucous membranes, joints, and other organs in man. Epitopes on collagen and laminin, in particular, are targeted by autoantibodies and T cells in anti-glomerular basement membrane glomerulonephritis, Goodpasture's disease, rheumatoid arthritis, post-lung transplant bronchiolitis obliterans syndrome, and multiple autoimmune dermatoses. This review examines major diseases linked to basement membrane autoreactivity, with a focus on investigations in patients and animal models that advance our understanding of disease pathogenesis. Autoimmunity to glomerular basement membrane type IV is discussed in depth as a prototypic organ-specific autoimmune disease yielding novel insights into the complexity of anti-basement membrane immunity and the roles of genetic and environmental susceptibility.
Collapse
|
7
|
Foster MH, Buckley ES, Chen BJ, Hwang KK, Clark AG. Uncommon structural motifs dominate the antigen binding site in human autoantibodies reactive with basement membrane collagen. Mol Immunol 2016; 76:123-33. [PMID: 27450516 PMCID: PMC4979994 DOI: 10.1016/j.molimm.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Autoantibodies mediate organ destruction in multiple autoimmune diseases, yet their origins in patients remain poorly understood. To probe the genetic origins and structure of disease-associated autoantibodies, we engrafted immunodeficient mice with human CD34+ hematopoietic stem cells and immunized with the non-collagenous-1 (NC1) domain of the alpha3 chain of type IV collagen. This antigen is expressed in lungs and kidneys and is targeted by autoantibodies in anti-glomerular basement membrane (GBM) nephritis and Goodpasture syndrome (GPS), prototypic human organ-specific autoimmune diseases. Using Epstein Barr virus transformation and cell fusion, six human anti-alpha3(IV)NC1 collagen monoclonal autoantibodies (mAb) were recovered, including subsets reactive with human kidney and with epitopes recognized by patients' IgG. Sequence analysis reveals a long to exceptionally long heavy chain complementarity determining region3 (HCDR3), the major site of antigen binding, in all six mAb. Mean HCDR3 length is 25.5 amino acids (range 20-36), generated from inherently long DH and JH genes and extended regions of non-templated N-nucleotides. Long HCDR3 are suited to forming noncontiguous antigen contacts and to binding recessed, immunologically silent epitopes hidden from conventional antibodies, as seen with self-antigen crossreactive broadly neutralizing anti-HIV Ig (bnAb). The anti-alpha3(IV)NC1 collagen mAb also show preferential use of unmutated variable region genes that are enriched among human chronic lymphocytic leukemia antibodies that share features with natural polyreactive Ig. Our findings suggest unexpected relationships between pathogenic anti-collagen Ig, bnAb, and autoreactive Ig associated with malignancy, all of which arise from B cells expressing unconventional structural elements that may require transient escape from tolerance for successful expansion.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Durham VA Medical Center, Durham, N.C., USA; Duke Cancer Institute, Duke University Medical Center, Durham, N.C., USA.
| | | | - Benny J Chen
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Duke Cancer Institute, Duke University Medical Center, Durham, N.C., USA.
| | - Kwan-Ki Hwang
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, N.C., USA.
| | - Amy G Clark
- Department of Medicine, Duke University Medical Center, Durham, N.C., USA; Durham VA Medical Center, Durham, N.C., USA.
| |
Collapse
|
8
|
Glassock RJ. Atypical anti-glomerular basement membrane disease: lessons learned. Clin Kidney J 2016; 9:653-6. [PMID: 27679709 PMCID: PMC5036901 DOI: 10.1093/ckj/sfw068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/12/2022] Open
Abstract
Anti-glomerular basement membrane (GBM) disease usually pursues a self-limited course, at least from the immunological perspective. In addition, circulating antibodies to cryptic, conformational epitopes within the NC1 domain of the alpha 3 chain of Type IV Collagen are commonly found at the zenith of the clinical disease. However, exceptions to these general rules do occur, as exemplified by two remarkable cases reported in this issue of the Clinical Kidney Journal. The possible explanations for and the lessons learned from these uncommon occurrences are discussed in this short commentary.
Collapse
Affiliation(s)
- Richard J Glassock
- David Geffen School of Medicine at UCLA , Laguna Niguel, Los Angeles, CA , USA
| |
Collapse
|
9
|
Foster MH. Optimizing the translational value of animal models of glomerulonephritis: insights from recent murine prototypes. Am J Physiol Renal Physiol 2016; 311:F487-95. [PMID: 27335377 DOI: 10.1152/ajprenal.00275.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023] Open
Abstract
Animal models are indispensable for the study of glomerulonephritis, a group of diseases that destroy kidneys but for which specific therapies do not yet exist. Novel interventions are urgently needed, but their rational design requires suitable in vivo platforms to identify and test new candidates. Animal models can recreate the complex immunologic microenvironments that foster human autoimmunity and nephritis and provide access to tissue compartments not readily examined in patients. Study of rat Heymann nephritis identified fundamental disease mechanisms that ultimately revolutionized our understanding of human membranous nephropathy. Significant species differences in expression of a major target antigen, however, and lack of spontaneous autoimmunity in animals remain roadblocks to full exploitation of preclinical models in this disease. For several glomerulonephritides, humanized models have been developed to circumvent cross-species barriers and to study the effects of human genetic risk variants. Herein we review humanized mouse prototypes that provide fresh insight into mediators of IgA nephropathy and origins of antiglomerular basement membrane nephritis and Goodpasture's disease, as well as a means to test novel therapies for ANCA vasculitis. Additional and refined model systems are needed to mirror the full spectrum of human disease in a genetically diverse population, to facilitate development of patient-specific interventions, to determine the origin of nephritogenic autoimmunity, and to define the role of environmental exposures in disease initiation and relapse.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; and Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
10
|
Worni-Schudel IM, Clark AG, Chien T, Hwang KK, Chen BJ, Foster MH. Recovery of a human natural antibody against the noncollagenous-1 domain of type IV collagen using humanized models. J Transl Med 2015; 13:185. [PMID: 26048777 PMCID: PMC4467618 DOI: 10.1186/s12967-015-0539-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/14/2015] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Anti-glomerular basement membrane nephritis and Goodpasture syndrome result from autoantibody (Ab)-mediated destruction of kidney and lung. Ab target the noncollagenous 1 (NC1) domain of alpha3(IV) collagen, but little is known about Ab origins or structure. This ignorance is due in part to the inability to recover monoclonal Ab by transformation of patients' blood cells. The aim of this study was to assess the suitability of two humanized models for this purpose. METHODS NOD-scid-gamma immunodeficient mice were engrafted either with human CD34+ hematopoietic stem cells (HSC) (Hu-HSC mice) and immunized with alpha3(IV)NC1 collagen containing the Goodpasture epitopes or with nephritis patients' peripheral blood leukocytes (PBL) (Hu-PBL mice). After in vivo immune cell development and/or expansion, recovered human B cells were Epstein Barr virus (EBV)-transformed, screened for antigen (Ag) binding, electrofused with a mouse-human heterohybridoma, subcloned, and human Ab RNA sequenced by PCR after reverse transcription to cDNA. Flow cytometry was used to assess human B cell markers and differentiation in Hu-PBL mice. RESULTS Sequence analysis of a human Ab derived from an immunized Hu-HSC mouse and reactive with alpha3(IV)NC1 collagen reveals that it is encoded by unmutated heavy and light chain genes. The heavy chain complementarity determining region 3, a major determinant of Ag binding, contains uncommon motifs, including an N-region somatically-introduced highly hydrophobic tetrapeptide and dual cysteines encoded by a uniquely human IGHD2-2 Ab gene segment that lacks a murine counterpart. Comparison of human and mouse autoantibodies suggests that structurally similar murine Ab may arise by convergent selection. In contrast to the Hu-HSC model, transformed human B cells are rarely recovered from Hu-PBL mice, in which human B cells terminally differentiate and lose expression of EBV receptor CD21, thus precluding their transformation and recovery. CONCLUSIONS Hu-HSC mice reveal that potentially pathogenic B cells bearing unmutated Ig receptors reactive with the NC1 domain on alpha3(IV) collagen can be generated in, and not purged from, the human preimmune repertoire. Uniquely human gene elements are recruited to generate the antigen binding site in at least a subset of these autoantibodies, indicating that humanized models may provide insights inaccessible using conventional mouse models.
Collapse
Affiliation(s)
| | - Amy G Clark
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Durham VA Medical Center, Durham, NC, USA.
| | - Tiffany Chien
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Kwan-Ki Hwang
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| | - Benny J Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| | - Mary H Foster
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Durham VA Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
11
|
Hopfer H, Hünemörder S, Treder J, Turner JE, Paust HJ, Meyer-Schwesinger C, Hopfer U, Sachs M, Peters A, Bucher-Kocaoglu B, Ahrens S, Panzer U, Mittrücker HW. Glomerulopathy induced by immunization with a peptide derived from the goodpasture antigen α3IV-NC1. THE JOURNAL OF IMMUNOLOGY 2015; 194:3646-55. [PMID: 25769923 DOI: 10.4049/jimmunol.1401267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/13/2015] [Indexed: 01/08/2023]
Abstract
Mouse experimental autoimmune glomerulonephritis, a model of human antiglomerular basement membrane disease, depends on both Ab and T cell responses to the Goodpasture Ag noncollagenous domain 1 of the α3-chain of type IV collagen (α3IV-NC1). The aim of our study was to further characterize the T cell-mediated immune response. Repeated immunization with mouse α3IV-NC1 caused fatal glomerulonephritis in DBA/1 mice. Although two immunizations were sufficient to generate high α3IV-NC1-specific IgG titers, Ab and complement deposition along the glomerular basement membranes, and a nephrotic syndrome, two additional immunizations were needed to induce a necrotizing/crescentic glomerulonephritis. Ten days after the first immunization, α3IV-NC1-specific CD4(+) cells producing TNF-α, IFN-γ, or IL-17A were detected in the spleen. With the emergence of necrotizing/crescentic glomerulonephritis, ∼0.15% of renal CD4(+) cells were specific for α3IV-NC1. Using peptides spanning the whole α3IV-NC1 domain, three immunodominant T cell epitopes were identified. Immunization with these peptides did not lead to clinical signs of experimental autoimmune glomerulonephritis or necrotizing/crescentic glomerulonephritis. However, mice immunized with one of the peptides (STVKAGDLEKIISRC) developed circulating Abs against mouse α3IV-NC1 first detected at 8 wk, and 50% of the mice showed mild proteinuria at 18-24 wk due to membranous glomerulopathy. Taken together, our results suggest that autoreactive T cells are able to induce the formation of pathologic autoantibodies. The quality and quantity of α3IV-NC1-specific Ab and T cell responses are critical for the phenotype of the glomerulonephritis.
Collapse
Affiliation(s)
- Helmut Hopfer
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland; Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Stefanie Hünemörder
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| | - Julia Treder
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| | - Jan-Eric Turner
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hans-Joachim Paust
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Ulrike Hopfer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marlies Sachs
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anett Peters
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Stefanie Ahrens
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| | - Ulf Panzer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; and
| |
Collapse
|
12
|
Olaru F, Luo W, Suleiman H, St John PL, Ge L, Mezo AR, Shaw AS, Abrahamson DR, Miner JH, Borza DB. Neonatal Fc receptor promotes immune complex-mediated glomerular disease. J Am Soc Nephrol 2013; 25:918-25. [PMID: 24357670 DOI: 10.1681/asn.2013050498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex-mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex-mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG.
Collapse
Affiliation(s)
- Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wentian Luo
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Patricia L St John
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Linna Ge
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Adam R Mezo
- Biogen Idec Hemophilia, Waltham, Massachusetts; and
| | | | - Dale R Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri
| | - Dorin-Bogdan Borza
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
13
|
Florea F, Bernards C, Caproni M, Kleindienst J, Hashimoto T, Koch M, Sitaru C. Ex vivo pathogenicity of anti-laminin γ1 autoantibodies. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:494-506. [PMID: 24300951 DOI: 10.1016/j.ajpath.2013.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
Abstract
Autoimmunity against laminins has been described in several autoimmune diseases (including mucous membrane pemphigoid, anti-laminin γ1 pemphigoid, and connective tissue diseases), in pregnancy loss, and in infections such as Chagas disease. Except for anti-laminin-332 mucous membrane pemphigoid, adequate evidence has been lacking for the tissue injury potential of laminin-specific antibodies and the pathogenic epitopes. We evaluated the pathogenic potential of antibodies targeting laminin γ1, a major constituent of basement membranes and the main antigen in anti-laminin γ1 pemphigoid. Rabbit antibodies were generated against fragments of the N-terminus and C-terminus of murine laminin γ1, and their ability to disrupt ligand interactions and/or to activate complement and granulocytes was assessed using previously established ex vivo assays. Our findings document a pathogenic potential of antibodies targeting the laminin γ1 N-terminus. These antibodies interfere with the binding of nidogen to laminin and can activate granulocytes and the complement cascade. We detected antibodies with different degrees of reactivity with laminin γ1 N-terminus in patients with anti-laminin γ1 pemphigoid, cutaneous lupus erythematosus, and scleroderma. Our results provide mechanistic insights into the tissue damage associated with laminin autoimmunity and could facilitate development of appropriate diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Florina Florea
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Bernards
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, and Center for Molecular Medicine Cologne (CMMC), Medical Center, University of Cologne, Cologne, Germany
| | - Marzia Caproni
- Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Jessika Kleindienst
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, and Center for Molecular Medicine Cologne (CMMC), Medical Center, University of Cologne, Cologne, Germany
| | - Cassian Sitaru
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Olaru F, Luo W, Wang XP, Ge L, Hertz JM, Kashtan CE, Sado Y, Segal Y, Hudson BG, Borza DB. Quaternary epitopes of α345(IV) collagen initiate Alport post-transplant anti-GBM nephritis. J Am Soc Nephrol 2013; 24:889-95. [PMID: 23620401 DOI: 10.1681/asn.2012100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alport post-transplant nephritis (APTN) is an aggressive form of anti-glomerular basement membrane disease that targets the allograft in transplanted patients with X-linked Alport syndrome. Alloantibodies develop against the NC1 domain of α5(IV) collagen, which occurs in normal kidneys, including renal allografts, forming distinct α345(IV) and α1256(IV) networks. Here, we studied the roles of these networks as antigens inciting alloimmunity and as targets of nephritogenic alloantibodies in APTN. We found that patients with APTN, but not those without nephritis, produce two kinds of alloantibodies against allogeneic collagen IV. Some alloantibodies targeted alloepitopes within α5NC1 monomers, shared by α345NC1 and α1256NC1 hexamers. Other alloantibodies specifically targeted alloepitopes that depended on the quaternary structure of α345NC1 hexamers. In Col4a5-null mice, immunization with native forms of allogeneic collagen IV exclusively elicited antibodies to quaternary α345NC1 alloepitopes, whereas alloimmunogens lacking native quaternary structure elicited antibodies to shared α5NC1 alloepitopes. These results imply that quaternary epitopes within α345NC1 hexamers may initiate alloimmune responses after transplant in X-linked Alport patients. Thus, α345NC1 hexamers are the culprit alloantigen and primary target of all alloantibodies mediating APTN, whereas α1256NC1 hexamers become secondary targets of anti-α5NC1 alloantibodies. Reliable detection of alloantibodies by immunoassays using α345NC1 hexamers may improve outcomes by facilitating early, accurate diagnosis.
Collapse
Affiliation(s)
- Florina Olaru
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A human monoclonal antibody against the collagen type IV α3NC1 domain is a non-invasive optical biomarker for glomerular diseases. Kidney Int 2013; 84:403-8. [PMID: 23515049 DOI: 10.1038/ki.2013.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 11/09/2022]
Abstract
Progressive kidney disease is a significant clinical problem. However, despite research aimed toward developing improved predictors of disease, the major tool to assess kidney ultrastructure damage is the kidney biopsy. Here we tested the capability of a labeled human monoclonal antibody (F1.1), directed against the NC1 domain of α3(IV) collagen, to detect pathologic kidney alterations in vivo using mouse models of nephrotoxic serum-induced nephritis and puromycin aminoglycoside nephrosis. The F1.1 antibody-fluorophore conjugate signal rapidly localized specifically to injured glomeruli in both the severe and mild kidney disease models while minimally labeling healthy kidney. This differential labeling is likely due to cryptic NC1-domain exposure as enzymatic or chemical treatment of healthy human or mouse kidney sections significantly increased F1.1 binding to the glomeruli. Finally, kidney tissue from patients with renal disease show significant glomerular staining by F1.1 indicating that exposure of the NC1 domain occurs in clinically relevant circumstances. Thus, NC1 domain exposure may represent an in situ biomarker for assessment of kidney injury. Our study suggests that F1.1 and similar antibodies may represent a new class of non-invasive renal imaging reagents.
Collapse
|
16
|
Olaru F, Wang XP, Luo W, Ge L, Miner JH, Kleinau S, Geiger XJ, Wasiluk A, Heidet L, Kitching AR, Borza DB. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-glomerular basement membrane autoantibodies specific for α345NC1 hexamers. THE JOURNAL OF IMMUNOLOGY 2013; 190:1424-32. [PMID: 23303673 DOI: 10.4049/jimmunol.1202204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Goodpasture disease is an autoimmune kidney disease mediated by autoantibodies against noncollagenous domain 1 (NC1) monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis (GN). We identified a novel type of human IgG4-restricted anti-GBM autoantibodies associated with mild nonprogressive GN, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoantibodies were investigated in mouse models recapitulating this phenotype. Wild-type and FcγRIIB(-/-) mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoantibodies specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause GN. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3(-/-) Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG Abs specific for α345NC1 hexamers, which were not subclass restricted. As heterologous Ag in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a, and IgG2b autoantibodies specific for α345NC1 hexamers and induced anti-GBM Ab GN. These findings indicate that tolerance toward autologous intact α345(IV) collagen is established in hosts expressing this Ag, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α345NC1 hexamers. This provides a mechanism eliciting autoantibodies specific for α345NC1 hexamers, which are restricted to noninflammatory IgG subclasses and are nonnephritogenic. In Alport syndrome, lack of tolerance toward α345(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including proinflammatory IgG subclasses that mediate posttransplant anti-GBM nephritis.
Collapse
Affiliation(s)
- Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Licarete E, Ganz S, Recknagel MJ, Di Zenzo G, Hashimoto T, Hertl M, Zambruno G, Hundorfean G, Mudter J, Neurath MF, Bruckner-Tuderman L, Sitaru C. Prevalence of collagen VII-specific autoantibodies in patients with autoimmune and inflammatory diseases. BMC Immunol 2012; 13:16. [PMID: 22471736 PMCID: PMC3368718 DOI: 10.1186/1471-2172-13-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/04/2012] [Indexed: 11/20/2022] Open
Abstract
Background Autoimmunity to collagen VII is typically associated with the skin blistering disease epidermolysis bullosa acquisita (EBA), but also occurs occasionally in patients with systemic lupus erythematosus or inflammatory bowel disease. The aim of our present study was to develop an accurate immunoassay for assessing the presence of autoantibodies against collagen VII in large cohorts of patients and healthy donors. Methods Based on in silico antigenic analysis and previous wetlab epitope mapping data, we designed a chimeric collagen VII construct containing all collagen VII epitopes with higher antigenicity. ELISA was performed with sera from patients with EBA (n = 50), Crohn's disease (CD, n = 50), ulcerative colitis (UC, n = 50), bullous pemphigoid (BP, n = 76), and pemphigus vulgaris (PV, n = 42) and healthy donors (n = 245). Results By ELISA, the receiver operating characteristics analysis yielded an area under the curve of 0.98 (95% CI: 0.9638-1.005), allowing to set the cut-off at 0.32 OD at a calculated specificity of 98% and a sensitivity of 94%. Running the optimized test showed that serum IgG autoantibodies from 47 EBA (94%; 95% CI: 87.41%-100%), 2 CD (4%; 95% CI: 0%-9.43%), 8 UC (16%; 95% CI: 5.8%-26%), 2 BP (2.63%; 95% CI: 0%-6.23%), and 4 PV (9.52%; 95% CI: 0%-18.4%) patients as well as from 4 (1.63%; 95% CI: 0%-3.21%) healthy donors reacted with the chimeric protein. Further analysis revealed that in 34%, 37%, 16% and 100% of sera autoantibodies of IgG1, IgG2, IgG3, and IgG4 isotype, respectively, recognized the recombinant autoantigen. Conclusions Using a chimeric protein, we developed a new sensitive and specific ELISA to detect collagen specific antibodies. Our results show a low prevalence of collagen VII-specific autoantibodies in inflammatory bowel disease, pemphigus and bullous pemphigoid. Furthermore, we show that the autoimmune response against collagen VII is dominated by IgG4 autoantibodies. The new immunoassay should prove a useful tool for clinical and translational research and should improve the routine diagnosis and disease monitoring in diseases associated with collagen VII-specific autoimmunity.
Collapse
Affiliation(s)
- Emilia Licarete
- Department of Dermatology, University of Freiburg, Hauptstr, 7, Freiburg 79104, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hopfer H, Holzer J, Hünemörder S, Paust HJ, Sachs M, Meyer-Schwesinger C, Turner JE, Panzer U, Mittrücker HW. Characterization of the renal CD4+ T-cell response in experimental autoimmune glomerulonephritis. Kidney Int 2012; 82:60-71. [PMID: 22437418 DOI: 10.1038/ki.2012.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autoimmunity against the Goodpasture antigen α3IV-NC1 results in antiglomerular basement membrane glomerulonephritis. Although antibodies are central to the pathogenesis, there is good evidence for the participation of T cells in this disease. To define the contribution of T cells, we used the model of experimental autoimmune glomerulonephritis. Immunization of DBA/1 mice with α3IV-NC1 resulted in proteinuria, a biphasic course of the disease, and an eventual loss of kidney function. In the initial phase, the mice developed an α3IV-NC1-specific IgG response, had IgG deposition along the glomerular basement membrane, and steadily increased proteinuria, but only marginal signs of inflammation with limited leukocyte infiltration. After 9-13 weeks, mice proceeded to develop crescentic glomerulonephritis, extensive tubulointerstitial damage, and massive macrophage infiltration. T-cell infiltration was less pronounced, mostly confined to the interstitium, and T cells displayed an activated phenotype with a significant fraction of Th1 or Th17 CD4(+) T cells. Close examination revealed the presence of autoreactive T cells producing IFNγ upon restimulation with α3IV-NC1. Thus, our results suggest that accumulation of effector T cells, including autoreactive T cells, represents a critical step in the progression from mild glomerulonephritis, with limited glomerular damage, to severe crescentic glomerulonephritis accompanied by tubulointerstitial inflammation and loss of kidney function.
Collapse
Affiliation(s)
- Helmut Hopfer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang JJ, Malekpour M, Luo W, Ge L, Olaru F, Wang XP, Bah M, Sado Y, Heidet L, Kleinau S, Fogo AB, Borza DB. Murine membranous nephropathy: immunization with α3(IV) collagen fragment induces subepithelial immune complexes and FcγR-independent nephrotic syndrome. THE JOURNAL OF IMMUNOLOGY 2012; 188:3268-77. [PMID: 22371398 DOI: 10.4049/jimmunol.1103368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and a significant cause of end-stage renal disease, yet current therapies are nonspecific, toxic, and often ineffective. The development of novel targeted therapies requires a detailed understanding of the pathogenic mechanisms, but progress is hampered by the lack of a robust mouse model of disease. We report that DBA/1 mice as well as congenic FcγRIII(-/-) and FcRγ(-/-) mice immunized with a fragment of α3(IV) collagen developed massive albuminuria and nephrotic syndrome, because of subepithelial deposits of mouse IgG and C3 with corresponding basement membrane reaction and podocyte foot process effacement. The clinical presentation and histopathologic findings were characteristic of MN. Although immunized mice produced genuine anti-α3NC1 autoantibodies that bound to kidney and lung basement membranes, neither crescentic glomerulonephritis nor alveolitis ensued, likely because of the predominance of mouse IgG1 over IgG2a and IgG2b autoantibodies. The ablation of activating IgG Fc receptors did not ameliorate injury, implicating subepithelial deposition of immune complexes and consequent complement activation as a major effector pathway. We have thus established an active model of murine MN. This model, leveraged by the availability of genetically engineered mice and mouse-specific reagents, will be instrumental in studying the pathogenesis of MN and evaluating the efficacy of novel experimental therapies.
Collapse
Affiliation(s)
- Jun-Jun Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Goodpasture's disease: molecular architecture of the autoantigen provides clues to etiology and pathogenesis. Curr Opin Nephrol Hypertens 2011; 20:290-6. [PMID: 21378566 DOI: 10.1097/mnh.0b013e328344ff20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Goodpasture's disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung, which induces rapidly progressive glomerulonephritis and pulmonary hemorrhage. The target antigen is the α3NC1 domain of collagen IV, which is expressed in target organs as an α345 network. Recent studies of specificity and epitopes of Goodpasture's autoantibodies and discovery of novel posttranslational modification of the antigen, a sulfilimine bond, provide further insight into mechanisms of initiation and progression of Goodpasture's disease. RECENT FINDINGS Analysis of the specificity of Goodpasture's autoantibodies revealed a distinct subset of circulating and kidney-bound antiα5NC1 antibody, which is associated with loss of kidney function. Structural integrity of the α345NC1 hexamer is stabilized by the novel sulfilimine crosslinks conferring immune privilege to the Goodpasture's autoantigen. Native antibodies may contribute to establishment of immune tolerance to autoantigen. Structural analysis of epitopes for autoantibodies and alloantibodies indicates a critical role of conformational change in the α345NC1 hexamer in eliciting an autoimmune response in Goodpasture's disease. SUMMARY Understanding of the quaternary structure of the Goodpasture's autoantigen continues to provide insights into autoimmune mechanisms that serve as a basis for development of novel diagnostic tools and therapies for Goodpasture's disease.
Collapse
|