1
|
Wachter E, Fox LH, Lu Z, Jones AD, Casto ND, Waltz SE. RON Receptor Signaling and the Tumor Microenvironment. Genes (Basel) 2025; 16:437. [PMID: 40282397 PMCID: PMC12026484 DOI: 10.3390/genes16040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The immune microenvironment plays a critical role in tumor growth and development. Immune activation within the tumor microenvironment is dynamic and can be modulated by tumor intrinsic and extrinsic signaling. The RON receptor tyrosine kinase is canonically associated with growth signaling and wound healing, and this receptor is frequently overexpressed in a variety of cancers. Epithelial cells, macrophages, dendritic cells, and fibroblasts express RON, presenting an important axis by which RON overexpressing tumors influence the tumor microenvironment. This review synthesizes the existing literature on the roles of tumor cell-intrinsic and -extrinsic RON signaling, highlighting areas of interest and gaps in knowledge that show potential for future studies.
Collapse
Affiliation(s)
- Emily Wachter
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle D. Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nicholas D. Casto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
2
|
Yang M, Shulkin N, Gonzalez E, Castillo J, Yan C, Zhang K, Arvanitis L, Borok Z, Wallace WD, Raz D, Torres ETR, Marconett CN. Cell of origin alters myeloid-mediated immunosuppression in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599651. [PMID: 38948812 PMCID: PMC11213232 DOI: 10.1101/2024.06.19.599651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.
Collapse
Affiliation(s)
- Minxiao Yang
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| | - Noah Shulkin
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Edgar Gonzalez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Jonathan Castillo
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
| | - Chunli Yan
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
| | - Keqiang Zhang
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA USA 92093
| | - W. Dean Wallace
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Dan Raz
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, City of Hope, Duarte, CA USA 91010
| | - Evanthia T. Roussos Torres
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Crystal N. Marconett
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA 91010
- Department of Surgery, University of Southern California, Los Angeles, CA USA 90089
- Department of Translational Genomics, University of Southern California, Los Angeles, CA USA 90089
| |
Collapse
|
3
|
Kumari A, Syeda S, Rawat K, Kumari R, Shrivastava A. Melatonin modulates L-arginine metabolism in tumor-associated macrophages by targeting arginase 1 in lymphoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1163-1179. [PMID: 37639022 DOI: 10.1007/s00210-023-02676-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
L-Arginine metabolism plays a crucial role in determining the M1/M2 polarization of macrophages. The M1 macrophages express inducible nitric oxide synthase (iNOS), while the M2 macrophages express arginase 1 and metabolize arginine into nitric oxide and urea, respectively. The tumor microenvironment promotes M2 macrophage polarization and consequently switches the metabolic fate of arginine from nitric oxide towards urea production. Importantly, infiltration of M2 macrophages or tumor-associated macrophages (TAMs) has been correlated with poor prognosis of various cancer types. Melatonin is well reported to have antitumor and immunomodulatory properties. However, whether and how it impacts the polarization of TAMs has not been elucidated. Considering the crucial role of arginine metabolism in macrophage polarization, we were interested to know the fate of L-arginine in TAMs and whether it can be reinstated by melatonin or not. We used a murine model of Dalton's lymphoma and established an in vitro model of TAMs. For TAMs, we used the ascitic fluid of tumor-bearing hosts to activate the macrophages in the presence and absence of lipopolysaccharide (LPS). In these groups, L-arginine metabolism was evaluated, and then the effect of melatonin was assessed in these groups, wherein the metabolic fate of arginine as well as the expression of iNOS and arginase 1 were checked. Furthermore, in the in vivo system of the tumor-bearing host, the effect of melatonin was assessed. The in vitro model of TAMs showed a Th2 cytokine profile, reduced phagocytic activity, and increased wound healing ability. Upon investigating arginine metabolism, we observed high urea levels with increased activity and expression of arginase 1 in TAMs. Furthermore, we observed reduced levels of LPS-induced nitric oxide in TAMs; however, their iNOS expression was comparable. With melatonin treatment, urea level decreased significantly, while the reduction in nitric oxide level was not as significant as observed in its absence in TAMs. Also, melatonin significantly reduced arginase activity and expression at the transcriptional and translational levels, while iNOS expression was affected only at the translational level. This effect was further investigated in the in vivo system, wherein melatonin treatment reversed the metabolic fate of arginine, from urea towards nitric oxide, within the tumor microenvironment. This effect was further correlated with pro-apoptotic tumor cell death in the in vivo system. Our results reinforced the immunomodulatory role of melatonin and offered a strong prospect for activating the anti-tumor immune response in cancer conditions.
Collapse
Affiliation(s)
- Anupma Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Kavita Rawat
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Jung M, Bonavida B. Immune Evasion in Cancer Is Regulated by Tumor-Asociated Macrophages (TAMs): Targeting TAMs. Crit Rev Oncog 2024; 29:1-17. [PMID: 38989734 DOI: 10.1615/critrevoncog.2024053096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advancements in cancer treatment have explored a variety of approaches to address the needs of patients. Recently, immunotherapy has evolved as an efficacious treatment for various cancers resistant to conventional therapies. Hence, significant milestones in immunotherapy were achieved clinically in a large subset of cancer patients. Unfortunately, some cancer types do not respond to treatment, and among the responsive cancers, some patients remain unresponsive to treatment. Consequently, there is a critical need to examine the mechanisms of immune resistance and devise strategies to target immune suppressor cells or factors, thereby allowing for tumor sensitivity to immune cytotoxic cells. M2 macrophages, also known as tumor-associated macrophages (TAMs), are of interest due to their role in suppressing the immune system and influencing antitumor immune responses through modulating T cell activity and immune checkpoint expression. TAMs are associated with signaling pathways that modulate the tumor microenvironment (TME), contributing to immune evasion. One approach targets TAMs, focusing on preventing the polarization of M1 macrophages into the protumoral M2 phenotype. Other strategies focus on direct or indirect targeting of M2 macrophages through understanding the interaction of TAMs with immune factors or signaling pathways. Clinically, biomarkers associated with TAMs' immune resistance in cancer patients have been identified, opening avenues for intervention using pharmacological agents or immunotherapeutic approaches. Ultimately, these multifaceted approaches are promising in overcoming immune resistance and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Megan Jung
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
5
|
Gelbach PE, Finley SD. Genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. iScience 2023; 26:107569. [PMID: 37664588 PMCID: PMC10474475 DOI: 10.1016/j.isci.2023.107569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment (TME), which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the TME. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Kanki H, Matsumoto H, Togami Y, Okuzaki D, Ogura H, Sasaki T, Mochizuki H. Importance of microRNAs by mRNA-microRNA integration analysis in acute ischemic stroke patients. J Stroke Cerebrovasc Dis 2023; 32:107277. [PMID: 37562178 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTS The roles of mRNA and microRNA (miRNA) are well known in many diseases, including ischemic stroke; thus, integration analysis using mRNA and miRNA is important to elucidate pathogenesis. However, their contribution, especially that of miRNA-targeted mRNA, to the severity of acute ischemic stroke remains unclear. Therefore, we examined mRNA and miRNA integration analysis targeted for acute ischemic stroke to clarify the pathway related to acute stroke severity. MATERIAL AND METHODS We performed Ingenuity Pathway Analysis (IPA) using RNA extracted from the whole blood of four healthy controls, six minor acute ischemic stroke patients (MS; National Institutes of Health Stroke Scale [NIHSS] < 8), and six severe acute ischemic stroke patients (SS; NIHSS ≥ 8) on admission. mRNA and miRNA were measured using RNA sequencing and RNA expression variation; canonical pathway analysis (CPA) and upstream regulator analyses were performed. RESULTS Acute ischemic stroke patients demonstrated different RNA expressions to healthy controls. Compared to MS patients, in the SS patients, 1222 mRNA, 96 miRNA, and 935 miRNA-targeted mRNA expressions were identified among differentially expressed RNA expressions (p<0.05, |log2 fold change| >1.1). CPA by IPA using mRNAs or miRNA-targeted mRNAs showed that macrophage-stimulating protein (MSP)-recepteur d'origine nantais (RON) signaling was mostly activated in SS patients compared to in MS patients. In addition, upstream regulator analysis in IPA showed that most mRNAs located upstream are miRNAs. CONCLUSIONS In severe acute stroke, integration of mRNA and microRNA analysis showed activated MSP-RON signaling in macrophages, and multiple miRNAs comprehensively controlled the overall pathophysiology of stroke.
Collapse
Affiliation(s)
- Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Shao Y, Wang Y, Su R, Pu W, Chen S, Fu L, Yu H, Qiu Y. Dual identity of tumor-associated macrophage in regulated cell death and oncotherapy. Heliyon 2023; 9:e17582. [PMID: 37449180 PMCID: PMC10336529 DOI: 10.1016/j.heliyon.2023.e17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Tumor-associated macrophage (TAM) affects the intrinsic properties of tumor cells and the tumor microenvironment (TME), which can stimulate tumor cell proliferation, migration, and genetic instability, and macrophage diversity includes the diversity of tumors with different functional characteristics. Macrophages are now a central drug target in various diseases, especially in the TME, which, as "tumor promoters" and "immunosuppressors", have different responsibilities during tumor development and accompany by significant dynamic alterations in various subpopulations. Remodelling immunosuppression of TME and promotion of pre-existing antitumor immune responses is critical by altering TAM polarization, which is relevant to the efficacy of immunotherapy, and uncovering the exact mechanism of action of TAMs and identifying their specific targets is vital to optimizing current immunotherapies. Hence, this review aims to reveal the triadic interactions of macrophages with programmed death and oncotherapy, and to integrate certain relationships in cancer treatment.
Collapse
Affiliation(s)
- Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ranran Su
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
- Department of Applied Biology and Chemical Technology, Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Leilei Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Arpa L, Batlle C, Jiang P, Caelles C, Lloberas J, Celada A. Distinct Responses to IL4 in Macrophages Mediated by JNK. Cells 2023; 12:cells12081127. [PMID: 37190036 DOI: 10.3390/cells12081127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
IL(Interleukin)-4 is the main macrophage M2-type activator and induces an anti-inflammatory phenotype called alternative activation. The IL-4 signaling pathway involves the activation of STAT (Signal Transducer and Activator of Transcription)-6 and members of the MAPK (Mitogen-activated protein kinase) family. In primary-bone-marrow-derived macrophages, we observed a strong activation of JNK (Jun N-terminal kinase)-1 at early time points of IL-4 stimulation. Using selective inhibitors and a knockout model, we explored the contribution of JNK-1 activation to macrophages' response to IL-4. Our findings indicate that JNK-1 regulates the IL-4-mediated expression of genes typically involved in alternative activation, such as Arginase 1 or Mannose receptor, but not others, such as SOCS (suppressor of cytokine signaling) 1 or p21Waf-1 (cyclin dependent kinase inhibitor 1A). Interestingly, we have observed that after macrophages are stimulated with IL-4, JNK-1 has the capacity to phosphorylate STAT-6 on serine but not on tyrosine. Chromatin immunoprecipitation assays revealed that functional JNK-1 is required for the recruitment of co-activators such as CBP (CREB-binding protein)/p300 on the promoter of Arginase 1 but not on p21Waf-1. Taken together, these data demonstrate the critical role of STAT-6 serine phosphorylation by JNK-1 in distinct macrophage responses to IL-4.
Collapse
Affiliation(s)
- Luís Arpa
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Carlos Batlle
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Peijin Jiang
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Antonio Celada
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
9
|
Safaroghli-Azar A, Emadi F, Lenjisa J, Mekonnen L, Wang S. Kinase inhibitors: Opportunities for small molecule anticancer immunotherapies. Drug Discov Today 2023; 28:103525. [PMID: 36907320 DOI: 10.1016/j.drudis.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 03/12/2023]
Abstract
As the fifth pillar of cancer treatment, immunotherapy has dramatically changed the paradigm of therapeutic strategies by focusing on the host's immune system. In the long road of immunotherapy development, the identification of immune-modulatory effects for kinase inhibitors opened a new chapter in this therapeutic approach. These small molecule inhibitors not only directly eradicate tumors by targeting essential proteins of cell survival and proliferation but can also drive immune responses against malignant cells. This review summarizes the current standings and challenges of kinase inhibitors in immunotherapy, either as a single agent or in a combined modality.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Fatemeh Emadi
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Jimma Lenjisa
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
10
|
Gelbach PE, Finley SD. Ensemble-based genome-scale modeling predicts metabolic differences between macrophage subtypes in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.532000. [PMID: 36993493 PMCID: PMC10052244 DOI: 10.1101/2023.03.09.532000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
1Colorectal cancer (CRC) shows high incidence and mortality, partly due to the tumor microenvironment, which is viewed as an active promoter of disease progression. Macrophages are among the most abundant cells in the tumor microenvironment. These immune cells are generally categorized as M1, with inflammatory and anti-cancer properties, or M2, which promote tumor proliferation and survival. Although the M1/M2 subclassification scheme is strongly influenced by metabolism, the metabolic divergence between the subtypes remains poorly understood. Therefore, we generated a suite of computational models that characterize the M1- and M2-specific metabolic states. Our models show key differences between the M1 and M2 metabolic networks and capabilities. We leverage the models to identify metabolic perturbations that cause the metabolic state of M2 macrophages to more closely resemble M1 cells. Overall, this work increases understanding of macrophage metabolism in CRC and elucidates strategies to promote the metabolic state of anti-tumor macrophages.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D. Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Yang L, Guo P, Wang P, Wang W, Liu J. IL-6/ERK signaling pathway participates in type I IFN-programmed, unconventional M2-like macrophage polarization. Sci Rep 2023; 13:1827. [PMID: 36726024 PMCID: PMC9892596 DOI: 10.1038/s41598-022-23721-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2022] [Indexed: 02/03/2023] Open
Abstract
Type I interferons (IFN-Is) have been harnessed for cancer therapies due to their immunostimulatory functions. However, certain tumor-tolerating activities by IFN-Is also exist, and may potentially thwart their therapeutic effects. In this respect, our previous studies have demonstrated a monocyte-orchestrated, IFN-I-to-IL-4 cytokine axis, which can subsequently drive M2-skewed pro-tumoral polarization of macrophages. Whether other IFN-dependent signals may also contribute to such an unconventional circumstance of M2-like macrophage skewing remain unexplored. Herein, we first unveil IL-6 as another ligand that participates in IFN-dependent induction of a typical M2 marker (ARG1) in transitional monocytes. Indeed, IL-6 significantly promotes IL-4-dependent induction of a major group of prominent M2 markers in mouse bone marrow-derived macrophages (BMDMs) and human peripheral blood-derived macrophages, while it alone does not engage marked increases of these markers. Such a pattern of regulation is confirmed globally by RNAseq analyses in BMDMs, which in turn suggests an association of IL-6-amplified subset of M2 genes with the ERK1/2 signaling pathway. Interestingly, pharmacological experiments establish the role of SHP2-ERK cascade in mediating IL-6's enhancement effect on these M2 targets. Similar approaches also validate the involvement of IL-6/ERK signaling in promoting the IFN-dependent, unconventional M2-skewing phenotype in transitional monocytes. Furthermore, an inhibitor of ERK signaling cooperates with an IFN-I inducer to enable a greater antitumor effect, which correlates with suppression of treatment-elicited ARG1. The present work establishes a role of IL-6/ERK signaling in promoting M2-like macrophage polarization, and suggests this axis as a potential therapeutic target for combination with IFN-I-based cancer treatments.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Wei Wang
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,The First People's Hospital of Yancheng, Yancheng, 224006, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
12
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Aoki T, Nishida N, Kudo M. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. J Histochem Cytochem 2022; 70:53-81. [PMID: 34751050 PMCID: PMC8721576 DOI: 10.1369/00221554211056853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors have become the mainstay of treatment for hepatocellular carcinoma (HCC). However, they are ineffective in some cases. Previous studies have reported that genetic alterations in oncogenic pathways such as Wnt/β-catenin are the important triggers in HCC for primary refractoriness. T-cell exhaustion has been reported in various tumors and is likely to play a prominent role in the emergence of HCC due to chronic inflammation and cirrhosis-associated immune dysfunction. Immunosuppressive cells including regulatory T-cells and tumor-associated macrophages infiltrating the tumor are associated with hyperprogressive disease in the early stages of immune checkpoint inhibitor treatment. In addition, stellate cells and tumor-associated fibroblasts create an abundant desmoplastic environment by producing extracellular matrix. This strongly contributes to epithelial to mesenchymal transition via signaling activities including transforming growth factor beta, Wnt/β-catenin, and Hippo pathway. The abundant desmoplastic environment has been demonstrated in pancreatic ductal adenocarcinoma and cholangiocarcinoma to suppress cytotoxic T-cell infiltration, PD-L1 expression, and neoantigen expression, resulting in a highly immunosuppressive niche. It is possible that a similar immunosuppressive environment is created in HCC with advanced fibrosis in the background liver. Although sufficient understanding is required for the establishment of immune therapies of HCC, further investigations are still required in this field.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Naoshi Nishida, Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-Sayama 589-8511, Japan. E-mail:
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
16
|
Ruiz-Torres SJ, Bourn JR, Benight NM, Hunt BG, Lester C, Waltz SE. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35. Oncogene 2022; 41:321-333. [PMID: 34743208 PMCID: PMC8758553 DOI: 10.1038/s41388-021-02091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/20/2023]
Abstract
Tumor associated macrophages (TAMs) play a major role in regulating mammary tumor growth and in directing the responses of tumor infiltrating leukocytes in the microenvironment. However, macrophage-specific mechanisms regulating the interactions of macrophages with tumor cells and other leukocytes that support tumor progression have not been extensively studied. In this study, we show that the activation of the RON receptor tyrosine kinase signaling pathway specifically in macrophages supports breast cancer growth and metastasis. Using clinically relevant murine models of breast cancer, we demonstrate that loss of macrophage RON expression results in decreases in mammary tumor cell proliferation, survival, cancer stem cell self-renewal, and metastasis. Macrophage RON signaling modulates these phenotypes via direct effects on the tumor proper and indirectly by regulating leukocyte recruitment including macrophages, T-cells, and B-cells in the mammary tumor microenvironment. We further show that macrophage RON expression regulates the macrophage secretome including IL-35 and other immunosuppressive factors. Overall, our studies implicate activation of RON signaling in macrophages as a key player in supporting a thriving mammary pro-tumor microenvironment through novel mechanisms including the augmentation of tumor cell properties through IL-35.
Collapse
Affiliation(s)
- Sasha J. Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Jennifer R. Bourn
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA,Address correspondence to: Susan E. Waltz, PhD, Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267-0521, Tel: 513.558.8675,
| |
Collapse
|
17
|
Lai SCA, Gundlapalli H, Ekiz HA, Jiang A, Fernandez E, Welm AL. Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discov 2021; 11:3178-3197. [PMID: 34330779 PMCID: PMC8800951 DOI: 10.1158/2159-8290.cd-20-1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy has potential to prevent and treat metastatic breast cancer, but strategies to enhance immune-mediated killing of metastatic tumors are urgently needed. We report that a ligand-independent isoform of Ron kinase (SF-Ron) is a key target to enhance immune infiltration and eradicate metastatic tumors. Host-specific deletion of SF-Ron caused recruitment of lymphocytes to micrometastases, augmented tumor-specific T-cell responses, and nearly eliminated breast cancer metastasis in mice. Lack of host SF-Ron caused stem-like TCF1+ CD4+ T cells with type I differentiation potential to accumulate in metastases and prevent metastatic outgrowth. There was a corresponding increase in tumor-specific CD8+ T cells, which were also required to eliminate lung metastases. Treatment of mice with a Ron kinase inhibitor increased tumor-specific CD8+ T cells and protected from metastatic outgrowth. These data provide a strong preclinical rationale to pursue small-molecule Ron kinase inhibitors for the prevention and treatment of metastatic breast cancer. SIGNIFICANCE The discovery that SF-Ron promotes antitumor immune responses has significant clinical implications. Therapeutic antibodies targeting full-length Ron may not be effective for immunotherapy; poor efficacy of such antibodies in trials may be due to their inability to block SF-Ron. Our data warrant trials with inhibitors targeting SF-Ron in combination with immunotherapy. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - H. Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amanda Jiang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elvelyn Fernandez
- Genomics Summer Research for Minorities (GSRM) Program, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5871-5896. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are always some components in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs), that help tumor cells escape the body's immune surveillance. Therefore, this situation can lead to tumor growth, progression, and metastasis, resulting in low response rates for cancer therapy. Macrophages play an important role with strong plasticity and functional diversity. Facing different microenvironmental stimulations, macrophages undergo a dynamic change in phenotype and function into two major macrophage subpopulations, namely classical activation/inflammation (M1) and alternative activation/regeneration (M2) type. Through various signaling pathways, macrophages polarize into complex groups, which can perform different immune functions. In this review, we emphasize the use of nanopreparations for macrophage related immunotherapy based on the pathological knowledge of TAMs phenotype. These macrophages targeted nanoparticles re-edit and re-educate macrophages by attenuating M2 macrophages and reducing aggregation to the TME, thereby relieving or alleviating immunosuppression. Among them, we describe in detail the cellular mechanisms and regulators of several major signaling pathways involved in the plasticity and polarization functions of macrophages. The advantages and challenges of those nanotherapeutics for these pathways have been elucidated, providing the basis and insights for the diagnosis and treatment strategies of various diseases centered on macrophages.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Mingming Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, P. R. China
| | - Kai Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350 Tianjin, China
| |
Collapse
|
19
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
20
|
Dou A, Fang J. Heterogeneous Myeloid Cells in Tumors. Cancers (Basel) 2021; 13:3772. [PMID: 34359674 PMCID: PMC8345207 DOI: 10.3390/cancers13153772] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies highlight a critical role of myeloid cells in cancer biology and therapy. The myeloid cells constitute the major components of tumor microenvironment (TME). The most studied tumor-associated myeloid cells (TAMCs) include monocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs), cancer-related circulating neutrophils, tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). These heterogenous myeloid cells perform pro-tumor or anti-tumor function, exerting complex and even opposing effects on all stages of tumor development, such as malignant clonal evolution, growth, survival, invasiveness, dissemination and metastasis of tumor cells. TAMCs also reshape TME and tumor vasculature to favor tumor development. The main function of these myeloid cells is to modulate the behavior of lymphocytes, forming immunostimulatory or immunosuppressive TME cues. In addition, TAMCs play a critical role in modulating the response to cancer therapy. Targeting TAMCs is vigorously tested as monotherapy or in combination with chemotherapy or immunotherapy. This review briefly introduces the TAMC subpopulations and their function in tumor cells, TME, angiogenesis, immunomodulation, and cancer therapy.
Collapse
Affiliation(s)
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA;
| |
Collapse
|
21
|
Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun 2021; 14:51-68. [PMID: 34247159 DOI: 10.1159/000516780] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages, the central mediators of innate immune responses, being in the first-line of defense, they have to readily respond to pathogenic or tissue damage signals to initiate the inflammatory cascade. Such rapid responses require energy to support orchestrated production of pro-inflammatory mediators and activation of phagocytosis. Being a cell type that is present in diverse environments and conditions, macrophages have to adapt to different nutritional resources. Thus, macrophages have developed plasticity and are capable of utilizing energy at both normoxic and hypoxic conditions and in the presence of varying concentrations of glucose or other nutrients. Such adaptation is reflected on changes in signaling pathways that modulate responses, accounting for the different activation phenotypes observed. Macrophage metabolism has been tightly associated with distinct activation phenotypes within the range of M1-like and M2-like types. In the context of diseases, systemic changes also affect macrophage metabolism, as in diabetes and insulin resistance, which results in altered metabolism and distinct activation phenotypes in the adipose tissue or in the periphery. In the context of solid tumors, tumor-associated macrophages adapt in the hypoxic environment, which results in metabolic changes that are reflected on an activation phenotype that supports tumor growth. Coordination of environmental and pathogenic signals determines macrophage metabolism, which in turn shapes the type and magnitude of the response. Therefore, modulating macrophage metabolism provides a potential therapeutic approach for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleni Vergadi
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
22
|
O'Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:1-14. [PMID: 34286437 DOI: 10.1007/978-3-030-62658-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-C motif chemokine ligand 2 (CCL2) is a crucial mediator of immune cell recruitment during microbial infections and tissue damage. CCL2 is also frequently overexpressed in cancer cells and other cells in the tumor microenvironment, and a large body of evidence indicates that high CCL2 levels are associated with more aggressive malignancies, a higher probability of metastasis, and poorer outcomes in a wide range of cancers. CCL2 plays a role in recruiting tumor-associated macrophages (TAMs), which adopt a pro-tumorigenic phenotype and support cancer cell survival, facilitate tumor cell invasion, and promote angiogenesis. CCL2 also has direct, TAM-independent effects on tumor cells and the tumor microenvironment, including recruitment of other myeloid subsets and non-myeloid cells, maintaining an immunosuppressive environment, stimulating tumor cell growth and motility, and promoting angiogenesis. CCL2 also plays important roles in the metastatic cascade, such as creating a pre-metastatic niche in distant organs and promoting tumor cell extravasation across endothelia. Due to its many roles in tumorigenesis and metastatic processes, the CCL2-CCR2 signaling axis is currently being pursued as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
23
|
Ming Z, Zou Z, Cai K, Xu YI, Chen X, Yi W, Luo J, Luo Z. ARG1 functions as a tumor suppressor in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1257-1264. [PMID: 33128544 DOI: 10.1093/abbs/gmaa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Arginase I (ARG1) is a cytosolic enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The association of ARG1 with cancer has mostly been focused on the ARG1 released by tumor-associated myeloid cells in tumor microenvironment. However, the role of ARG1 expressed in cancer cells is unclear. Here, we showed that the expression of ARG1 in human breast cancer (BC) is related to a good prognosis in BC patients. Overexpression of ARG1 suppresses BC cell proliferation and migration in vitro and xenograft tumor growth and development in mouse models. Furthermore, ARG1 expression down-regulates the expression of p-AKT, leading to the de-activation of AKT signal pathway in BC cells. Thus, our results established that in contrast to the role of ARG1 released from tumor-associated myeloid cells in tumor microenvironment that promotes tumor immune escape, ARG1 expressed in BC cells suppresses AKT signaling pathway and functions as a tumor suppressor.
Collapse
Affiliation(s)
- Zhengnan Ming
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410078, China
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zizheng Zou
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Kaimei Cai
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Y i Xu
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xueyan Chen
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junli Luo
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiyong Luo
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410078, China
| |
Collapse
|
24
|
Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2020; 236:3445-3465. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cell Mol Immunol 2020; 18:829-841. [PMID: 33077904 PMCID: PMC7570408 DOI: 10.1038/s41423-020-00556-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Immune homeostasis is maintained by an adequate balance of myeloid and lymphoid responses. In chronic inflammatory states, including cancer, this balance is lost due to dramatic expansion of myeloid progenitors that fail to mature to functional inflammatory neutrophils, macrophages, and dendritic cells (DCs), thus giving rise to a decline in the antitumor effector lymphoid response. Cancer-related inflammation orchestrates the production of hematopoietic growth factors and cytokines that perpetuate recruitment and activation of myeloid precursors, resulting in unresolved and chronic inflammation. This pathologic inflammation creates profound alterations in the intrinsic cellular metabolism of the myeloid progenitor pool, which is amplified by competition for essential nutrients and by hypoxia-induced metabolic rewiring at the tumor site. Therefore, persistent myelopoiesis and metabolic dysfunctions contribute to the development of cancer, as well as to the severity of a broad range of diseases, including metabolic syndrome and autoimmune and infectious diseases. The aims of this review are to (1) define the metabolic networks implicated in aberrant myelopoiesis observed in cancer patients, (2) discuss the mechanisms underlying these clinical manifestations and the impact of metabolic perturbations on clinical outcomes, and (3) explore new biomarkers and therapeutic strategies to restore immunometabolism and differentiation of myeloid cells towards an effector phenotype to increase host antitumor immunity. We propose that the profound metabolic alterations and associated transcriptional changes triggered by chronic and overactivated immune responses in myeloid cells represent critical factors influencing the balance between therapeutic efficacy and immune-related adverse effects (irAEs) for current therapeutic strategies, including immune checkpoint inhibitor (ICI) therapy.
Collapse
|
26
|
Huang L, Fang X, Shi D, Yao S, Wu W, Fang Q, Yao H. MSP-RON Pathway: Potential Regulator of Inflammation and Innate Immunity. Front Immunol 2020; 11:569082. [PMID: 33117355 PMCID: PMC7577085 DOI: 10.3389/fimmu.2020.569082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophage-stimulating protein (MSP), a soluble protein mainly synthesized by the liver, is the only known ligand for recepteur d'origine nantais (RON), which is a member of the MET proto-oncogene family. Recent studies show that the MSP-RON signaling pathway not only was important in tumor behavior but also participates in the occurrence or development of many immune system diseases. Activation of RON in macrophages results in the inhibition of nitric oxide synthesis as well as lipopolysaccharide (LPS)-induced inflammatory response. MSP-RON is also associated with chronic inflammatory responses, especially chronic liver inflammation, and might serve as a novel regulator of inflammation, which may affect the metabolism in the body. Another study provided evidence of the relationship between MSP-RON and autoimmune diseases, suggesting a potential role for MSP-RON in the development of drugs for autoimmune diseases. Moreover, MSP-RON plays an important role in maintaining the stability of the tissue microenvironment and contributes to immune escape in the tumor immune microenvironment. Here, we summarize the role of MSP-RON in immunity, based on recent findings, and lay the foundation for further research.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y, Cai Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol 2020; 88:106939. [PMID: 33182039 DOI: 10.1016/j.intimp.2020.106939] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation and immune responses are two core element that characterize the tumor microenvironment. A large number of immune/inflammatory cells (including tumor associated macrophages, neutrophils and myeloid derived suppressor cells) as well as cytokines (such as IL-6, IL-10, TGF-β) are present in the tumor microenvironment, which results in both a chronic inflammatory state and immunosuppression. As a consequence tumor cell migration, invasion, metastasis and anticancer drug sensitivity are modulated. On the one hand, secreted cytokines change the function of cytotoxic T lymphocytes and antigen presenting cells, thereby inhibiting tumor specific immune responses and consequently inducing a special immunosuppressive microenvironment for tumor cells. On the other hand, tumor cells change the differentiation and function of immune/inflammatory cells in the tumor microenvironment especially via the NF-κB and STAT3 signaling pathways. This may promote proliferation of tumor cells. Here we review these double edged effects of immune/inflammatory cells and cytokines on tumor cells, and explored their interactions with inflammation, hypoxia, and immune responses in the tumor microenvironment. The tumor inflammatory or immunosuppressive reactions mediated by the high activity of NF-κB or STAT3 can occur alone or simultaneously, and there is a certain connection between them. Inhibiting the NF-κB or STAT3 signaling pathway is likely to curb the growth of tumor cells, reduce the secretion of pro-inflammatory factors, and enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai 200032, China; Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bingyue Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Yiye Zhao
- Integrated Hospital of Traditonal Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
29
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
30
|
Shi R, Tang Y, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm (Beijing) 2020; 1:47-68. [PMID: 34766109 PMCID: PMC8489668 DOI: 10.1002/mco2.6] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment is a special environment for tumor survival, which is characterized by hypoxia, acidity, nutrient deficiency, and immunosuppression. The environment consists of the vasculature, immune cells, extracellular matrix, and proteins or metabolic molecules. A large number of recent studies have shown that not only tumor cells but also the immune cells in the tumor microenvironment have undergone metabolic reprogramming, which is closely related to tumor drug resistance and malignant progression. Tumor immunotherapy based on T cells gives patients new hope, but faces the dilemma of low response rate. New strategies sensitizing cancer immunotherapy are urgently needed. Metabolic reprogramming can directly affect the biological activity of tumor cells and also regulate the differentiation and activation of immune cells. The authors aim to review the characteristics of tumor microenvironment, the metabolic changes of tumor‐associated immune cells, and the regulatory role of metabolic reprogramming in cancer immunotherapy.
Collapse
Affiliation(s)
- Rongchen Shi
- Department of Biochemistry and Molecular BiologyThird Military Medical University (Army Medical University) Chongqing People's Republic of China
| | - Yi‐Quan Tang
- MRC Laboratory of Molecular BiologyCambridge Biomedical Campus Cambridge UK
| | - Hongming Miao
- Department of Biochemistry and Molecular BiologyThird Military Medical University (Army Medical University) Chongqing People's Republic of China
| |
Collapse
|
31
|
Sullivan C, Brown NE, Vasiliauskas J, Pathrose P, Starnes SL, Waltz SE. Prostate Epithelial RON Signaling Promotes M2 Macrophage Activation to Drive Prostate Tumor Growth and Progression. Mol Cancer Res 2020; 18:1244-1254. [PMID: 32439702 DOI: 10.1158/1541-7786.mcr-20-0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Effective treatment of advanced prostate cancer persists as a significant clinical need as only 30% of patients with distant disease survive to 5 years after diagnosis. Targeting signaling and tumor cell-immune cell interactions in the tumor microenvironment has led to the development of powerful immunotherapeutic agents, however, the prostate tumor milieu remains impermeable to these strategies highlighting the need for novel therapeutic targets. In this study, we provide compelling evidence to support the role of the RON receptor tyrosine kinase as a major regulator of macrophages in the prostate tumor microenvironment. We show that loss of RON selectively in prostate epithelial cells leads to significantly reduced prostate tumor growth and metastasis and is associated with increased intratumor infiltration of macrophages. We further demonstrate that prostate epithelial RON loss induces transcriptional reprogramming of macrophages to support expression of classical M1 markers and suppress expression of alternative M2 markers. Interestingly, our results show epithelial RON activation drives upregulation of RON expression in macrophages as a positive feed-forward mechanism to support prostate tumor growth. Using 3D coculture assays, we provide additional evidence that epithelial RON expression coordinates interactions between prostate tumor cells and macrophages to promote macrophage-mediated tumor cell growth. Taken together, our results suggest that RON receptor signaling in prostate tumor cells directs the functions of macrophages in the prostate tumor microenvironment to promote prostate cancer. IMPLICATIONS: Epithelial RON is a novel immunotherapeutic target that is responsible for directing the macrophage antitumor immune response to support prostate tumor growth and progression.
Collapse
Affiliation(s)
- Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juozas Vasiliauskas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peterson Pathrose
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sandra L Starnes
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Wang S, Yao Y, Li H, Zheng G, Lu S, Chen W. Tumor-associated macrophages (TAMs) depend on Shp2 for their anti-tumor roles in colorectal cancer. Am J Cancer Res 2019; 9:1957-1969. [PMID: 31598397 PMCID: PMC6780667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023] Open
Abstract
Tumor associated macrophages (TAMs) in tumor microenvironment can interact with tumor cells and are related to tumor progression. However, the mechanisms that drive the anti-tumor functions of TAMs are not fully understood. The Src homology 2 domain-containing tyrosine phosphatase 2 (Shp2) has been reported to have tumor-suppressing roles in colorectal cancer (CRC). However, a role for Shp2 on TAMs in CRC has not been studied. Here we report that in CRC, Shp2 expression on TAMs is negatively associated with liver metastasis. TAMs require Shp2 for their anti-tumor functions in a cell-cell co-culture system and a mouse model of CRC. Mechanistically, absence of Shp2 on TAMs induces their polarization toward M2 phenotype through the activation of p-STAT3 and inhibition of p-NF-κB p65. The findings of our study imply that Shp2 is a key factor in the tumor microenvironment to facilitate the TAMs' tumor-suppressing functions in colorectal cancer.
Collapse
Affiliation(s)
- Saisai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Huixia Li
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
- Department of Colorectal Surgery, The Central Hospital of Lishui CityLishui, P. R. China
| | - Gang Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Sen Lu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou, P. R. China
| |
Collapse
|
33
|
Hannemann N, Cao S, Eriksson D, Schnelzer A, Jordan J, Eberhardt M, Schleicher U, Rech J, Ramming A, Uebe S, Ekici A, Cañete JD, Chen X, Bäuerle T, Vera J, Bogdan C, Schett G, Bozec A. Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J Clin Invest 2019; 129:2669-2684. [PMID: 30990796 DOI: 10.1172/jci96832] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The polarization of macrophages is regulated by transcription factors such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1). In this manuscript, we delineated the role of the transcription factor Fos-related antigen 1 (Fra-1) during macrophage activation and development of arthritis. Network level interaction analysis of microarray data derived from Fra-1- or Fra-2-deficient macrophages revealed a central role of Fra-1, but not of Fra-2 in orchestrating the expression of genes related to wound response, toll-like receptor activation and interleukin signaling. Chromatin-immunoprecipitation (ChIP)-sequencing and standard ChIP analyses of macrophages identified arginase 1 (Arg1) as a target of Fra-1. Luciferase reporter assays revealed that Fra-1 down-regulated Arg1 expression by direct binding to the promoter region. Using macrophage-specific Fra-1- or Fra-2- deficient mice, we observed an enhanced expression and activity of Arg1 and a reduction of arthritis in the absence of Fra-1, but not of Fra-2. This phenotype was reversed by treatment with the arginase inhibitor Nω-hydroxy-nor-L-arginine, while ʟ-arginine supplementation increased arginase activity and alleviated arthritis, supporting the notion that reduced arthritis in macrophage-specific Fra-1-deficient mice resulted from enhanced Arg1 expression and activity. Moreover, patients with active RA showed increased Fra-1 expression in the peripheral blood and elevated Fra-1 protein in synovial macrophages compared to RA patients in remission. In addition, the Fra-1/ARG1 ratio in synovial macrophages was related to RA disease activity. In conclusion, these data suggest that Fra-1 orchestrates the inflammatory state of macrophages by inhibition of Arg1 expression and thereby impedes the resolution of inflammation.
Collapse
Affiliation(s)
| | - Shan Cao
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Daniel Eriksson
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Anne Schnelzer
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Jutta Jordan
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE)
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology
| | - Ulrike Schleicher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, and
| | - Jürgen Rech
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Steffen Uebe
- Institute of Human Genetics, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Juan D Cañete
- Departamento de Reumatología, Hospital Clínic de Barcelona e IDIBAPS, Barcelona, Spain
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tobias Bäuerle
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE)
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, and
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology
| |
Collapse
|
34
|
Babicky ML, Harper MM, Chakedis J, Cazes A, Mose ES, Jaquish DV, French RP, Childers B, Alakus H, Schmid MC, Foubert P, Miyamoto J, Holman PJ, Walterscheid ZJ, Tang CM, Varki N, Sicklick JK, Messer K, Varner JA, Waltz SE, Lowy AM. MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene 2019; 38:5599-5611. [PMID: 30967626 PMCID: PMC6625868 DOI: 10.1038/s41388-019-0811-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment. Conversely, absence of a functional Mst1r kinase slowed PanIN initiation, resulted in smaller tumors, prolonged survival and a reduced tumor associated macrophage content. Mst1r expression was associated with increased production of its ligand Mst1, and in orthotopic models, suppression of Mst1 expression resulted in reduced tumor size, changes in macrophage polarization and enhanced T cell infiltration. This study demonstrates the functional significance of Mst1r during pancreatic cancer initiation and progression. Further, it provides proof of concept that targeting Mst1r can modulate pancreatic cancer growth and the microenvironment. This study provides further rationale for targeting Mst1r as a therapeutic strategy.
Collapse
Affiliation(s)
- Michele L Babicky
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Megan M Harper
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeffery Chakedis
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alex Cazes
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Evangeline S Mose
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dawn V Jaquish
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Randall P French
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Betzaira Childers
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hakan Alakus
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael C Schmid
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Phillippe Foubert
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jaclyn Miyamoto
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Patrick J Holman
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zakkary J Walterscheid
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chih-Min Tang
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nissi Varki
- Department of Family Medicine and Epidemiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen Messer
- Department of Family Medicine and Epidemiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Judith A Varner
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, and Research Service, Cincinnati Veteran's Administration Medical Center, Cincinnati, OH, 45267, USA
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol 2019; 9:187. [PMID: 30972297 PMCID: PMC6443903 DOI: 10.3389/fonc.2019.00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
The dynamic and interactive tumor microenvironment is conceived as a considerable parameter in tumor development and therapy response. Implementing this knowledge in the development of future cancer treatments could provide novel options in the combat of highly aggressive and difficult-to-treat tumors such as gliomas. One compartment of the tumor microenvironment that has gained growing interest is the immune system. As endogenous defense machinery the immune system has the capacity to fight against cancer cells. This, however, is frequently circumvented by tumor cells engaging immune-regulatory mechanisms that disable tumor-directed immune responses. Thus, in order to unlock the immune system against cancer cells, it is crucial to characterize in great detail individual tumor-associated immune cell subpopulations and dissect whether and how they influence immune evasion. In this study we investigated the function of a tumor-associated myeloid cell subpopulation characterized by podoplanin expression on the development of high-grade glioma tumors. Here, we show that the deletion of podoplanin in myeloid cells results in increased (CD8+) T-cell infiltrates and significantly prolonged survival in an orthotopic transplantation model. In vitro co-cultivation experiments indicate a podoplanin-dependent transcriptional regulation of arginase-1, a well-known player in myeloid cell-mediated immune suppression. These findings identify podoplanin positive myeloid cells as one novel mediator of the glioma-induced immune suppression. Thus, the targeted ablation of podoplanin positive myeloid cells could be included in combinatorial cancer therapies to enhance immune-mediated tumor elimination.
Collapse
Affiliation(s)
- Tanja Eisemann
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Heike Peterziel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), University Hospital and DKFZ Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
36
|
Wang S, Liu R, Yu Q, Dong L, Bi Y, Liu G. Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett 2019; 452:14-22. [PMID: 30905817 DOI: 10.1016/j.canlet.2019.03.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
In response to different microenvironmental stimuli, macrophages are polarized into two populations, M1 macrophages which are classically activated by interferon (IFN)-γ with lipopolysaccharides (LPSs) and M2 macrophages which are alternatively activated by interleukin-4 (IL-4), to perform specific roles in innate immune responses. Accordingly, macrophages occupy distinct metabolic profiles, regulated by orchestrated factors and signaling pathways, including the PI3K-AKT, HIF, c-Myc, AMPK, and PPARs pathways. These factors and pathways play pivotal roles not only in metabolic regulation but also in macrophage polarization. After activation, classically activated M1 macrophages and alternatively activated M2 macrophages display distinct patterns in glucose, lipid, amino acid and iron metabolism. Here, we summarized recently discovered metabolism-related inflammatory signaling factors, along with reprogrammed metabolism, after the activation of macrophages under conditions related to immunity and cancer. Additionally, macrophage regulatory roles in infectious diseases, cancer progression and anti-cancer immunotherapy are discussed in terms of metabolic profiles, providing insight into the prevention and treatment of immune-associated diseases.
Collapse
Affiliation(s)
- Shiyao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ruichen Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
37
|
Porta C, Marino A, Consonni FM, Bleve A, Mola S, Storto M, Riboldi E, Sica A. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis 2019; 39:1095-1104. [PMID: 29982315 DOI: 10.1093/carcin/bgy088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
New evidences indicate that the metabolic instruction of immunity (immune metabolism) results from the integration of cell metabolism and whole-body metabolism, which are both influenced by nutrition, microbiome metabolites and disease-driven metabolism (e.g. cancer metabolism). Cancer metabolism influences the immunological homeostasis and promotes immune alterations that support disease progression, hence influencing the clinical outcome. Cancer cells display increased glucose uptake and fermentation of glucose to lactate, even in the presence of completely functioning mitochondria. A major side effect of this event is immunosuppression, characterized by limited immunogenicity of cancer cells and restriction of the therapeutic efficacy of anticancer immunotherapy. Here, we discuss how the metabolism of myeloid cells associated with cancer contributes to the differentiation of their suppressive phenotype and therefore to cancer immune evasion.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | | | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Mariangela Storto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
38
|
CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res 2019; 378:131-138. [PMID: 30857971 DOI: 10.1016/j.yexcr.2019.03.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophage (TAM), a crucial component of immune cell infiltrated in tumor microenvironment, is associated with progression of oral squamous cell carcinoma (OSCC). However, it is still unclear how TAM is induced/accumulated and activated around/in OSCC. In the study herein, we tried to understand how TAM accumulates and activates in the OSCC and how TAM promotes OSCC to convert cancer stem cell (CSC). In this study, first important finding was that the M2 macrophages significantly increased in all twenty human OSCC samples in vivo. Cancer-associated fibroblast (CAF)-derived CXCL12 effectively attracted monocytes, which displayed M2 macrophage phenotype. Blocking CXCL12 receptor (CXCR4) significantly reduced chemotaxis of M2 macrophage. Polarized M2 macrophage promoted CSC-like transition in OSCC cell line, Cal27 cells. These CSC-like cells significantly expressed higher Sox2, Oct4, and Nanog genes, were stronger positive for CD44 and CD105, increased cell proliferation with less apoptosis, enhanced cell migration, and were resistant to chemotherapy drug, vineristine. These results indicate that CAF effectively attracts monocytes via the CXCL12/CXCR4 pathway and induces their differentiation to M2 macrophages. Interestingly, these polarized M2 macrophages promote formation of CSC-like cells from the OSCC lead to enhance OSCC proliferation with less apoptosis. Therefore, our findings have potential to lead to novel therapy for the OSCC to target CXCL12-mediated TAM recruitment.
Collapse
|
39
|
Li C, Morvaridi S, Lam G, Chheda C, Kamata Y, Katsumata M, Edderkaoui M, Yuan X, Nissen N, Pandol SJ, Wang Q. MSP-RON Signaling Is Activated in the Transition From Pancreatic Intraepithelial Neoplasia (PanIN) to Pancreatic Ductal Adenocarcinoma (PDAC). Front Physiol 2019; 10:147. [PMID: 30863319 PMCID: PMC6399467 DOI: 10.3389/fphys.2019.00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest epithelial malignancies and remains difficult to treat. Pancreatic intraepithelial neoplasias (PanINs) represent the majority of the pre-cancer lesions in the pancreas. The PDAC microenvironment consists of activated pancreatic stellate cells (PSCs) and immune cells, which are thought to contribute to neoplastic transformation. However, the signaling events involved in driving the transition from the neoplastic precursor to the more advanced and aggressive forms in the pancreas are not well understood. Recepteur d’Origine Nantais (RON) is a c-MET family receptor tyrosine kinase that is implicated in playing a role in cell proliferation, migration and other aspects of tumorigenesis. Macrophage stimulating protein (MSP) is the ligand for RON and becomes activated upon proteolytic cleavage by matriptase (also known as ST14), a type II transmembrane serine protease. In the current study, by immunohistochemistry (IHC) analysis of human pancreatic tissues, we found that the expression levels MSP and matriptase are drastically increased during the transition from the preneoplastic PanIN stages to the more advanced and aggressive PDAC. Moreover, RON is highly expressed in both PDAC and in cancer-associated stellate cells. In contrast, MSP, RON, and matriptase are expressed at low levels, if any, in normal pancreas. Our study underscores an emerging role of MSP-RON autocrine and paracrine signaling events in driving malignant progression in the pancreas.
Collapse
Affiliation(s)
- Ce Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Susan Morvaridi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Gloria Lam
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chintan Chheda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yoshiko Kamata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Makoto Katsumata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaopu Yuan
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nicholas Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
40
|
Hussey GS, Dziki JL, Lee YC, Bartolacci JG, Behun M, Turnquist HR, Badylak SF. Matrix bound nanovesicle-associated IL-33 activates a pro-remodeling macrophage phenotype via a non-canonical, ST2-independent pathway. ACTA ACUST UNITED AC 2019; 3:26-35. [PMID: 31656879 DOI: 10.1016/j.regen.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regenerative healing response of injured skeletal muscle is dependent upon an appropriately timed switch from a local type-I to a type-II immune response. Biologic scaffolds derived from extracellular matrix (ECM) have been shown to facilitate a macrophage phenotype transition that leads to downstream site-appropriate functional tissue deposition and myogenesis. However, the mechanisms by which ECM directs the switching of immune cell phenotype are only partially understood. Herein, we provide the first evidence that matrix bound nanovesicles (MBV) embedded within ECM-scaffolds are a rich and stable source of interleukin-33 (IL-33), an alarmin/cytokine with emerging reparative properties. We show that IL-33 encapsulated within MBV bypass the classical IL33/ST2 receptor signaling pathway to direct macrophage differentiation into the reparative, pro-remodeling M2 phenotype, which in turn facilitates myogenesis of skeletal muscle progenitor cells. Our results suggest the potential of IL-33+ MBV as a clinical therapy to augment the restorative efficacy of existing ECM-based and non-ECM based approaches.
Collapse
Affiliation(s)
- George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Yoojin C Lee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Joseph G Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| | - Marissa Behun
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA
| | - Hēth R Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Department of Immunology, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219-3110, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, USA.,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
41
|
Yelins’ka AM, Akimov OY, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
Screening Five Qi-Tonifying Herbs on M2 Phenotype Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9549315. [PMID: 30766614 PMCID: PMC6350552 DOI: 10.1155/2019/9549315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 01/10/2023]
Abstract
Tumor-associated macrophages (TAMs) with M2 phenotype play an essential role in tumor microenvironment (TME) during the progression and development of numerous cancers and associated with poor prognosis. Thus, regulation of TAMs polarization emerged as a new strategy for tumor immune therapy. According to Traditional Chinese Medicine (TCM) theory, herbs with Qi-tonifying character are involved in improving the defense capacity of immune system. In this study, we screened extracts and ingredients from five Qi-tonifying herbs exhibiting an inhibitory effect on M2 polarization of murine macrophages RAW264.7 induced by IL-4 and IL-13. Among these candidates, total flavonoids from Glycyrrhiza Radix et Rhizoma (TFRG) and ethanol extract of Ginseng Radix et Rhizoma significantly inhibited the expression of Arginase-1 (Arg-1) (above 90% at 100μg/mL), one of the phenotype markers of M2 macrophages. The inhibition of total saponins of Ginseng Radix et Rhizoma, ethanol extract of Cordyceps, ethanol extract of Acanthopanacis senticosi Radix et Rhizoma Seu caulis, and ethanol extract of Astragali Radix reached above 50% at 100μg/mL. The inhibition of ingredients including glabridin, isoliquiritin apioside, lysionotin, cordycepin, astragaloside IV, and calycosin reached above 50% at 50μM. Then, we investigated the molecular mechanisms of TFRG. TFRG abolished the migration of murine breast cancer 4T1 stimulated by the conditioned medium from M2 macrophages (M2-CM). In addition to Arg-1, TFRG also antagonized the IL-4/13-mediated mRNA upregulation of the M2 markers including found in inflammatory zone 1 (FIZZ1), chitinase-3-like protein 3 (YM1), and mannose receptor (CD206) and upregulated the expression of inducible nitric oxide synthase (iNOS), one of the M1 markers. The further exploration showed that TFRG decreased the phosphorylation of STAT6 and increased the expression of miR-155. Our study provides a series of potential immune regulating natural products from five Qi-tonifying herbs on M2 phenotype. For instance, TFRG suppressed M2 polarization of macrophages partly by inactivating STAT6 pathway and enhanced the level of miR-155 to regulate the expressions of M1 and M2 markers.
Collapse
|
43
|
Yuan X, Wu H, Bu H, Zhou J, Zhang H. Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 2018; 163:413-427. [PMID: 30530193 DOI: 10.1016/j.ejmech.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
44
|
Abdissa K, Nerlich A, Beineke A, Ruangkiattikul N, Pawar V, Heise U, Janze N, Falk C, Bruder D, Schleicher U, Bogdan C, Weiss S, Goethe R. Presence of Infected Gr-1 intCD11b hiCD11c int Monocytic Myeloid Derived Suppressor Cells Subverts T Cell Response and Is Associated With Impaired Dendritic Cell Function in Mycobacterium avium-Infected Mice. Front Immunol 2018; 9:2317. [PMID: 30386330 PMCID: PMC6198055 DOI: 10.3389/fimmu.2018.02317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunomodulatory function. To study the mechanism by which MDSC affect antimicrobial immunity, we infected mice with two M. avium strains of differential virulence, highly virulent Mycobacterium avium subsp. avium strain 25291 (MAA) and low virulent Mycobacterium avium subsp. hominissuis strain 104 (MAH). Intraperitoneal infection with MAA, but not MAH, caused severe disease and massive splenic infiltration of monocytic MDSC (M-MDSC; Gr-1intCD11bhiCD11cint) expressing inducible NO synthase (Nos2) and bearing high numbers of mycobacteria. Depletion experiments demonstrated that M-MDSC were essential for disease progression. NO production by M-MDSC influenced antigen-uptake and processing by dendritic cells and proliferation of CD4+ T cells. M-MDSC were also induced in MAA-infected mice lacking Nos2. In these mice CD4+ T cell expansion and control of infection were restored. However, T cell inhibition was only partially relieved and arginase (Arg) 1-expressing M-MDSC were accumulated. Likewise, inhibition of Arg1 also partially rescued T cell proliferation. Thus, mycobacterial virulence results in the induction of M-MDSC that block the T cell response in a Nos2- and Arg1-dependent manner.
Collapse
Affiliation(s)
- Ketema Abdissa
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Nerlich
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Mouse Pathology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nina Janze
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
45
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Krishnaswamy S, Bukhari I, Mohammed AK, Amer OE, Tripathi G, Alokail MS, Al-Daghri NM. Identification of the splice variants of Recepteur d'Origine nantais (RON) in lung cancer cell lines. Gene 2018; 679:335-340. [PMID: 30223007 DOI: 10.1016/j.gene.2018.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
RON receptor tyrosine kinase is a transmembrane protein directly involved in suppression of inflammation and its aberrant expression linked to cancers and metastasis. Efforts to block deregulated RON signaling in tumors using small molecule kinase inhibitors or antibodies have been complicated by the presence of unknown number/types of isoforms of RON, which, despite being structurally similar, localize differently and mediate varied functions. Current study was designed to identify the splice variants of RON transcripts formed by skipping of sequences between exons 9 and 14 for better understanding of isoform specific RON signaling in cancers. PCR amplification and bi-directional sequencing of a 901 bp cDNA sequence located between exons 9 to 14 of RON from lung cancer cell lines revealed the presence of two splicing variants formed by skipping of exons 11 and 11-13. Each of these transcripts was found in more than one cell line. Expressed sequence tag (EST) database search indicated that the splicing variant lacking exons 11-13 was a novel one. Here we conclude that the splice variants of RON lacking exon 11 and exons 11-13 were detected in several lung cancer cell lines. Novel variant formed by skipping exons 11-13, the sequence of which code for transmembrane region, is predicted to code for a truncated isoform that may be secreted out. Tumors may antagonize the ligand dependent anti-inflammatory function of wild-type RON by secreting out the ligand binding isoforms.
Collapse
Affiliation(s)
- Soundararajan Krishnaswamy
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Ihtisham Bukhari
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Translational Research Institute, School of Medicine, Henan Provincial People's Hospital, Henan University, Zhengzhou, China
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Osama Emam Amer
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Gyanendra Tripathi
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Majed S Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia
| | - Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
47
|
Allen J, Zhang J, Quickel MD, Kennett M, Patterson AD, Hankey-Giblin PA. Ron Receptor Signaling Ameliorates Hepatic Fibrosis in a Diet-Induced Nonalcoholic Steatohepatitis Mouse Model. J Proteome Res 2018; 17:3268-3280. [PMID: 30091925 DOI: 10.1021/acs.jproteome.8b00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is commonly observed in the terminal stages of nonalcoholic steatohepatitis (NASH) and with no specific and effective antifibrotic therapies available, this disease is a major global health burden. The MSP/Ron receptor axis has been shown to have anti-inflammatory properties in a number of mouse models, due at least in part, to its ability to limit pro-inflammatory responses in tissue-resident macrophages and hepatocytes. In this study, we established the role of the Ron receptor in steatohepatitis-induced hepatic fibrosis using Ron ligand domain knockout mice on an apolipoprotein E knockout background (DKO). After 18 weeks of high-fat high-cholesterol feeding, loss of Ron activation resulted in exacerbated NASH-associated steatosis which is precedent to hepatocellular injury, inflammation and fibrosis. 1H nuclear magnetic resonance (NMR)-based metabolomics identified significant changes in serum metabolites that can modulate the intrahepatic lipid pool in hepatic steatosis. Serum from DKO mice had higher concentrations of lipids, VLDL/LDL and pyruvate, whereas glycine levels were reduced. Parallel to the aggravated steatohepatitis, increased accumulation of collagen, inflammatory immune cells and collagen producing-myofibroblasts were seen in the livers of DKO mice. Gene expression profiling revealed that DKO mice exhibited elevated expression of genes encoding Ron receptor ligand MSP, collagens, ECM remodeling proteins and pro-fibrogenic cytokines in the liver. Our results demonstrate the protective effects of Ron receptor activation on NASH-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Joselyn Allen
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania United States
| |
Collapse
|
48
|
Brown NE, Sullivan C, Waltz SE. Therapeutic Considerations for Ron Receptor Expression in Prostate Cancer. EMS CANCER SCIENCE JOURNAL 2018; 1:003. [PMID: 30775725 PMCID: PMC6377156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The Ron receptor tyrosine kinase was initially discovered as a protein which played a critical role in regulating inflammatory responses. This effect was primarily determined through studies in various macrophage populations. Since its initial discovery, a role has emerged for Ron as a driver of cancer within epithelial cells. After numerous publications have detailed a role for Ron in promoting tumor initiation, growth, and metastasis, Ron has been designated as an emerging therapeutic option in a variety of cancers. AREAS COVERED This review discusses the current literature regarding the role of Ron in prostate cancer and places special emphasis on the role of Ron in both epithelial cells and macrophages. Whole body loss of Ron signaling initially exposed a variety of prostate cancer growth mechanisms regulated by Ron. With the knowledge that Ron plays an integral part in regulating the function of epithelial cells and macrophages, studies commenced to discern the cell type specific functions for Ron in prostate cancer. A novel role for Ron in promoting Castration Resistant Prostate Cancer has recently been uncovered, and the results of these studies are summarized herein. Furthermore, this review gives a summary of several currently available compounds which show promise at targeting Ron in both epithelial and macrophage populations. OUTLOOK Sufficient evidence has been provided for the initiation of clinical trials focused on targeting Ron in both macrophage and epithelial compartments for the treatment of prostate cancer. A number of therapeutic avenues for targeting Ron in prostate cancer are currently available; however, special consideration will need to take place knowing that Ron signaling impacts multiple cell types. Further understanding of the cell type specific functions of Ron in prostate cancer will help inform and shape future clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
49
|
Li R, Serrano JC, Xing H, Lee TA, Azizgolshani H, Zaman M, Kamm RD. Interstitial flow promotes macrophage polarization toward an M2 phenotype. Mol Biol Cell 2018; 29:1927-1940. [PMID: 29995595 PMCID: PMC6232969 DOI: 10.1091/mbc.e18-03-0164] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor tissues are characterized by an elevated interstitial fluid flow from the tumor to the surrounding stroma. Macrophages in the tumor microenvironment are key contributors to tumor progression. While it is well established that chemical stimuli within the tumor tissues can alter macrophage behaviors, the effects of mechanical stimuli, especially the flow of interstitial fluid in the tumor microenvironment, on macrophage phenotypes have not been explored. Here, we used three-dimensional biomimetic models to reveal that macrophages can sense and respond to pathophysiological levels of interstitial fluid flow reported in tumors (∼3 µm/s). Specifically, interstitial flow (IF) polarizes macrophages toward an M2-like phenotype via integrin/Src-mediated mechanotransduction pathways involving STAT3/6. Consistent with this flow-induced M2 polarization, macrophages treated with IF migrate faster and have an enhanced ability to promote cancer cell migration. Moreover, IF directs macrophages to migrate against the flow. Since IF emanates from the tumor to the surrounding stromal tissues, our results suggest that IF could not only induce M2 polarization of macrophages but also recruit these M2 macrophages toward the tumor masses, contributing to cancer cell invasion and tumor progression. Collectively, our study reveals that IF could be a critical regulator of tumor immune environment.
Collapse
Affiliation(s)
- Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jean Carlos Serrano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hao Xing
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tara A Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hesham Azizgolshani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Muhammad Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
50
|
Ekiz HA, Lai SCA, Gundlapalli H, Haroun F, Williams MA, Welm AL. Inhibition of RON kinase potentiates anti-CTLA-4 immunotherapy to shrink breast tumors and prevent metastatic outgrowth. Oncoimmunology 2018; 7:e1480286. [PMID: 30228950 PMCID: PMC6140584 DOI: 10.1080/2162402x.2018.1480286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immune checkpoint blockade as a new strategy for immunotherapy has changed the outlook for many aggressive cancers. Although complete tumor eradication is attainable in some cases, durable clinical responses are observed only in a small fraction of patients, underlining urgent need for improvement. We previously showed that RON, a receptor tyrosine kinase expressed in macrophages, suppresses antitumor immune responses, and facilitates progression and metastasis of breast cancer. Here, we investigated the molecular changes that occur downstream of RON activation in macrophages, and whether inhibition of RON can cooperate with checkpoint immunotherapy to eradicate tumors. Activation of RON by its ligand, MSP, altered the gene expression profile of macrophages drastically and upregulated surface levels of CD80 and PD-L1, ligands for T-cell checkpoint receptors CTLA-4 and PD-1. Genetic deletion or pharmacological inhibition of RON in combination with anti-CTLA-4, but not with anti-PD-1, resulted in improved clinical responses against orthotopically transplanted tumors compared to single-agent treatment groups, resulting in complete tumor eradication in 46% of the animals. Positive responses to therapy were associated with higher levels of T-cell activation markers and tumor-infiltrating lymphocytes. Importantly, co-inhibition of RON and anti-CTLA-4 was also effective in clearing metastatic breast cancer cells in lungs, resulting in clinical responses in nearly 60% of the mice. These findings suggest that RON inhibition can be a novel approach to potentiate responses to checkpoint immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Huseyin Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Fadi Haroun
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Williams
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|