1
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
2
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
3
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
4
|
Zeng F, He J, Jin X, Liao Q, Chen Z, Peng H, Zhou Y. FRA-1: A key factor regulating signal transduction of tumor cells and a potential target molecule for tumor therapy. Biomed Pharmacother 2022; 150:113037. [PMID: 35658206 DOI: 10.1016/j.biopha.2022.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Fos-related antigen-1 (FRA-1) is a member of activator protein-1 (AP-1) transcription factor superfamily, and FRA-1 is highly expressed in colon cancer, breast cancer, gastric cancer, lung cancer, bladder cancer, and other tumors. The expression level of FRA-1 is closely related to the processes of tumor cell proliferation, apoptosis, transformation, migration, and invasion, which is a potential therapeutic target and prognostic factor for many tumors. Clarifying the detailed mechanism of action of FRA-1 could provide the theoretical basis for tumor diagnosis, treatment, and prognosis, and is of great significance for the study of tumor etiology and pathogenesis. In this paper, the expression levels and influencing factors of FRA-1 in various tumor tissues and cells are summarized, as well as the effect of FRA-1 expression level on the biological behavior of tumor cells and the signal transduction mechanism. At the same time, the signal transduction mechanism of FRA-1 in inflammation was expounded. In addition, the related metabolites, drugs and non-coding RNA that affect the expression and function of FRA-1 were summarized. Finally, it illustrates that FRA-1 may be taken as a key factor for tumor prognosis and a potential therapeutic target. This review provides a theoretical basis for the systematic understanding of the relationship between FRA-1 and tumors, its function, and possible mechanism.
Collapse
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Junyu He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xi Jin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhifang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Honghua Peng
- Department of The Oncology, Third Xianya Hospital, Xiangya School of Medicine, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Carius P, Horstmann JC, de Souza Carvalho-Wodarz C, Lehr CM. Disease Models: Lung Models for Testing Drugs Against Inflammation and Infection. Handb Exp Pharmacol 2021; 265:157-186. [PMID: 33095300 DOI: 10.1007/164_2020_366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lung diseases have increasingly attracted interest in the past years. The all-known fear of failing treatments against severe pulmonary infections and plans of the pharmaceutical industry to limit research on anti-infectives to a minimum due to cost reasons makes infections of the lung nowadays a "hot topic." Inhalable antibiotics show promising efficacy while limiting adverse systemic effects to a minimum. Moreover, in times of increased life expectancy in developed countries, the treatment of chronic maladies implicating inflammatory diseases, like bronchial asthma or chronic obstructive pulmonary disease, becomes more and more exigent and still lacks proper treatment.In this chapter, we address in vitro models as well as necessary in vivo models to help develop new drugs for the treatment of various severe pulmonary diseases with a strong focus on infectious diseases. By first presenting the essential hands-on techniques for the setup of in vitro models, we intend to combine these with already successful and interesting model approaches to serve as some guideline for the development of future models. The overall goal is to maximize time and cost-efficacy and to minimize attrition as well as animal trials when developing novel anti-infective therapeutics.
Collapse
Affiliation(s)
- Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Wieczfinska J, Sitarek P, Kowalczyk T, Pawliczak R. Leonurus sibiricus root extracts decrease airway remodeling markers expression in fibroblasts. Clin Exp Immunol 2020; 202:28-46. [PMID: 32562256 DOI: 10.1111/cei.13481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bronchial asthma is believed to be provoked by the interaction between airway inflammation and remodeling. Airway remodeling is a complex and poorly understood process, and controlling it appears key for halting the progression of asthma and other obstructive lung diseases. Plants synthesize a number of valuable compounds as constitutive products and as secondary metabolites, many of which have curative properties. The aim of this study was to evaluate the anti-remodeling properties of extracts from transformed and transgenic Leonurus sibiricus roots with transformed L. sibiricus roots extract with transcriptional factor AtPAP1 overexpression (AtPAP1). Two fibroblast cell lines, Wistar Institute-38 (WI-38) and human fetal lung fibroblast (HFL1), were incubated with extracts from transformed L. sibiricus roots (TR) and roots with transcriptional factor AtPAP1 over-expression (AtPAP1 TR). Additionally, remodeling conditions were induced in the cultures with rhinovirus 16 (HRV16). The expressions of metalloproteinase 9 (MMP)-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), arginase I and transforming growth factor (TGF)-β were determined by quantitative polymerase chain reaction (qPCR) and immunoblotting methods. AtPAP1 TR decreased arginase I and MMP-9 expression with no effect on TIMP-1 or TGF-β mRNA expression. This extract also inhibited HRV16-induced expression of arginase I, MMP-9 and TGF-β in both cell lines (P < 0·05) Our study shows for the first time to our knowledge, that transformed AtPAP1 TR extract from L. sibiricus root may affect the remodeling process. Its effect can be attributed an increased amount of phenolic acids such as: chlorogenic acid, caffeic acid or ferulic acid and demonstrates the value of biotechnology in medicinal research.
Collapse
Affiliation(s)
- J Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| | - P Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - T Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz, Poland
| | - R Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Liu H, Huang CX, He Q, Li D, Luo MH, Zhao F, Lu W. Proteomics analysis of HSV-1-induced alterations in mouse brain microvascular endothelial cells. J Neurovirol 2019; 25:525-539. [PMID: 31144288 DOI: 10.1007/s13365-019-00752-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus 1 (HSV-1) is a predominant cause of herpes simplex encephalitis (HSE), leading to a high mortality rate and severe neurological sequelae worldwide. HSE is typically accompanied by the blood-brain barrier (BBB) disruption, but the underlying mechanisms are unclear. To explore the disruption mechanisms of the BBB, quantitative analysis of the cellular proteome was carried out to investigate the proteomic changes that occur after infection. In this study, bEnd.3 cells were infected with HSV-1, followed by liquid chromatography-tandem mass spectrometry. A total of 6761 proteins were identified in three independent mass spectrometry analyses. Compared to the uninfected cells, 386 and 293 differentially expressed proteins were markedly upregulated or downregulated, respectively. Bioinformatic analysis showed that the activator protein-1 factor, including Fos, Jun, and ATF family proteins and cell adhesion molecules were significantly changed. Further validation of the changes observed for these proteins was carried out by western blotting and quantitative real-time PCR. Transendothelial electrical resistance (TEER) studies were performed to explore the effects of ATF3, Fra1, or JunB overexpression on the function of bEnd.3 cells. Characterization of the differential expression of these proteins in bEnd.3 cells will facilitate further exploration of BBB disruption upon HSV-1 infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chu-Xin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China.
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
8
|
Thymic stromal lymphopoietin and apocynin alter the expression of airway remodeling factors in human rhinovirus-infected cells. Immunobiology 2017; 222:892-899. [PMID: 28545810 DOI: 10.1016/j.imbio.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/21/2017] [Accepted: 05/14/2017] [Indexed: 12/30/2022]
Abstract
Airway remodeling is a characteristic of bronchial asthma. The process involves the expression of many genes, such as transforming growth factor-beta (TGF-β), tissue inhibitors of metalloproteinases (TIMP-1), MMP and arginase. Human rhinovirus (HRV) is known to cause asthma exacerbations, and viral infections might be involved in the development of airway remodeling. Therefore, the aim of this study was to determine the influence of HRV on the genes involved in airway remodeling and to examine the impact of thymic stromal lymphopoietin (TSLP) and contribution of oxidative stress on airway remodeling in the context of HRV infection. Peripheral blood mononuclear cells, isolated from blood collected from 10 healthy volunteers, and human lung fibroblasts were infected with HRV-16. The cells were treated with apocynin or TSLP 48h after infection. The expression of TGF-β1, TIMP-1 and arginase I mRNA and protein were determined by real-time PCR, immunoblotting and ELISA, respectively. Rhinovirus infection significantly increased the expression of TGF-β1 and arginase I, on the mRNA and protein levels. This effect was inhibited by apocynin, though only on the mRNA level. TIMP-1 expression was not influenced by HRV; however, apocynin caused a significant increase of TIMP-1 mRNA expression. TSLP increased the expression of TGF-β1 and arginase I mRNA in fibroblasts, but not in PBMC.
Collapse
|
9
|
Delcuratolo M, Fertey J, Schneider M, Schuetz J, Leiprecht N, Hudjetz B, Brodbeck S, Corall S, Dreer M, Schwab RM, Grimm M, Wu SY, Stubenrauch F, Chiang CM, Iftner T. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4. PLoS Pathog 2016; 12:e1005366. [PMID: 26727473 PMCID: PMC4699637 DOI: 10.1371/journal.ppat.1005366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
Abstract
We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. Human Papillomaviruses (HPV) are the etiological agents of cervical cancer and of skin cancer in individuals with the inherited disease epidermodysplasia verruciformis (EV). While the role of the viral oncogenes E6/E7 as drivers of tumorigenesis in cervical cancer has been firmly established, the contribution of the early viral genes in skin cancer is less clear. For EV-associated HPV8 and for the skin cancer model system using cottontail rabbit PV, an important role of the viral E2 protein in tumorigenesis was suggested earlier and regulation of cellular genes by E2 through different mechanisms was demonstrated. We show now that the viral E2 and cellular Brd4 act together to induce the cellular gene c-Fos, which as a member of the AP-1 complex, is involved in the regulation of cellular genes and the viral promoter driving the expression of viral oncogenes. As c-Fos has also been shown to be essential for skin cancer, E2 contributes to tumorigenesis via expression of E6/E7 as well as by increasing c-Fos.
Collapse
Affiliation(s)
- Maria Delcuratolo
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Fertey
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Markus Schneider
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Schuetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Natalie Leiprecht
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Hudjetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Brodbeck
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Silke Corall
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Marcel Dreer
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Roxana Michaela Schwab
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Shwu-Yuan Wu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Frank Stubenrauch
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Thomas Iftner
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
10
|
Koo JB, Han JS. Cigarette smoke extract-induced interleukin-6 expression is regulated by phospholipase D1 in human bronchial epithelial cells. J Toxicol Sci 2016; 41:77-89. [DOI: 10.2131/jts.41.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jun Bon Koo
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| |
Collapse
|
11
|
Pathophysiological changes induced by Pseudomonas aeruginosa infection are involved in MMP-12 and MMP-13 upregulation in human carcinoma epithelial cells and a pneumonia mouse model. Infect Immun 2015; 83:4791-9. [PMID: 26438797 PMCID: PMC4645383 DOI: 10.1128/iai.00619-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa infections persist in patients with cystic fibrosis (CF) and drive lung disease progression. P. aeruginosa potently activates the innate immune system mostly through the recognition of pathogen-associated molecular patterns, such as flagellin. Matrix metalloproteinases 12 and 13 (MMP-12 and MMP-13, respectively) exacerbate chronic lung infection and inflammation by promoting uncontrolled tissue rearrangements and fibrosis, yet the underlying molecular mechanisms by which this occurs remain largely unknown. In this study, we used quantitative bacteriology, histological examination, and proinflammatory cytokine levels to evaluate the effects of MMP-12 and MMP-13 on P. aeruginosa strain K-induced infection and pneumonia in H292 epithelial cells and mice, respectively. Under inflammatory stimulation, mRNA and protein expression levels of proinflammatory mediators were higher in strain K-infected mice and cells than in uninfected counterparts, in which MMP-12 and MMP-13 expression reached levels similar to those observed in epithelial cells. Moreover, we also found that the NF-κB pathway might be involved in the induction of cytokines in response to strain K infection. Taken together, these data suggest that MMP-12 and MMP-13 alter strain K infection in mice and play a role in inflammatory regulation by modulating cytokine levels.
Collapse
|
12
|
Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, Jarjour NN, Denlinger LC. Nasal lavage VEGF and TNF-α levels during a natural cold predict asthma exacerbations. Clin Exp Allergy 2014; 44:1484-93. [PMID: 25109477 PMCID: PMC4247169 DOI: 10.1111/cea.12387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/09/2014] [Accepted: 06/20/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Asthma exacerbations contribute to significant morbidity, mortality and healthcare utilization. Furthermore, viral infections are associated with asthma exacerbations by mechanisms that are not fully understood. OBJECTIVE The aim of this analysis was to determine whether cytokine patterns in patients with colds could identify risks for subsequent asthma exacerbations. METHODS We analysed cytokine levels in nasal lavage fluid (NLF) in 59 subjects (46 with asthma) with acute upper respiratory symptoms and after symptomatic resolution. Analyte choice was based on potential relevance to asthma exacerbations: antiviral (IFN-α, IFN-β, IFN-γ, IFN-λ1, IP-10, TRAIL), cell recruiting (G-CSF, IL-1β, IL-8, MCP-1, MCP-3, TNF-α), polarizing (CXCL13, IL-10, IL-13, IL-17, TSLP), and injury remodelling (fibronectin, IL-33, MMP-9, VEGF). RESULTS The overall cytokine response induced during viral infections was not different between asthmatic and non-asthmatic individuals for a wide array of cytokines. However, mean levels of VEGF, TNF-α and IL-1β were 1.7-, 5.1- and 4.7-fold higher in samples from asthma subjects who exacerbated in the first 3 weeks of the cold compared with those who did not exacerbate (P = 0.006, 0.01, 0.048, respectively). Using receiver operating characteristic curve-defined thresholds, high VEGF and TNF-α levels predicted a shorter time-to-exacerbation after NLF sampling (25% exacerbation rate: 3 vs. 45 days, and 3 vs. 26 days; P = 0.03, 0.04, respectively). CONCLUSION AND CLINICAL RELEVANCE Although they produce similar cytokine responses to viral infection as non-asthmatics, asthmatics with higher levels of VEGF and TNF-α in NLF obtained during acute cold phases predicted subsequent asthma exacerbations in this cohort of patients with mild-to-moderate disease. In the future, stratifying the risk of an asthma exacerbation by cytokine profile may aid the targeting of personalized treatment and intervention strategies.
Collapse
Affiliation(s)
- D M Manthei
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Oliver BGG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J 2014; 44:1666-81. [PMID: 25234802 DOI: 10.1183/09031936.00047714] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways in which the majority of patients respond to treatment with corticosteroids and β₂-adrenoceptor agonists. Acute exacerbations of asthma substantially contribute to disease morbidity, mortality and healthcare costs, and are not restricted to patients who are not compliant with their treatment regimens. Given that respiratory viral infections are the principal cause of asthma exacerbations, this review article will explore the relationship between viral infections and asthma, and will put forward hypotheses as to why virus-induced exacerbations occur. Potential mechanisms that may explain why current therapeutics do not fully inhibit virus-induced exacerbations, for example, β₂-adrenergic desensitisation and corticosteroid insensitivity, are explored, as well as which aspects of virus-induced inflammation are likely to be attenuated by current therapy.
Collapse
Affiliation(s)
- Brian G G Oliver
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Paul Robinson
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Mathew Peters
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia Dept of Thoracic Medicine, Concord General Hospital, Concord, Australia
| | - Judy Black
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
15
|
Theron AJ, Steel HC, Tintinger GR, Feldman C, Anderson R. Can the anti-inflammatory activities of β2-agonists be harnessed in the clinical setting? DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1387-98. [PMID: 24285920 PMCID: PMC3840775 DOI: 10.2147/dddt.s50995] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Beta2-adrenoreceptor agonists (β2-agonists) are primarily bronchodilators, targeting airway smooth muscle and providing critical symptomatic relief in conditions such as bronchial asthma and chronic obstructive pulmonary disease. These agents also possess broad-spectrum, secondary, anti-inflammatory properties. These are mediated largely, though not exclusively, via interactions with adenylyl cyclase-coupled β2-adrenoreceptors on a range of immune and inflammatory cells involved in the immunopathogenesis of acute and chronic inflammatory disorders of the airways. The clinical relevance of the anti-inflammatory actions of β2-agonists, although often effective in the experimental setting, remains contentious. The primary objectives of the current review are: firstly, to assess the mechanisms, both molecular and cell-associated, that may limit the anti-inflammatory efficacy of β2-agonists; secondly, to evaluate pharmacological strategies, several of which are recent and innovative, that may overcome these limitations. These are preceded by a consideration of the various types of β2-agonists, their clinical applications, and spectrum of anti-inflammatory activities, particularly those involving adenosine 3',5'-cyclic adenosine monophosphate-activated protein kinase-mediated clearance of cytosolic calcium, and altered gene expression in immune and inflammatory cells.
Collapse
Affiliation(s)
- Annette J Theron
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa ; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
16
|
Newton R. Anti-inflammatory glucocorticoids: changing concepts. Eur J Pharmacol 2013; 724:231-6. [PMID: 23747654 DOI: 10.1016/j.ejphar.2013.05.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of κBα (NFKBIA) inhibits NF-κB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Gαq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by β2-adrenoceptor agonists and may explain the enhanced clinical efficacy of β2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid-dependent transactivation will provide opportunities to improve glucocorticoid therapies.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
17
|
Kawashima A, Suzuki T, Nishihara F, Kobayashi T, Takaku Y, Nakagome K, Soma T, Hagiwara K, Kanazawa M, Nagata M. Effect of formoterol on eosinophil trans-basement membrane migration induced by interleukin-8-stimulated neutrophils. Int Arch Allergy Immunol 2013; 161 Suppl 2:10-5. [PMID: 23711848 DOI: 10.1159/000350335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neutrophils are often increased in the airways of either chronic severe asthma or acute exacerbations. Neutrophils that have migrated in response to interleukin-8 (IL-8) may lead eosinophils to accumulate in the airways of patients with asthma and possibly aggravate the disease. In this study, we investigated whether formoterol modified the trans-basement membrane migration (TBM) of eosinophils stimulated with neutrophils and IL-8. METHODS Neutrophils and eosinophils were isolated from peripheral blood obtained from healthy donors. Eosinophil TBM was examined using a modified Boyden's chamber technique. Neutrophils were preincubated with or without formoterol (0.1 μM) at 37°C for 30 min. Eosinophils were added to the upper compartment of a chamber with a Matrigel-coated transwell insert. Medium containing preincubated neutrophils and IL-8 was added to the lower compartment of the chamber. After a 90-minute incubation, the eosinophils that had migrated into the lower chamber were calculated using eosinophil peroxidase assays. RESULTS A combination of neutrophils and IL-8 significantly induced the eosinophil TBM; formoterol alone had no effect. However, formoterol modestly but significantly attenuated the TBM of eosinophils stimulated with neutrophils and IL-8. CONCLUSION These results suggest that formoterol may act as a therapeutic agent on enhanced eosinophilic inflammation in acute exacerbation or persistent, severe asthma. The effect of formoterol likely involves the inhibition of neutrophil activation.
Collapse
Affiliation(s)
- Akiko Kawashima
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rider CF, Miller-Larsson A, Proud D, Giembycz MA, Newton R. Modulation of transcriptional responses by poly(I:C) and human rhinovirus: effect of long-acting β₂-adrenoceptor agonists. Eur J Pharmacol 2013; 708:60-7. [PMID: 23523474 DOI: 10.1016/j.ejphar.2013.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022]
Abstract
Exacerbations of asthma, a chronic inflammatory respiratory disease, are associated with viral upper respiratory tract infections involving human rhinovirus. Although glucocorticoids (corticosteroids) effectively control airways inflammation in many asthmatics, human rhinovirus-associated exacerbations show reduced glucocorticoid responsiveness. Using human bronchial epithelial BEAS-2B cells, we show that human rhinovirus reduced glucocorticoid-inducible activation of glucocorticoid response element (GRE) reporter systems in a time- and concentration-dependent manner. The synthetic double-stranded viral RNA mimetic, polyinosinic:polycytidylic acid (poly(I:C)), also reduced activation of GRE reporter systems in BEAS-2B and pulmonary A549 cells. In addition, poly(I:C) decreased transcription from cAMP response element (CRE)-, TATA-, simian virus 40- and nuclear factor-kappa B (NF-κB)-dependent reporter systems. The effects of poly(I:C) on GRE-reporter activation were countered by the long-acting β2-adrenoceptor agonists, formoterol and salmeterol. Likewise, increased expression of the gene cyclin-dependent kinase inhibitor 1C (CDKN1C; p57(KIP2)) by dexamethasone was reduced by poly(I:C), but was substantially enhanced by the addition of formoterol. Poly(I:C) induced the expression of interleukin-8 (IL8; CXCL8) and this was significantly decreased by dexamethasone, formoterol or their combination. This confirms that not all transcriptional responses were attenuated by poly(I:C) and that decreased glucocorticoid-dependent transcription can be counteracted by the addition of long-acting β2-adrenoceptor agonists. These data show how human rhinovirus may attenuate glucocorticoid-induced transcription to reduce anti-inflammatory activity. However, addition of long-acting β2-adrenoceptor agonist to the glucocorticoid functionally restored this response and shows how glucocorticoid plus long-acting β2-adrenoceptor agonist combinations may prove beneficial during virus-induced exacerbations of asthma.
Collapse
Affiliation(s)
- Christopher F Rider
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, 3330 Hospital Drive NW, AB, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
19
|
Blume C, Davies DE. In vitro and ex vivo models of human asthma. Eur J Pharm Biopharm 2013; 84:394-400. [PMID: 23313714 DOI: 10.1016/j.ejpb.2012.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
Abstract
Asthma is an inflammatory disorder of the conducting airways which undergo distinct structural and functional changes leading to non-specific bronchial hyperresponsiveness (BHR) and airflow obstruction that fluctuate over time. It is a complex disease involving multiple genetic and environmental influences whose multifactorial interactions can result in a range of asthma phenotypes. Since our understanding of these gene-gene and gene-environment interactions is very poor, this poses a major challenge to the logical development of 'models of asthma'. However, use of cells and tissues from asthmatic donors allows genetic and epigenetic influences to be evaluated and can go some way to reflect the complex interplay between genetic and environmental stimuli that occur in vivo. Current alternative approaches to in vivo animal models involve use of a plethora of systems ranging from very simple models using human cells (e.g. bronchial epithelial cells and fibroblasts) in mono- or co-culture, whole tissue explants (biopsies, muscle strips, bronchial rings) through to in vivo studies in human volunteers. Asthma research has been greatly facilitated by the introduction of fibreoptic bronchoscopy which is now a commonly used technique in the field of respiratory disease research, allowing collection of biopsy specimens, bronchial brushing samples, and bronchoalveolar lavage fluid enabling use of disease-derived cells and tissues in some of these models. Here, we will consider the merits and limitations of current models and discuss the potential of tissue engineering approaches through which we aim to advance our understanding of asthma and its treatment.
Collapse
Affiliation(s)
- Cornelia Blume
- Brooke Laboratory, Clinical and Experimental Sciences and the Southampton NIHR, Respiratory Biomedical Research Unit, University of Southampton, University Hospital Southampton, Southampton, United Kingdom.
| | | |
Collapse
|