1
|
Clarkson BD, Grund EM, Standiford MM, Mirchia K, Westphal MS, Muschler LS, Howe CL. CD8+ T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis. J Clin Invest 2023; 133:e162788. [PMID: 37676734 PMCID: PMC10617772 DOI: 10.1172/jci162788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/06/2023] [Indexed: 09/09/2023] Open
Abstract
CD8+ T cells outnumber CD4+ cells in multiple sclerosis (MS) lesions associated with disease progression, but the pathogenic role and antigenic targets of these clonally expanded effectors are unknown. Based on evidence that demyelination is necessary but not sufficient for disease progression in MS, we previously hypothesized that CNS-infiltrating CD8+ T cells specific for neuronal antigens directly drive the axonal and neuronal injury that leads to cumulative neurologic disability in patients with MS. We now show that demyelination induced expression of MHC class I on neurons and axons and resulted in presentation of a neuron-specific neoantigen (synapsin promoter-driven chicken ovalbumin) to antigen-specific CD8+ T cells (anti-ovalbumin OT-I TCR-transgenic T cells). These neuroantigen-specific effectors surveilled the CNS in the absence of demyelination but were not retained. However, upon induction of demyelination via cuprizone intoxication, neuroantigen-specific CD8+ T cells proliferated, accumulated in the CNS, and damaged neoantigen-expressing neurons and axons. We further report elevated neuronal expression of MHC class I and β2-microglobulin transcripts and protein in gray matter and white matter tracts in tissue from patients with MS. These findings support a pathogenic role for autoreactive anti-axonal and anti-neuronal CD8+ T cells in MS progression.
Collapse
Affiliation(s)
- Benjamin D.S. Clarkson
- Department of Neurology
- Department of Laboratory Medicine and Pathology
- Center for Multiple Sclerosis and Autoimmune Neurology
| | | | | | | | | | | | - Charles L. Howe
- Department of Neurology
- Center for Multiple Sclerosis and Autoimmune Neurology
- Division of Experimental Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis? Biol Futur 2021; 72:45-60. [PMID: 34554497 DOI: 10.1007/s42977-021-00066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.
Collapse
|
3
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Hsu M, Laaker C, Sandor M, Fabry Z. Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Front Cell Neurosci 2021; 15:683676. [PMID: 34248503 PMCID: PMC8261156 DOI: 10.3389/fncel.2021.683676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
5
|
Risk Factor and Long-Term Outcome Analyses for Acute Limbic Encephalitis and Calcineurin Inhibitor-Induced Encephalopathy in Adults following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:437.e1-437.e9. [PMID: 33965190 DOI: 10.1016/j.jtct.2021.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Post-transplantation acute limbic encephalitis (PALE) is a rare, severe inflammatory disorder in the bilateral limbic system, including the hippocampus. To date, only a few studies have reported details, including risk factors for PALE; however, further clinical evidence of PALE, especially in cerebrospinal fluid human herpesvirus 6-negative cases, is warranted. In addition, data are sparse regarding the risk factors for calcineurin inhibitor (CNI)-induced encephalopathy (CNIE) following allogeneic hematopoietic cell transplantation (allo-HCT) in adults. Therefore, we examined the risk factors for and clinical details of PALE and CNIE. We retrospectively analyzed consecutive patients who underwent allo-HCT between January 2005 and November 2017. A total of 485 patients age 46 years (median) were eligible. In total, 14 PALE cases and 11 CNIE cases were identified. Multivariable analyses identified older age, use of an HLA-mismatched unrelated donor (URD), graft-versus-host disease (GVHD) prophylaxis with CNI and mycophenolate mofetil, and grade II-IV acute GVHD as significantly associated with an increased risk of PALE. In 13 patients who received high-dose methylprednisolone (mPSL) therapy, 6 (46%) responded to mPSL therapy, and 3 (23%) achieved complete remission at day 90 after mPSL administration. Furthermore, myelodysplastic syndrome (MDS), HLA-mismatched URD, and grade II-IV acute GVHD were significantly associated with an increased risk of CNIE. The 5-year nonrelapse mortality rate was 50% in PALE and 63% in CNIE, suggesting a very poor prognosis. In conclusion, this study provides evidence that HLA-mismatched URD and acute GVHD may independently contribute to the development of PALE, possibly in part through HLA-mismatch-derived alloimmune responses. Other than acute GVHD, we have identified MDS and HLA-mismatched URD as novel predictors of CNIE after allo-HCT.
Collapse
|
6
|
Liu W, Hou J, Liu X, Wang L, Li G. Causes and Follow-Up of Central Diabetes Insipidus in Children. Int J Endocrinol 2019; 2019:5303765. [PMID: 31049061 PMCID: PMC6458924 DOI: 10.1155/2019/5303765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To identify the causes of central diabetes insipidus (CDI) by evaluating the values of magnetic resonance imaging (MRI) in the diagnosis of pediatric CDI, providing evidence for the clinical diagnosis and treatment of CDI. METHODS Seventy-nine patients with CDI (CDI group) hospitalized from July 2012 to March 2017 and 43 healthy children (control group) were enrolled in this study. All cases underwent MRI examination including T1-weighted three-dimensional magnetization-prepared rapid gradient-echo (T1WI-3D-MP RAGE) imaging sequences. The pituitary volume, the signal intensity of posterior pituitary, and the morphology of pituitary stalk were measured between two groups. The medical history, urine testing, imaging of hypothalamic-pituitary region, and hormone levels were also recorded. RESULTS Age and gender were matched between the CDI and control groups. The height and BMI in the CDI group were less and the urine volume in 24 h was higher than those in the control group. The signal intensity of the posterior pituitary was higher in the control group, whereas the pituitary volume was smaller in the CDI group. In the CDI group, 44 cases presented with morphological changes of the pituitary stalk. Clinical symptoms mainly included polydipsia, polyuria, short stature, and vomiting. All patients were confirmed by water deprivation vasopressin test. Forty-four CDI children were associated with hypopituitarism, including 33 cases of PSIS with multiple pituitary hormone deficiencies (MPHD) and 11 cases of growth hormone deficiency (IGHD). The pituitary volume in the cases of pituitary stalk interruption syndrome (PSIS) with MPHD was smaller than that in the IGHD patients. CONCLUSIONS The signal intensity ratio of the posterior lobe, pituitary volume, and the morphology of pituitary stalk on T1WI-3D-MP RAGE image contribute to the diagnosis of CDI.
Collapse
Affiliation(s)
- Wendong Liu
- Department of Pediatrics, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jing Hou
- Department of Pediatrics, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiuqin Liu
- Department of Pediatrics, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Limin Wang
- Department of Pediatrics, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
7
|
Gustafsson JR, Katsioudi G, Degn M, Ejlerskov P, Issazadeh-Navikas S, Kornum BR. DNMT1 regulates expression of MHC class I in post-mitotic neurons. Mol Brain 2018; 11:36. [PMID: 29970123 PMCID: PMC6029374 DOI: 10.1186/s13041-018-0380-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
Major Histocompability Complex I (MHC-I) molecules present cellularly derived peptides to the adaptive immune system. Generally MHC-I is not expressed on healthy post-mitotic neurons in the central nervous system, but it is known to increase upon immune activation such as viral infections and also during neurodegenerative processes. MHC-I expression is known to be regulated by the DNA methyltransferase DNMT1 in non-neuronal cells. Interestingly DNMT1 expression is high in neurons despite these being non-dividing. This suggests a role for DNMT1 in neurons beyond the classical re-methylation of DNA after cell division. We thus investigated whether DNMT1 regulates MHC-I in post-mitotic neurons. For this we used primary cultures of mouse cerebellar granule neurons (CGNs). Our results showed that knockdown of DNMT1 in CGNs caused upregulation of some, but not all subtypes of MHC-I genes. This effect was synergistically enhanced by subsequent IFNγ treatment. Overall MHC-I protein level was not affected by knockdown of DNMT1 in CGNs. Instead our results show that the relative MHC-I expression levels among the different MHC subtypes is regulated by DNMT1 activity. In conclusion, we show that while the mouse H2-D1/L alleles are suppressed in neurons by DNMT1 activity under normal circumstances, the H2-K1 allele is not. This finding is particularly important in two instances. One: in the context of CNS autoimmunity with epitope presentation by specific MHC-I subtypes where this allele specific regulation might become important; and two: in amyotropic lateral sclerosis (ALS) where H2-K but not H2-D protects motor neurons from ALS astrocyte-induced toxicity in a mouse model of ALS.
Collapse
Affiliation(s)
- Julie Ry Gustafsson
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Glostrup, Nordre Ringvej 57, 2600, Glostrup, Denmark
| | - Georgia Katsioudi
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Glostrup, Nordre Ringvej 57, 2600, Glostrup, Denmark
| | - Matilda Degn
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Glostrup, Nordre Ringvej 57, 2600, Glostrup, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Birgitte Rahbek Kornum
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Glostrup, Nordre Ringvej 57, 2600, Glostrup, Denmark. .,Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, Denmark. .,Molecular Sleep Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. J Neurosci 2018; 38:7058-7071. [PMID: 29959236 DOI: 10.1523/jneurosci.0366-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/29/2023] Open
Abstract
T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.
Collapse
|
9
|
Clarkson BDS, Patel MS, LaFrance-Corey RG, Howe CL. Retrograde interferon-gamma signaling induces major histocompatibility class I expression in human-induced pluripotent stem cell-derived neurons. Ann Clin Transl Neurol 2017; 5:172-185. [PMID: 29468178 PMCID: PMC5817842 DOI: 10.1002/acn3.516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Objective Injury-associated axon-intrinsic signals are thought to underlie pathogenesis and progression in many neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). Retrograde interferon gamma (IFN γ) signals are known to induce expression of major histocompatibility class I (MHC I) genes in murine axons, thereby increasing the susceptibility of these axons to attack by antigen-specific CD8+ T cells. We sought to determine whether the same is true in human neurons. Methods A novel microisolation chamber design was used to physically isolate and manipulate axons from human skin fibroblast-derived induced pluripotent stem cell (iPSC)-derived neuron-enriched neural aggregates. Fluorescent retrobeads were used to assess the fraction of neurons with projections to the distal chamber. Axons were treated with IFN γ for 72 h and expression of MHC class I and antigen presentation genes were evaluated by RT-PCR and immunofluorescence. Results Human iPSC-derived neural stem cells maintained as 3D aggregate cultures in the cell body chamber of polymer microisolation chambers extended dense axonal projections into the fluidically isolated distal chamber. Treatment of these axons with IFN γ resulted in upregulation of MHC class I and antigen processing genes in the neuron cell bodies. IFN γ-induced MHC class I molecules were also anterogradely transported into the distal axon. Interpretation These results provide conclusive evidence that human axons are competent to express MHC class I molecules, suggesting that inflammatory factors enriched in demyelinated lesions may render axons vulnerable to attack by autoreactive CD8+ T cells in patients with MS. Future work will be aimed at identifying pathogenic anti-axonal T cells in these patients.
Collapse
Affiliation(s)
| | - Misha S Patel
- Department of Neurology Mayo Clinic Rochester Minnesota
| | | | - Charles L Howe
- Department of Neurology Mayo Clinic Rochester Minnesota.,Department of Neuroscience Mayo Clinic Rochester Minnesota.,Department of Immunology Mayo Clinic Rochester Minnesota.,Center for Multiple Sclerosis and Autoimmune Neurology Mayo Clinic Rochester Minnesota
| |
Collapse
|
10
|
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol 2017; 133:223-244. [PMID: 27766432 PMCID: PMC5250666 DOI: 10.1007/s00401-016-1631-4] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that "Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis". However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4+ T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8+ T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| | - Monika Bradl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| |
Collapse
|
11
|
Gebauer C, Pignolet B, Yshii L, Mauré E, Bauer J, Liblau R. CD4+ and CD8+ T cells are both needed to induce paraneoplastic neurological disease in a mouse model. Oncoimmunology 2016; 6:e1260212. [PMID: 28344867 DOI: 10.1080/2162402x.2016.1260212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023] Open
Abstract
Paraneoplastic neurological disorders (PNDs) are rare human autoimmune diseases that mostly affect the central nervous system (CNS). They are triggered by an efficient immune response against a neural self-antigen that is ectopically expressed in neoplastic tumors. Due to this shared antigenic expression, the immune system reacts not only to tumor cells but also to neural cells resulting in neurological damage. Growing data point to a major role of cell-mediated immunity in PNDs associated to autoantibodies against intracellular proteins. However, its precise contribution in the pathogenesis remains unclear. In this context, our study aimed at investigating the impact of anti-tumor cellular immune responses in the development of PND. To this end, we developed an animal model mimicking PND. We used a tumor cell line expressing the hemagglutinin (HA) of influenza virus to induce an anti-tumor response in CamK-HA mice, which express HA in CNS neurons. To promote and track the T cell response against the HA antigen, naïve HA-specific CD8+ and/or CD4+ T cells, originating from TCR-transgenic animals, were transferred into these mice. We demonstrate that HA-expressing tumors, but not control tumors, induce in vivo activation, proliferation and differentiation of naïve HA-specific CD4+ and CD8+ T cells into effector cells. Moreover, both T cell subsets were needed to control tumor growth and induce CNS inflammation in CamK-HA mice. Thus, this new mouse model provides further insight into the cellular mechanisms whereby a potent anti-tumor immunity triggers a cancer-associated autoimmune disease, and may therefore help to develop new therapeutic strategies against PND.
Collapse
Affiliation(s)
- Christina Gebauer
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| | - Béatrice Pignolet
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France; Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Lidia Yshii
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France; Institute of Biomedical Sciences I, University of São Paulo, São Paulo, Brazil
| | - Emilie Mauré
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna , Vienna, Austria
| | - Roland Liblau
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| |
Collapse
|
12
|
CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A 2016; 113:10956-61. [PMID: 27621438 DOI: 10.1073/pnas.1603325113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Narcolepsy with cataplexy is a rare and severe sleep disorder caused by the destruction of orexinergic neurons in the lateral hypothalamus. The genetic and environmental factors associated with narcolepsy, together with serologic data, collectively point to an autoimmune origin. The current animal models of narcolepsy, based on either disruption of the orexinergic neurotransmission or neurons, do not allow study of the potential autoimmune etiology. Here, we sought to generate a mouse model that allows deciphering of the immune mechanisms leading to orexin(+) neuron loss and narcolepsy development. We generated mice expressing the hemagglutinin (HA) as a "neo-self-antigen" specifically in hypothalamic orexin(+) neurons (called Orex-HA), which were transferred with effector neo-self-antigen-specific T cells to assess whether an autoimmune process could be at play in narcolepsy. Given the tight association of narcolepsy with the human leukocyte antigen (HLA) HLA-DQB1*06:02 allele, we first tested the pathogenic contribution of CD4 Th1 cells. Although these T cells readily infiltrated the hypothalamus and triggered local inflammation, they did not elicit the loss of orexin(+) neurons or clinical manifestations of narcolepsy. In contrast, the transfer of cytotoxic CD8 T cells (CTLs) led to both T-cell infiltration and specific destruction of orexin(+) neurons. This phenotype was further aggravated upon repeated injections of CTLs. In situ, CTLs interacted directly with MHC class I-expressing orexin(+) neurons, resulting in cytolytic granule polarization toward neurons. Finally, drastic neuronal loss caused manifestations mimicking human narcolepsy, such as cataplexy and sleep attacks. This work demonstrates the potential role of CTLs as final effectors of the immunopathological process in narcolepsy.
Collapse
|
13
|
Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol 2015; 14:945-55. [PMID: 26293566 DOI: 10.1016/s1474-4422(15)00141-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/22/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
Almost every disorder of the CNS is said to have an inflammatory component, but the precise nature of inflammation in the CNS is often imprecisely defined, and the role of CNS-resident cells is uncertain compared with that of cells that invade the tissue from the systemic immune compartment. To understand inflammation in the CNS, the term must be better defined, and the response of tissue to disturbances in homoeostasis (eg, neurodegenerative processes) should be distinguished from disorders in which aberrant immune responses lead to CNS dysfunction and tissue destruction (eg, autoimmunity). Whether the inflammatory tissue response to injury is reparative or degenerative seems to be dependent on context and timing, as are the windows of opportunity for therapeutic intervention in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Roland S Liblau
- Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Martin-Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Perinat T, Van Weddingen I, Blatti C, Engelhardt B, Liblau R. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol 2015; 45:3302-12. [PMID: 26358409 PMCID: PMC7163664 DOI: 10.1002/eji.201545632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
Although CD8 T cells are key players in neuroinflammation, little is known about their trafficking cues into the central nervous system (CNS). We used a murine model of CNS autoimmunity to define the molecules involved in cytotoxic CD8 T‐cell migration into the CNS. Using a panel of mAbs, we here show that the α4β1‐integrin is essential for CD8 T‐cell interaction with CNS endothelium. We also investigated which α4β1‐integrin ligands expressed by endothelial cells are implicated. The blockade of VCAM‐1 did not protect against autoimmune encephalomyelitis, and only partly decreased the CD8+ T‐cell infiltration into the CNS. In addition, inhibition of junctional adhesion molecule‐B expressed by CNS endothelial cells also decreases CD8 T‐cell infiltration. CD8 T cells may use additional and possibly unidentified adhesion molecules to gain access to the CNS.
Collapse
Affiliation(s)
- Guillaume Martin-Blondel
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France.,INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Béatrice Pignolet
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Lidia Yshii
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Christina Gebauer
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| | - Therese Perinat
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Isabelle Van Weddingen
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.,Université Toulouse III, Toulouse, France
| |
Collapse
|
15
|
Martin-Blondel G, Pignolet B, Liblau RS. [Migration and pathogenicity of CD8 T cells in central nervous system diseases]. Med Sci (Paris) 2015; 31:748-55. [PMID: 26340834 DOI: 10.1051/medsci/20153108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The implication of CD8 T cells in infectious and inflammatory diseases of the central nervous system has received increasing attention. CD8 T cells are crucial players of the adaptive immune system against neurotropic infections, but can also trigger tissue damage. Here we review the molecular mechanisms used by CD8 T cells to migrate into the central nervous system, and describe diseases that imply CD8 T cell-mediated pathogenicity. We also suggest therapeutic strategies targeting this population.
Collapse
Affiliation(s)
- Guillaume Martin-Blondel
- Département des maladies infectieuses et tropicales, hôpital universitaire de Toulouse, France - Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Université Toulouse III, Toulouse, F-31000, France
| | - Béatrice Pignolet
- Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Département des neurosciences, hôpital universitaire de Toulouse, France
| | - Roland S Liblau
- Inserm U1043, CNRS UMR 5282, centre de physiopathologie Toulouse-Purpan, hôpital Purpan, place du Docteur Baylac, 31024 Toulouse, France - Université Toulouse III, Toulouse, F-31000, France
| |
Collapse
|
16
|
Melzer N, Budde T, Stork O, Meuth SG. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala. Front Neurol 2015; 6:171. [PMID: 26284026 PMCID: PMC4522870 DOI: 10.3389/fneur.2015.00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022] Open
Abstract
Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative – mainly episodic – memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster , Münster , Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster , Münster , Germany ; Department of Neuropathophysiology, Institute of Physiology I, University of Münster , Münster , Germany
| |
Collapse
|
17
|
Ehling P, Melzer N, Budde T, Meuth SG. CD8(+) T Cell-Mediated Neuronal Dysfunction and Degeneration in Limbic Encephalitis. Front Neurol 2015; 6:163. [PMID: 26236280 PMCID: PMC4502349 DOI: 10.3389/fneur.2015.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune inflammation of the limbic gray matter structures of the human brain has recently been identified as major cause of mesial temporal lobe epilepsy with interictal temporal epileptiform activity and slowing of the electroencephalogram, progressive memory disturbances, as well as a variety of other behavioral, emotional, and cognitive changes. Magnetic resonance imaging exhibits volume and signal changes of the amygdala and hippocampus, and specific anti-neuronal antibodies binding to either intracellular or plasma membrane neuronal antigens can be detected in serum and cerebrospinal fluid. While effects of plasma cell-derived antibodies on neuronal function and integrity are increasingly becoming characterized, potentially contributing effects of T cell-mediated immune mechanisms remain poorly understood. CD8+ T cells are known to directly interact with major histocompatibility complex class I-expressing neurons in an antigen-specific manner. Here, we summarize current knowledge on how such direct CD8+ T cell–neuron interactions may impact neuronal excitability, plasticity, and integrity on a single cell and network level and provide an overview on methods to further corroborate the in vivo relevance of these mechanisms mainly obtained from in vitro studies.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| | - Nico Melzer
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University , Münster , Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-University of Münster , Münster , Germany ; Institute of Physiology I - Neuropathophysiology, Westfälische Wilhelms-University , Münster , Germany
| |
Collapse
|
18
|
Abstract
Type 1 narcolepsy is a sleep disorder characterized by excessive daytime sleepiness with unintentional sleep attacks and cataplexy. The disorder is caused by a loss of hypocretinergic neurons in the brain. The specific loss of these neurons in narcolepsy is thought to result from an autoimmune attack, and this is supported by evidence of both environmental and genetic factors pointing toward an involvement of the immune system. However, definitive proof of an autoimmune etiology is still missing. Several different immune-mediated disorders targeting neurons are known, and many of these are believed to be caused by autoreactive CD8(+) T cells. In this paper, we review the current knowledge on CD8(+) T cell-mediated neuronal damage on the basis of our understanding of other autoimmune disorders and experimental studies. We identify major histocompatibility complex class I presentation of autoantigens on neurons as a possible mechanism in the development of the disease, and propose T cell-mediated pathogenesis, with cytotoxic CD8(+) T cells targeting the hypocretinergic neurons, as a central element.
Collapse
Affiliation(s)
- Matilda Degn
- Department of Diagnostics, Molecular Sleep Laboratory, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Birgitte Rahbek Kornum
- Department of Diagnostics, Molecular Sleep Laboratory, Rigshospitalet Glostrup, Glostrup, Denmark.,Department of Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
19
|
Abstract
In patients with immune-associated disorders of the gray central nervous system matter (including recurrent seizures), antibodies against intracellular antigens have been discovered since the 1980s/1990s. In recent years, new antibodies against surface antigens have also been discovered. In two respects, these antibodies are even more interesting than the ones to intracellular antigens as, first, they promise a better response to immunotherapy; and, second, these antibodies contribute greatly to the understanding of the disease mechanisms. Whereas in encephalitides with antibodies against intracellular antigens, a cytotoxic T-cell-mediated response seems to be responsible for neuronal cell loss, in encephalitides with autoantibodies against surface antigens these antibodies are probably the relevant pathogenic agents in the associated disease conditions. On the one hand, antibodies to the NR1 subunit of N-methyl-D-aspartate receptors have been suggested to cause internalization and loss of these receptors without any cell destruction. This mechanism can explain the reversible functional effects caused by these antibodies. On the other hand, antibody- and complement-mediated destructive, and the irreversible effects of antibodies against the voltage-gated potassium channel antigens have been noted. These emerging findings make it plausible that immunological therapies, preferably early after characterization of the antibodies, offer opportunities to restore the health of affected patients.
Collapse
Affiliation(s)
| | - Jan Bauer
- />Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
20
|
Pignolet BS, Gebauer CM, Liblau RS. Immunopathogenesis of paraneoplastic neurological syndromes associated with anti-Hu antibodies: A beneficial antitumor immune response going awry. Oncoimmunology 2013; 2:e27384. [PMID: 24501693 PMCID: PMC3913668 DOI: 10.4161/onci.27384] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/29/2013] [Accepted: 12/01/2013] [Indexed: 01/07/2023] Open
Abstract
Paraneoplastic neurological disorders (PNDs) are syndromes that develop in cancer patients when an efficient antitumor immune response, directed against antigens expressed by both malignant cells and healthy neurons, damages the nervous system. Herein, we analyze existing data on the mechanisms of loss of self tolerance and nervous tissue damage that underpin one of the most frequent PNDs, the anti-Hu syndrome. In addition, we discuss future directions and propose potential strategies aimed at blocking deleterious encephalitogenic immune responses while preserving the antineoplastic potential of treatment.
Collapse
Affiliation(s)
- Béatrice Sl Pignolet
- INSERM-UMR1043; Toulouse, France ; CNRS, U5282; Toulouse, France ; Universite de Toulouse; UPS; Centre de Physiopathologie Toulouse Purpan (CPTP); Toulouse, France ; CHU Toulouse Purpan; Toulouse, France
| | - Christina Mt Gebauer
- INSERM-UMR1043; Toulouse, France ; CNRS, U5282; Toulouse, France ; Universite de Toulouse; UPS; Centre de Physiopathologie Toulouse Purpan (CPTP); Toulouse, France
| | - Roland S Liblau
- INSERM-UMR1043; Toulouse, France ; CNRS, U5282; Toulouse, France ; Universite de Toulouse; UPS; Centre de Physiopathologie Toulouse Purpan (CPTP); Toulouse, France ; CHU Toulouse Purpan; Toulouse, France
| |
Collapse
|
21
|
Kreutzfeldt M, Bergthaler A, Fernandez M, Brück W, Steinbach K, Vorm M, Coras R, Blümcke I, Bonilla WV, Fleige A, Forman R, Müller W, Becher B, Misgeld T, Kerschensteiner M, Pinschewer DD, Merkler D. Neuroprotective intervention by interferon-γ blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med 2013; 210:2087-103. [PMID: 23999498 PMCID: PMC3782053 DOI: 10.1084/jem.20122143] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 08/07/2013] [Indexed: 01/12/2023] Open
Abstract
Neurons are postmitotic and thus irreplaceable cells of the central nervous system (CNS). Accordingly, CNS inflammation with resulting neuronal damage can have devastating consequences. We investigated molecular mediators and structural consequences of CD8(+) T lymphocyte (CTL) attack on neurons in vivo. In a viral encephalitis model in mice, disease depended on CTL-derived interferon-γ (IFN-γ) and neuronal IFN-γ signaling. Downstream STAT1 phosphorylation and nuclear translocation in neurons were associated with dendrite and synapse loss (deafferentation). Analogous molecular and structural alterations were also found in human Rasmussen encephalitis, a CTL-mediated human autoimmune disorder of the CNS. Importantly, therapeutic intervention by IFN-γ blocking antibody prevented neuronal deafferentation and clinical disease without reducing CTL responses or CNS infiltration. These findings identify neuronal IFN-γ signaling as a novel target for neuroprotective interventions in CTL-mediated CNS disease.
Collapse
Affiliation(s)
- Mario Kreutzfeldt
- Department of Pathology and Immunology and 2 World Health Organization Collaborating Centre for Vaccine Immunology, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Neurons as targets for T cells in the nervous system. Trends Neurosci 2013; 36:315-24. [DOI: 10.1016/j.tins.2013.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/31/2022]
|
23
|
Harris MG, Fabry Z. Initiation and Regulation of CNS Autoimmunity: Balancing Immune Surveillance and Inflammation in the CNS. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.33026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|